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Humans’ remarkable ability to quickly and accurately discrimi-

nate among thousands of highly similar complex objects demands

rapid and precise neural computations. To elucidate the process

by which this is achieved, we used magnetoencephalography to

measure spatiotemporal patterns of neural activity with high tem-

poral resolution during visual discrimination among a large and

carefully controlled set of faces. We also compared these neu-

ral data to lower level “image-based” and higher level “identity-

based” model-based representations of our stimuli and to behav-

ioral similarity judgments of our stimuli. Between ∼50 and 400 ms

after stimulus onset, face-selective sources in right lateral occipi-

tal cortex and right fusiform gyrus and sources in a control region

(left V1) yielded successful classification of facial identity. In all

regions, early responses were more similar to the image-based

representation than to the identity-based representation. In the

face-selective regions only, responses were more similar to the

identity-based representation at several time points after 200 ms.

Behavioral responses were more similar to the identity-based rep-

resentation than to the image-based representation, and their

structure was predicted by responses in the face-selective regions.

These results provide a temporally precise description of the trans-

formation from low- to high-level representations of facial iden-

tity in human face-selective cortex and demonstrate that face-

selective cortical regions represent multiple distinct types of infor-

mation about face identity at different times over the first 500 ms

after stimulus onset. These results have important implications

for understanding the rapid emergence of fine-grained, high-

level representations of object identity, a computation essential

to human visual expertise.

face processing | magnetoencephalography | decoding | representational

similarity analysis | face identity

Humans can discriminate among thousands of highly similar
and complex visual patterns, such as face identity, in less

than half a second (1, 2). Efficient within-category discrimina-
tion of facial identity is important for real-world decisions (e.g.,
classifying a person as a friend or stranger) and social interac-
tions. Progress has been made in elucidating the neural mecha-
nisms underlying the discrimination of individual face identities
in humans. Using fMRI, these studies demonstrate that individ-
ual face identities are represented by spatially distributed pat-
terns of neural activity within occipitotemporal cortex (3–13).
Because of the poor temporal resolution in fMRI studies (typ-
ically around 2 s), however, our understanding of the neural
basis of discrimination among complex visual patterns in humans
remains limited. For example, within a given region, different
information relevant to discrimination may be represented at
different times over the first few 100 ms after stimulus onset.
However, current models of the neural basis of face recogni-
tion in humans do not typically allow for this possibility, because
they usually assign a single functional role to each face-selective
region (14).

A few previous studies (15–18) have explored the temporal
properties of the neural representation of individual face identi-
ties in humans. However, the measurements of representations

in these studies were based on variations in the amplitude of
neural activity at just one or two time points, typically sampling
from different sensors for different time points (16–18) or on the
temporal dynamics of signal from a small number of intracra-
nial electrodes in fusiform gyrus (15). Furthermore, those
studies that have investigated the nature of the facial identity
information encoded in the neural data have used analyses that
are limited to relatively low-level visual information (e.g., man-
ual pixel-based measurements of eye or cheek color) (15, 17, 18)
and/or analyses that sample from different brain regions for dif-
ferent time points (18). Hence, these studies provide limited
information about the temporal dynamics of neural represen-
tations of facial identity. To allow fast and accurate discrimina-
tion of face identity in the real world, the human visual system
must rapidly (within the first few 100 ms) transform image-based
inputs into a more abstract, less image-based representation with
greater tolerance to identity-preserving image transformations
(19, 20). The computations underlying the temporal emergence
of these high-level representations of facial identity are largely
untapped. Hence, the neural basis of human face recognition
cannot be fully understood without further examination of the
temporal dimension of the neural representation of face identity.

In the current study, we investigated three important and
unanswered questions about the neural basis of within-category
discrimination among a large and carefully-controlled set of facial
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identities in humans. (i) When do spatiotemporal patterns of
activity within face-selective cortex carry information sufficient
for discrimination of facial identity across changes in facial
expression? (ii) What types of information about facial identity
(e.g., low-level image-based information or higher level identity-
based information, information encoded in human behavioral
similarity judgments) are represented by these spatiotemporal
patterns of activity, and when? (iii) Where in the brain are these
different types of information represented (e.g., in face-selective
or control regions)? To investigate these questions, we devel-
oped a paradigm that permits the characterization of the rep-
resentation of a large set of individual face identities from spa-
tiotemporal patterns of neural activity, with extremely high tem-
poral resolution. We used a small-sample design inspired by
single-cell recording studies in nonhuman primates (21–23) and
psychophysics (24, 25). We recorded comprehensive brain activ-
ity with magnetoencephalography (MEG) in four adult human
participants while they viewed face images from a large, care-
fully controlled set (91 face identities, with two facial expressions
per identity; Fig. 1), with a sufficiently large number of trials for
each face identity (104–112 trials per face identity, 9,464–10,192
trials per participant) to be able to evaluate the representation of
individual face identities in each participant (26). We used MEG
because it has excellent temporal resolution and sufficient spa-
tial resolution for decoding of fine visual information from spa-
tial patterns of neural activity (26, 27). In each participant, we
used an independent functional localizer task in MEG to iden-
tify face-selective regions in right lateral occipital cortex and right
fusiform gyrus. We also used an anatomical atlas to localize left
V1. We selected V1 to serve as a control area because it is known
to encode relatively low-level visual information, and we used left
V1 instead of right V1 because we expected that left V1 would
be less likely to be influenced by interactions with the aforemen-
tioned right-hemisphere face-selective regions. Note, however,
that the structure of representations in right and left V1 seems
to be qualitatively similar (see Results, Left Hemisphere).

To evaluate the extent to which spatiotemporal patterns of
activity in each of the aforementioned regions discriminated
among the 91 face identities, we used a pairwise k-nearest-
neighbor classifier to classify all possible pairs of face iden-
tities across changes in facial expression. We then evaluated
what information was encoded in the neural data by compar-
ing the pairwise dissimilarity structure of the neural data within
each region of interest to each of two representations: (i) an
“image-based” representation computed from a neural model
simulating the response of simple cells in V1 (29) and (ii) an
“identity-based” representation, in which all face pairs have

Fig. 1. Examples of stimuli presented in the current study. (A) All faces are

presented with a neutral facial expression. Eight additional face identities

(models 21, 24–27, and 32–34) from the NimStim Face Stimulus Set (28) and

four additional identities from the Psychological Image Collection at Ster-

ling Pain Expressions Set (male models 5, 6, 8, and 10) were included in our

stimulus set but cannot be reproduced here under the release terms of those

stimulus sets. (B) All details as described for A, with the exception that faces

are presented with happy expressions.
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Fig. 2. Heat maps showing pairwise distance values for “image-based” and

“identity-based” representations of the facial identities in our stimulus set.

Each cell of each matrix shows the distance value associated with the com-

parison of two identities, across a change in facial expression, with hotter

colors indicating a greater distance (i.e., larger difference between the rep-

resentations of each identity in the pair).

dissimilarity of 0 if they are the same identity, and 1 otherwise
(Fig. 2). For each postbaseline time point (where each time point
is the starting point of a 60-ms sliding window used for all anal-
yses) and each region of interest, we then examined which of
these two representations was more similar to the neural data.
To examine the extent to which the spatiotemporal patterns mea-
sured in the neural data could account for behavior, we also com-
pared the pairwise structure of the neural data to pairwise behav-
ioral judgments of a subset of the stimuli presented during the
MEG experiment.

Results

Behavior During MEG Face Identity Task. In each of the 26–28
blocks of the task, participants viewed each of 91 face identi-
ties four times (twice per expression) while brain activity was
recorded with MEG. Participants were instructed to maintain
fixation and to press a button whenever they saw the same face
identity repeated, regardless of facial expression. Across all par-
ticipants and blocks, mean d-prime was 2.21 (SD = 0.52).

MEG.

Functional and anatomical regions of interest. To localize source
points in the MEG source space that responded selectively to
faces, we used a one-back localizer task with a block design and
with stimuli from five different categories: faces, houses, objects,
scrambled objects, and words. Activations from this task (faces >
objects) were used to identify face-selective source points within
right lateral occipital cortex (rLO-faces) and right fusiform gyrus
(rFG-faces), two regions commonly implicated in neuroimaging
studies of face perception (see Materials and Methods for details).
These two face-selective regions are shown in Fig. 3. In each par-
ticipant, we also used an anatomical atlas in Freesurfer (30) to
identify source points within left V1. We restricted all further
analyses to these regions, and to corresponding regions in the
opposite hemisphere.
Classification of facial identity. To examine the extent to which
each region encoded information about facial identity, we used a
binary k-nearest-neighbor classifier (k = 1) to classify each pos-
sible pair of facial identities based on the spatiotemporal pattern
of activity within each region, and within a 60-ms sliding tempo-
ral window. All classification was performed across a change in
facial expression (Materials and Methods).

Fig. 4 shows classification accuracy for each region of inter-
est. In all three regions, classification accuracy exceeded chance
after ∼50 ms, reaching a peak between 100 and 200 ms, with a
clear secondary peak observed in rLO-faces and rFG-faces at
∼250 ms and decreasing back to chance by ∼400 ms. Note that
here and elsewhere in this paper time is expressed as the begin-
ning of the 60-ms sliding temporal window used for classification
and other analyses of the neural data, as in a previous study using
similar methods (15). Hence, the results presented for a given
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S1 - rLO-faces S2 - rLO-faces S3 - rLO-faces S4 - rLO-faces

S1 - rFG-faces S2 - rFG-faces S3 - rFG-faces S4 - rFG-faces

Fig. 3. Face-selective regions of interest (rLO-faces and rFG-faces) for each

participant. All regions are plotted on inflated cortical surface reconstruc-

tions generated separately for each participant. rLO-faces is shown with

a lateral view of the right hemisphere, and rFG-faces is shown with a

ventral view.

time point can reflect measurements from that time point and up
to 60 ms afterward. Between 100 and 200 ms, accuracy was higher
in lV1 than in the other two regions. However, there were several
periods after 200 ms after which accuracy was higher in the two
face-selective regions than in lV1. Together, these results indi-
cate that in all three regions there was sufficient information for
cross-expression classification of facial identity between ∼50 ms
and 400 ms after stimulus onset.
Comparison with model-based representations. To investigate
what information was encoded in each region, and when, we
compared the representational structure of the neural data
within each region to two representations with known prop-
erties: an image-based representation based on relatively low-
level visual properties of the stimuli and a higher level identity-
based representation, which solely encodes whether or not two
face images differ in identity and is not sensitive to any other
property of the images (Fig. 2).

Correlations between the neural data and the image- and
identity-based representations are shown in Fig. 5. In lV1,
the neural data were significantly more similar to the image-
based representation than to the identity-based representation
at nearly all time points after stimulus onset. In rLO-faces, the
neural data were more similar to the image-based representation
between 100 and 200 ms after stimulus onset but were more sim-
ilar to the identity-based representation at several time points
between 200 and 300 ms after stimulus onset. The transition
observed after 200 ms seems to reflect a drop in the correla-
tion with the image-based representation, with no corresponding
drop in the correlation with the identity-based representation.
A similar pattern was observed in rFG-faces, with the exception
that the transition to the identity-based representation was less
pronounced and did not occur until after 300 ms. Together, these
results suggest that spatiotemporal patterns of activity in both
early visual cortical regions such as lV1 and face-selective occip-
ital and temporal regions primarily represent image-based prop-
erties of face identity between 100- and 200-ms stimulus onset,
and that only the latter face-selective regions transition toward
a higher level, more identity-specific representation after 200 ms
(after 300 ms in rFG-faces). We observed qualitatively similar
patterns of correlations (particularly in rLO-faces and lV1) in a
comparison of the neural data to layers of a deep neural network
trained on our stimuli (Supporting Information and Fig. S1).

Behavioral Similarity Ratings. Behavioral dissimilarity ratings
(Fig. 6) were strongly and positively correlated with both the
identity- (r = 0.89) and image-based (r = 0.79) representations
but were significantly more strongly correlated with the former
than with the latter, P < 0.0001 (31). Correlations between the
behavioral and neural data were statistically significant at most
postbaseline time points (Fig. 6). Correlations were not signif-
icantly stronger for the face-selective regions than for the con-
trol region at any postbaseline time points. However, a mul-

tiple regression analysis indicated that responses in both face-
selective regions predicted behavioral responses after controlling
for responses in the control region (lV1) between ∼100 and 250
ms after stimulus onset, and also between 350 and 400 ms in rLO-
faces (see Materials and Methods for details). Overall, this pattern
indicates that behavioral responses primarily reflect an identity-
based representation but may also reflect image-based properties
to a lesser extent, and that these behavioral responses can be pre-
dicted by responses in face-selective regions during earlier (i.e.,
between 100 and 200 ms) and later (after 200 ms) time periods
in which these regions seem to represent lower and higher level
information about facial identity, respectively.

Left Hemisphere. We extended the analyses described above to
the left hemisphere (see Supporting Information and Fig. S2 for
details).

Discussion

In the current study, we investigated when spatiotemporal pat-
terns of activity within face-selective cortex carry information
sufficient for discrimination of facial identity across changes in
facial expression, what type of information about facial identity
(e.g., low-level image-based information, higher level identity-
based information, and information encoded in pairwise behav-
ioral judgments of the stimuli) is represented in these patterns,
and where in the brain (e.g., in face-selective or control regions)
these different types of information are represented at different
points in time. In two face-selective regions (rLO-faces and rFG-
faces) and one control region (lV1) we first measured pairwise
classification among all possible pairs of 91 face identities, across
changes in facial expression so as to tap into a more abstract
representation, invariant over the geometry of the input. We
then compared the pairwise similarity structure of the data in
each of these regions to an image-based representation based
on relatively low-level visual information and to a higher level
identity-based representation. We also compared the neural data
to behavioral similarity judgments of the stimuli. Between ∼50
and 400 ms, we were able to decode face identity successfully
in each of the three regions, with accuracy first peaking at val-
ues above 70% between 100 and 200 ms, and with a secondary
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greater than chance where observed values exceed the statistical threshold.

390 | www.pnas.org/cgi/doi/10.1073/pnas.1614763114 Vida et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614763114/-/DCSupplemental/pnas.201614763SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614763114/-/DCSupplemental/pnas.201614763SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614763114/-/DCSupplemental/pnas.201614763SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614763114/-/DCSupplemental/pnas.201614763SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/cgi/doi/10.1073/pnas.1614763114


N
E
U

R
O

S
C

IE
N

C
E

P
S

Y
C

H
O

LO
G

IC
A

L
A

N
D

C
O

G
N

IT
IV

E
S

C
IE

N
C

E
S

Time (ms)

P
e

a
rs

o
n

 r
-200 -100 0 100 200 300 400 500

-0.1

0

0.1

0.2

0.3

rLO-faces

Image-based

Identity-based

Identity vs. image, FDR<.05

-200 -100 0 100 200 300 400 500
-0.1

0

0.1

0.2

0.3

rFG-faces

-200 -100 0 100 200 300 400 500
-0.1

0

0.1

0.2

0.3

lV1
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differed significantly [false discovery rate (FDR) < 0.05] between the two types of representations.

peak in the face-selective regions between 200 and 300 ms. In all
regions, neural responses were more similar to the image-based
representation than to the identity-based representation until
∼200 ms. In the face-selective regions only, the correlation with
the image-based representation dropped at several time points
after 200 ms, so that responses were more similar to the identity-
based representation. Behavioral responses were more similar to
the identity-based representation than to the image-based repre-
sentation, and their structure was predicted by responses in the
face-selective regions between 100 and 250 ms, after controlling
for responses in the control region.

Our finding of successful face identity classification across
changes in facial expression between ∼50 and 400 ms in all
regions suggests that all regions carried information relevant to
discrimination over a relatively large span of time after stim-
ulus onset. This result provides evidence that even very early
visual regions can encode information sufficient for discrimi-
nating among highly similar complex visual patterns, with some
degree of tolerance to identity-preserving transformations. Note,
however, that the face images in the current study were care-
fully aligned to remove obvious cues to identity caused by mis-
alignment, and that this alignment may amplify the extent to
which relatively low-level image-based differences can be used
for identity discrimination, even across changes in facial expres-
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Fig. 6. (A) Heat map showing mean (across seven participants) pairwise cross-expression behavioral dissimilarity ratings for a subset of face pairs presented
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baseline time points at which correlations were statistically significant (FDR< 0.05) and those at which face-selective regions predicted behavioral responses

after controlling for responses in the control region (FDR < 0.05).

sion. Hence, it is not surprising that we were able to decode facial
identity across changes in facial expression, even in left V1. That
decoding accuracy reached an initial peak between 100 and 200
ms is consistent with previous findings that the N170 component
in EEG and the corresponding M170 component in MEG are
correlated with characteristics of individual face identities (16–
18). In addition, the finding that decoding performance remained
above chance at several time points after 200 ms is consistent
with findings from intracranial recordings from fusiform gyrus
that facial identity could be decoded between 200 and 500 ms
after stimulus onset (15). Also, the finding of secondary peaks in
classification accuracy in the face-selective regions at around 250
ms seems to be compatible with data showing that subordinate-
level processing of faces selectively enhances the N250 ERP
component in EEG, which peaks ∼250 ms after stimulus onset
(32, 33). In sum, our decoding analysis based on spatiotemporal
patterns of activity captured many existing findings in the EEG
and MEG literatures, while allowing further analyses of the tem-
poral dynamics of the similarity structure of the neural represen-
tation of facial identity.

A particularly compelling aspect of our results is the tran-
sition between image-based and identity-based representations
observed after 200–300 ms in the face-selective regions, but
not in the control region (lV1), and the relation between the
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timing of this transition and that of classification accuracy. In
rLO-faces, there were two obvious peaks in which decoding
accuracy exceeded 70%, one between 100 and 200 ms and
the second between 200 and 300 ms. At the first peak, the
similarity structure of the neural data was more similar to an
image-based representation, whereas at the second peak the cor-
relation with the image-based representation dropped, so that
the neural data were more similar to the identity-based repre-
sentation. This pattern was not observed in the control region
(lV1), because the data were more similar to the image-based
representation than to the identity-based representation at all
time points. Previous studies have demonstrated that signals in
occipitotemporal regions between 100 and 200 ms are related to
image-based properties of faces (16–18). However, the transition
toward an identity-based representation within face-selective
cortical regions after 200 ms has not been observed in previ-
ous studies of discrimination of facial identity, because previ-
ous studies either used fMRI (3–13), which lacks the temporal
resolution required to resolve the temporal patterns observed
in the current study, and/or because their analyses of the
neural representations were based on different sensors for dif-
ferent time points (18), and/or were limited to image-based prop-
erties of the stimuli (15, 17, 18). The observed pattern provides
evidence that spatiotemporal patterns of activity in at least some
face-selective regions in human cortex encode qualitatively dif-
ferent information about face identity at different times over
the first few 100 ms after stimulus onset, with a transition from
a lower level representation to a higher level representation
occurring around 200–300 ms. This pattern suggests that mod-
els of the neural basis of face recognition that assign a single
function to each face-selective cortical region (14) are likely to
be incomplete, because they do not account for the possibil-
ity that a given face-selective region may play different func-
tional roles at different times. Given that the identity-based
representation used in the current study represents any exem-
plar of the same identity identically, whereas the image-based
representation does not, this late transition could reflect the
temporal emergence of a neural representation with high tol-
erance to identity-preserving transformations (19). Such a rep-
resentation is highly relevant for real-world behavior, because
many situations require the system to track a single identity
and/or discriminate between identities across identity-preserving
image transformations. Further support for the behavioral rele-
vance of this representation comes from our finding that pairwise
behavioral judgments of the stimuli were more strongly corre-
lated with the identity-based representation than with the image-
based representation, and that responses in the face-selective
regions predicted behavior during temporal periods in which
responses in the face-selective regions transitioned toward an
identity-based representation. Given that the observed transition
occurs relatively late, and that it corresponds with a secondary
later peak in the classification accuracy function, it seems some-
what unlikely that it arises as a consequence of a single initial
feedforward sweep (34) but instead reflects recurrent/feedback
processing (19, 35).

One remaining question is how the face-selective regions iden-
tified in the current study (rLO-faces and rFG-faces) are related
to the corresponding face-selective regions typically identified in
fMRI studies of face processing: occipital face area (OFA) and
fusiform face area (FFA). Given that all source points within
rLO-faces and rFG-faces in the current study are face-selective
and are located within the same anatomical subregions as OFA
and FFA, respectively, it seems possible that their representa-
tions would overlap with those of OFA and FFA. However,
at least two differences are likely to limit the degree of over-
lap. First, MEG and fMRI measure different aspects of neural
activity and have different spatial signal distributions, and are
therefore likely to be sensitive to different spatial patterns of

activity. For example, MEG is less sensitive to signals from
deeper and more gyral sources than it is to more superficial
and sulcal sources (36). Given that the rFG-faces region used
in the current study is deeper and more gyral than rLO-faces,
it seems possible that rLO-faces would capture signals from the
corresponding fMRI-defined region to a greater extent than
rFG-faces. This could account for the lower sensitivity to face
identity observed in rFG-faces than in rLO-faces. Second, our
MEG data have rich temporal structure, but fMRI data do
not, and so the MEG data are unlikely to correspond to the
fMRI data at all time points. Hence, although it is possible that
the representations measured from rLO-faces and rFG-faces
in the current study reflect activity from OFA and FFA, they
are likely to reflect different aspects of the representation of
facial identity than those standardly measured in OFA and FFA
with fMRI.

Taken together, our results provide important information
about when spatiotemporal patterns in face-selective cortical
regions discriminate among a large and carefully controlled set
of face identities across changes in facial expression, and about
what type of information is represented in each region, and
when. Specifically, our results indicate spatiotemporal patterns
of activity in both face-selective and control regions encode
information about facial identity between ∼50 and 400 ms after
stimulus onset. However, the face-selective regions, but not the
control region, seem to encode qualitatively different informa-
tion about facial identity at different times, with a transition from
an image-based representation toward an identity-based repre-
sentation after 200–300 ms. As described above, these results
have implications for understanding the microgenesis of fine-
grained, high-level neural representations of object identity, a
process critical to human visual expertise (19), and perhaps for
distinguishing between feedforward versus recurrent/feedback
accounts of visual processing. Overall, the current investigation
represents a critical advancement toward understanding the tem-
poral dynamics of visual pattern recognition in the human brain.

Materials and Methods

Participants. All participants were Caucasian (white European), right-

handed, and had normal or corrected-to-normal visual acuity and no his-

tory of eye problems. Participants in the MEG experiment were four adults

(one female), aged 23–27 y. Participants in the behavioral experiment were

seven adult humans (five female), aged 18–28 y, none of whom participated

in the MEG experiment. No participants were tested but excluded. Protocols

were approved by institutional review boards at Carnegie Mellon University

and the University of Pittsburgh. All participants provided written informed

consent before each session and received monetary compensation for their

participation.

MEG.

Localizer task. Each participant completed four or five 3.5-h MEG sessions.

During the final MEG session, each participant completed a block design

category localizer adapted from an existing fMRI localizer used in previous

work (12) (Supporting Information). The localizer data were used to identify

source points that responded significantly more strongly to faces than to

objects (FDR< 0.05) within two anatomical regions defined with an atlas in

Freesurfer (30): right lateral occipital cortex and right fusiform gyrus (see

Fig. 3 and see Supporting Information for details).

Face identity task. In each block, participants viewed each of the 91 face

identities four times (twice per expression). Participants were instructed to

maintain fixation and to respond whenever they saw the same face identity

repeated, regardless of facial expression (Supporting Information). During

each of the MEG sessions except for the last part of the final MEG session

participants performed this task while MEG signals were recorded. Each par-

ticipant completed between 26 and 28 blocks of the task.

MEG data acquisition and processing. MEG data were acquired at the

University of Pittsburgh Medical Center Brain Mapping Center, with a

306-channel Neuromag (Elektra AB) system. Data were preprocessed using

both spatial and temporal filtering approaches. Each participant’s MEG

data were then projected onto a cortical surface reconstructed from their

anatomical MRI scan (Supporting Information).
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Classification of facial identity. For each region and time point we used

a binary k-nearest-neighbor classifier to classify all possible pairs of facial

identities across a change in facial expression. We computed a statistical

threshold for accuracy by shuffling the labels in the neural data. Accu-

racy is significantly greater than chance where observed values exceed this

threshold (Supporting Information).

Comparison with model-based representations. For each brain region and

time point, we measured the correlation between the neural data and each

of two model-based representations: an image-based representation based

on low-level visual information and an identity-based representation that

was sensitive to face identity but was not sensitive to image-based informa-

tion (Fig. 2 and Supporting Information). We then compared the correlation

between the two types of representations to examine which type was more

similar to the neural data (31).

Behavioral Similarity Ratings. In each of two 1-h sessions, participants

viewed a subset of pairs of faces from the stimulus set used in the MEG

experiment (Fig. 6) and rated the similarity of the face identities on an

8-point scale, with a value of 1 indicating very different face identities and

a value of 8 indicating the same face identity. Within a pair, face images

always differed in facial expression (Supporting Information). We used the

methods described above to compare the behavioral data to the neural data

and model-based representations. To examine whether neural data from

the face-selective regions could predict the behavioral data after control-

ling for responses in lV1, we fit a multiple linear regression model in which

the distance values for lV1 and a face-selective region were used to predict

the behavioral data (37).
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MEG

Acquisition. To allow correction of eye movement artifacts, we
recorded the electrooculogram (EOG) from four electrodes. To
allow correction of heartbeat artifacts, we recorded the ECG
from a pair of electrodes. Four head position indicator (HPI)
coils were used to monitor the participant’s head position within
the MEG helmet. At the beginning of each session, a digi-
tizing pen was used to record the shape of the participant’s
head and the locations of the HPI coils on the head in 3D
space. For all participants, head position was recorded from
the HPI coils at the beginning of each block. For participants
1, 3, and 4, continuous HPI (cHPI) signals were recorded dur-
ing each block, to allow movement compensation during pre-
processing. cHPI signals were not recorded for participant 2
because enabling cHPI recording seemed to produce excessive
artifacts. A Panasonic PT-D7700U projector (1,024 × 768 res-
olution, 60-Hz refresh rate) presented the stimuli at the center
of a back-projection screen placed 120 cm from the participant.
Face images were 6.87◦ high and 5◦ wide at this viewing distance.
To track stimulus timing, we used a photodiode that emitted a
continuous signal when the stimulus was on the screen. In addi-
tion, the experimental software sent a signal to the MEG acqui-
sition computer whenever a stimulus was presented. Participants
entered responses by pressing a button with their right index
fingers.

Preprocessing. We first applied signal source separation in Max-
filter (Elekta AB), with head movement compensation enabled
where applicable. The temporal extension (tSSS) was enabled
for subject 4, for whom this extension was required to remove
an artifact caused by an orthodontic appliance. tSSS was also
enabled for the localizer data in subject 3, for whom this exten-
sion significantly boosted signal. We then carried out temporal
filtering and artifact rejection and correction in MNE-Python
(38) and applied a band-pass filter with lower and upper cut-
offs set to 1 and 100 Hz, respectively. To remove power line
noise, we applied notch filters at 60, 120, and 180 Hz. Empty
room data were used to create signal space projectors, which
were applied to the filtered raw data to remove environmen-
tal artifacts (39). To correct eye movement and heartbeat arti-
facts, we used MNE-Python to fit an independent components
analysis model to the ECG and EOG data and remove com-
ponents correlated with the MEG data. Finally, trials with sig-

nals exceeding standard thresholds (gradiometer = 4,000e−13,

magnetometer = 4e−12) in at least one channel were rejected
(38). For the main face identity task, at least 101, 92, 101, and
97 trials per face identity were retained for participants 1–4,
respectively.

Source Localization. For each participant, we acquired a T1-
weighted MPRAGE anatomical MRI scan on a Siemens Verio

3T scanner (voxel size 1 mm3, flip angle 9◦, TE = 1.97 ms, TR =
2,300 ms, FOV = 256 × 256 × 176 mm). All scans were car-
ried out at the Scientific Imaging and Brain Research Center
at Carnegie Mellon University. Freesurfer reconstructions based
on the anatomical scan were used in source modeling of MEG
signals.

For each participant, we used dynamic statistical parametric
mapping (dSPM) (40) to project single-trial MEG data onto the
cortical surface reconstructed from each participant’s MRI data.
This approach allowed us to align and combine each participant’s
data across sessions and allowed us to restrict our analyses to

signals estimated to originate in specific regions on the cortical
surface. We used the MNE watershed tool (39) and Freesurfer
output to generate boundary element models (BEMs). In mne-
analyze, we used the digitizer data and the BEMs to align each
participant’s MEG data to their MRI anatomical image. In
MNE, we generated a source space on the reconstructed corti-
cal surface, with source points spaced 5 mm apart. We then gen-
erated a forward solution, which maps the MEG sensor space
to the source space (39). Using this forward solution, we per-
formed dSPM source localization in MNE-Python [single-trial
data, noise covariance matrix calculated from baseline period
(−200 to 0 ms), signal-to-noise ration 3, no depth prior] (38, 39).
Note that the estimates of activity provided by our inverse model
do not directly measure neural activity, but instead represent a
probability density function for activity across the source space.
Because the inverse model provides an estimate of activity at a
given point in the source space, we use “activity” to refer to this
estimate throughout the paper, for simplicity.

Face Identity Task

Stimuli. Stimuli were color frontal photographs of 91 young Cau-
casian (white European) male face identities selected from six
databases (28, 41–44), including PICS (see Fig. 1 for examples).
The following male identities from the Karolinska Directed
Emotional Faces database were included: 2, 3, 5, 6, 7, 10, 11,
12, 13, 17, 18, 21, 23, 24, 25, 26, 27, 28, 31, 32, and 35. The stim-
ulus set included two expressions (neutral or happy) per iden-
tity. To eliminate global luminance and color cues, we converted
each image to CIELAB color space and set the mean of the L∗

(luminance), a∗ (red–green), and b∗ (yellow–blue) channels to
the mean values across all identities. We also set the rms contrast
of the L∗ channel to the mean across all identities. To minimize
differences in alignment, face images were transformed without
altering aspect ratio, so that the eyes were in the same positions
in each image. To eliminate hair cues, we applied an oval mask
of constant size to each face image. To minimize other obvious
cues, we excluded faces with facial hair, uneven lighting, and/or
aspect ratios (defined here as the ratio of the horizontal interocu-
lar distance to the vertical eye–mouth distance) greater than two
standard deviations from the group mean.

Design. Before the MEG experiment, each participant first com-
pleted a single 1-h session of behavioral training on the task that
they would complete during subsequent MEG sessions. In each
block of training, participants viewed each of the 91 face iden-
tities four times (twice per expression), for a total of 364 trials.
Participants were instructed to maintain fixation and to press a
key on a computer keyboard whenever they saw the same face
identity repeated, regardless of facial expression. During each of
the MEG sessions except for the last part of the final MEG ses-
sion participants did the same behavioral task as in the training
session while MEG signals were recorded.

The order of trials was randomized for each block, with the
exception that the same face identity was presented twice in a
row on 36 trials per block. The two face images had the same
expression on half of these repeat trials and had different expres-
sions on the other half. The positions of the repeat trials within
the block and the face identities to be presented on these repeat
trials were randomly selected for each block. Each trial began
with a white fixation dot presented for 500 ms, followed by a face
image presented for 500 ms, then a blank response screen for
1,500 ms.
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Localizer Task. Each run of the MEG localizer consisted of 15
blocks, with a fixation baseline (8 s) between blocks. Within each
run, there were three blocks for each of five categories of images
(faces, objects, scrambled objects, houses, and words) presented
in a random order. Within each block, 16 images from a single
category were presented in a row (900 ms per image, 100-ms
interstimulus interval), in a random order. Each participant com-
pleted six runs, for a total of 288 trials per category. Participants
were instructed to press a button on the response glove with their
right index fingers to indicate the presence of one repeated image
within each block.

To identify face-selective source points in each participant,
we used the statcond function in EEGLAB (45) to carry out
a nonparametric, one-way permutation test on single-trial data
for each participant, source point, and postbaseline time point
(10,000 permutations per test). Each test yielded a P value
indicating the extent to which activity differed between faces
and objects. For each participant, P values were FDR-corrected
across all source points and time points. A source point was con-
sidered to be face-selective if it responded significantly more
strongly to faces than to objects (FDR < 0.05) at one or more
time points and did not respond significantly more strongly to
objects than to faces at any time point.

Classification of Face Identity. For each brain region, time point,
participant, and face identity, we extracted the spatiotemporal
pattern of neural activity across all source points within the
region and across all time points between the current time point
and a time point 60 ms after the current time point. We then
computed the pairwise Euclidean distance for each possible pair
of identities. To ensure that, to the extent possible, this analy-
sis captured information invariant to changes in facial expres-
sion (i.e., were specific to identity), all Euclidean distance val-
ues were computed across a change in facial expression. To
increase power, we averaged Euclidean distance values across
participants.

For a given time point, region of interest, and pair of face
identities, inputs to the k-nearest-neighbor classifier were the
cross-expression within-identity Euclidean distance value for the
each of the two identities, and the cross-expression, cross-identity
distance value. When spatiotemporal patterns of activity con-
tain sufficient information to distinguish between face identities
across a change in facial expression, the cross-identity distance
will be larger than the within-identity distance. Hence, for each
face in the pair, the classifier compared the within-identity dis-
tance to the cross-identity distance and decided that the smaller
of the two (i.e., the nearest neighbor) was the within-identity dis-
tance. Overall classification accuracy was computed as the pro-
portion of correct decisions across all face pairs. Because each
decision is binary, accuracy fluctuates around 0.5 (50% correct)
when there is no signal (i.e., in the baseline period; Fig. 4).

To evaluate whether whether classification accuracy was sig-
nificantly greater than chance, we computed a statistical thresh-
old for accuracy [Bonferroni-corrected alpha = 0.001 (46)] from
a null distribution with 10,000 values. Each value in the null
distribution was generated by shuffling the labels in the neural
data and recomputing classification performance. To allow for
the possibility that different regions might have different sta-
tistical properties, and therefore different null distributions, we
computed statistical thresholds separately for each region. The
threshold represents the accuracy level associated with a proba-
bility of 0.001 under the null hypothesis that the neural data do
not reliably encode information about facial identity.

Comparison with Model-Based Representations. To generate an
image-based representation of the stimuli, we first converted
each face image to L

∗a∗b∗ color space and extracted the lumi-
nance component of the image. We then extracted activations

for each image from the first layer (S1) of HMAX, which sim-
ulates responses of a population of simple cells in V1 (29). We
used the vector of activations for each image to compute a cross-
expression Euclidean distance matrix of the same form used for
the classification analysis described above. The identity-based
representation was a 91 × 91 matrix in which each row and
column represents a facial identity, and each cell represents a
comparison between two facial identities (Fig. 2). All cells rep-
resenting comparisons within identities (e.g., row 1, column 1)
received a distance value of 0, which indicates identical repre-
sentations. The remaining cells, which represent comparisons
between identities, received a distance value of 1. This value
indicates that representations of exemplars of different identities
differ to the same extent.

For each brain region and postbaseline time point (from
0 ms onward) we computed the correlation between the cross-
expression distance matrix for the neural data and that for each
of the representations described above. We excluded the base-
line period (−200 to 0 ms) from this analysis because, during
this period, classification accuracy did not exceed chance, and so
there was no evidence that information about face identity was
encoded. We then tested whether the correlation was stronger
for the identity-based representation or the image-based repre-
sentation (31). The resulting P values for each region were FDR-
corrected (47) across all time points.

Behavioral Similarity Ratings. In each of two 1-h sessions each par-
ticipant provided similarity ratings for 377 face pairs. These face
pairs included all 91 within-identity pairs and an additional 286
between-identity pairs. The latter were randomly selected from
among all possible between-identity face pairs. To allow aggre-
gation of data across participants and sessions, we used the same
procedure and face pairs for each participant and session. In each
session, participants rated each face pair twice. For each face
pair, the two face images were always presented with different
facial expressions, with all possible combinations of facial expres-
sions presented within each session. On each trial, a face pair was
presented sequentially, in a random order. Each face image was
presented for 500 ms, with a 500-ms interval between images.

To allow comparisons between behavioral similarity ratings
and neural and model-based representations, we converted simi-
larity ratings to dissimilarity ratings by subtracting each similarity
value from 8, so that a similarity rating of 1 was converted to a
dissimilarity rating of 8, and so on.

Left Hemisphere. In the left hemisphere, we carried out the pri-
mary analyses performed for face-selective regions in the right
hemisphere. In three of four participants we were able to identify
face-selective regions in left lateral occipital cortex (lLO-faces)
and fusiform gyrus (lFG-faces). As with the right hemisphere
analyses, we used V1 in the opposite hemisphere (in this case,
right V1) as a control region. With data from these regions, we
performed classification of face identity and compared the neural
data to model-based representations and behavioral judgments
of the stimuli. Results for analyses of face-selective regions in
the left hemisphere are shown in Fig. S1. All analyses of neural
data include only data from the three participants in which face-
selective regions could be identified in the left hemisphere.

The positions of face-selective regions in the left hemisphere
seemed to vary between participants to a greater extent than
the corresponding regions in the right hemisphere. Classifica-
tion of face identity was successful in both left hemisphere
regions, but the pattern of correlations with the model-based
representations seemed to be less temporally stable than in the
right hemisphere. In the right hemisphere regions, all significant
differences between the models favored the image-based repre-
sentation before 200 ms and favored the identity-based represen-
tation after 200 ms. In contrast, differences in the left hemisphere
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fluctuated between the two representations after 200 ms, a result
suggesting that the transition toward the identity-based repre-
sentation after 200 ms may be less stable in the left hemisphere.
Similar to lV1, significant differences between the two represen-
tations in rV1 consistently favored the image-based model, with
the exception of a very early period during which classification
performance in rV1 had only just begun to exceed chance. This
pattern suggests that V1 primarily encoded relatively low-level
image-based information in each hemisphere.

Comparison of Neural Data to Deep Neural Network. To under-
stand the nature of the information represented in each region of
interest we compared the similarity structure of the neural rep-
resentations to those learned by a deep neural network trained
to recognize versions of the experimental face stimuli. Input to
the network consisted of 8,918 48 × 65 grayscale images of faces.
Forty-nine versions of each of 182 original face images (91 indi-
viduals × 2 expressions) were created by jittering the position of
the image up to ±3 pixels in both the x and y directions. For each
such input the network was trained to activate a particular 1 of
91 output units.

The architecture of the network had four intermediate or “hid-
den” layers between the input and output, connected in a feed-
forward manner. The first hidden layer (H1) had 2,684 (44 × 61)
units with 5 × 5 rectangular receptive fields (RFs) from the input
with a stride of 1 (i.e., RFs were positioned every one input unit
in both the x and y directions). The second hidden layer (H2)
had 580 (20 × 29) units with 7 × 7 RFs from H1 with a stride
of 2, and the third (H3) had 84 (7 × 12) units with 9 × 9 RFS
from H2 with a stride of 2. The fourth and final hidden layer
(H4) consisted of 20 units that received connections from all H3
units and sent connections to all 91 output units. In total, the net-
work had 108,570 connections (including bias connections to all
noninput units). Unlike a convolutional neural network (29, 48),
positional invariance was not imposed within layers (by using
weight-sharing among features and having separate “pooling”
layers); rather, it was left to the network to learn to be sensitive
or insensitive to positional information at each level of repre-
sentation to the degree it supports effective recognition. Hidden
units used a sigmoid activation function to their net inputs; the
output group consisted of normalized or “soft-max” units whose
activities were constrained to sum to 1.0 (49).

The network was trained with back-propagation (50) using
momentum descent with accumulated gradients clipped at 1.0,
with a learning rate of 0.05 and momentum of 0.8. After 6,000
presentations of each image, performance had reached near-
asymptote: The network produced virtually no error (mean
cross-entropy error per image of 0.00013) and recognition per-
formance was perfect.

Representational similarity analysis was then carried out for
each layer of the network by computing the degree of similarity
(correlation) of the activation patterns produced by each pair of
face images (without jitter). These similarities were then corre-
lated with analogous similarities for the neural representations
in various brain regions across time. We focused on H1 and
H4, because the former largely reflects visual (image) similarity
whereas the latter reflects primarily identity information. Indeed,
for H4, the mean correlation is 0.097 for different identities and
0.939 for same identities. Although H1 and H4 seem to primar-
ily represent image and identity information, respectively, the
representations from these regions are likely to be more closely
related to each other than the image-based and identity-based
representations described in the main text, because layers H1
and H4 are both trained to perform the same task. Indeed, the
correlation between H1 and H4 (Pearson r = 0.46) was slightly
higher than that between the identity- and image-based repre-
sentations in the main text (Pearson r = 0.40).

Fig. S2 shows the correlations over time of each hidden layer
with the two face-selective regions (rLO-faces and rFG-faces)
and the control region (lV1), considering only image pairs that
differ in expression. For rLO-faces the correlation with H4 was
stronger than the correlation with H1 at a series of time points
between 50 and 100 ms, and a later series between 200 and
300 ms. In contrast, lV1 responses were more strongly correlated
with H1 than H4 between 350 ms and 450 ms, with no significant
differences in the opposite direction. In rFG, the correlation with
H4 was stronger at only one early period (60–90 ms). Hence, as in
the comparison with image-based and identity-based representa-
tions in the main text, responses in rLO-faces seem to be more
similar to a higher level representation, whereas responses in lV1
seem to be more similar to a lower level, more image-based rep-
resentation. rFG seemed to show an intermediate response in
the current analyses, as it did for most time points in the analyses
presented in the main text.
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Fig. S1. Correlations between neural data and hidden layers 1 (H1) and 4 (H4) of a deep neural network trained on our stimuli, as a function of time

(milliseconds). Separate plots are given for each region of interest (rLO-faces, rFG-faces, and lV1). The horizontal black line indicates postbaseline time points

at which correlations differed significantly (FDR < 0.05) between H1 and H4.
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Fig. S2. Analyses for left hemisphere. (A) Face-selective regions in left hemisphere, for each participant in which regions could be identified. (B) Classification

accuracy as a function of time (milliseconds) and region (lV1, lLO-faces, and lFG-faces). All other details as in Fig. 4. (C) Correlations between neural data and

image-based and identity-based representations of our stimuli, as a function of time (milliseconds). All other details as in Fig. 5. (D) Correlations between

behavioral and neural data, as a function of time (milliseconds). All other details as in Fig. 6B.

Vida et al. www.pnas.org/cgi/content/short/1614763114 5 of 5

http://www.pnas.org/cgi/content/short/1614763114

