Connectionist Neuropsychology:
The Breakdown and Recovery of Behavior
in Lesioned Attractor Networks

David C. Plaut

September 1991
CMU-CS-91-185

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee;

Geoffrey Hinton, chair

David Touretzky

Tom Mitchell

James McClelland

Martha Farah, CMU Psychology

Copyright (© 1991 David C. Plaut

This research was supported by grant 87-2-36 from the Alfred P Sloan Foundation. All of the smulations

described in thisthesis were run on a Silicon Graphics Iris-4D/240S using the Xerion simulator developed by Tony
Plate.



Abstract

An often-cited advantage of connectionist networksis that they degrade gracefully under damage.
Most demonstrations of the effects of damage and subsequent relearning in these networks have
only looked at very general measures of performance. More recent studies suggest that damage in
connectionist networks can reproduce the specific patternsof behavior of patientswith neurological
damage, supporting the claim that these networks provideinsight into the neural implementation of
cognitive processes. However, the existing demonstrations are not very general, and thereis little
understanding of what underlying principlesare responsiblefor theresults. Thisthesisinvestigates
the effects of damage in connectionist networksin order to analyze their behavior more thoroughly
and assess their effectiveness and generality in reproducing neuropsychological phenomena.

We focus on connectionist networks that make familiar patterns of activity into stable “attrac-
tors.” Unit interactions cause similar but unfamiliar patterns to move towards the nearest familiar
pattern, providing atype of “clean-up.” In unstructured tasks, in which inputs and outputsare arbi-
trarily related, the boundaries between attractors can help “pull apart” very similar inputsinto very
different fina patterns. Errors arise when damage causes the network to settle into a neighboring
but incorrect attractor. Inthisway, the pattern of errors produced by the damaged network reflects
the layout of the attractorsthat develop through learning.

In a series of simulations in the domain of reading via meaning, networks are trained to
pronouncewritten wordsviaasimplified representation of their semantics. Thistask isunstructured
in the sense that there is no intrinsic relationship between aword and its meaning. Under damage,
the networks produce errors that show a distribution of visual and semantic influences quite
similar to that of brain-injured patients with “deep dyslexia.” Further smulations replicate other
characteristics of these patients, including additional error types, better performance on concrete
vs. abstract words, preserved lexical decision, and greater confidence in visual vs. semantic errors.
A range of network architectures and learning procedures produce qualitatively similar results,
demonstrating that the layout of attractors depends more on the nature of the task than on the
architectura details of the network that enable the attractors to develop.

Additional ssimulations addressissuesin relearning after damage: the speed of recovery, degree
of generalization, and strategies for optimizing recovery. Relative differences in the degree of
relearning and generalization for different network lesion locations can be understood in terms of
the amount of structure in the subtasks performed by parts of the network.

Finally, in the related domain of object recognition, a similar network is trained to generate
semantic representations of objects from high-level visua representations. In addition to the stan-
dard weights, the network has correlational weights useful for implementing short-term associative
memory. Under damage, the network exhibits the complex semantic and perseverative effects of
patients with a visual naming disorder known as “optic aphasia,” in which previously presented
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objects influence the response to the current object. Like optic aphasics, the network produces
predominantly semantic rather than visual errors because, in contrast to reading, there is some
structure in the mapping from visual to semantic representations for objects.

Takentogether, theresultsof thethesisdemonstrate that the breakdown and recovery of behavior
in lesioned attractor networks reproduces specific neuropsychological phenomena by virtue of the
way the structure of atask shapes the layout of attractors.
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Chapter 1

| ntroduction

1.1 Connectionist networks

Connectionist networks, also known asneural networksor parallel distributed processing (PDP) net-
works, are becoming increasingly influential in artificial intelligence and psychology as a method-
ology for developing computational models of cognitive processes. In contrast to conventional
programsthat compute viathe sequential application of stored commands, these networkscompute
viathe parallel cooperative and competitive interactions of alarge number of simple neuron-like
processing units. Each unit has an associated activity level, or “state,” typically ranging between
0 and 1. Positive or negative real-valued “weights’ on connections between units modul ate how
the unitsinteract. In most formulations, the total input to a unit is smply the weighted sum of the
states of unitsfrom which it receives connections; its own state is a smooth, non-linear function of
thistotal input. All of the long-term knowledge of the system is encoded in the weights; learning
involves modifying the weights to improve performance on some task.

In performing atask, input is presented to the network by setting the states of some designated
“input” units. The remaining units then update their states to be maximally consistent with each
other, and with the input, given the knowledge encoded in the weights. The resulting pattern of
activity across al of the units constitutes the network’s interpretation of the input. The states of
designated “output” units represent the response of the network to the input. The input and output
units are called “visible” because their correct states are determined by the environment external
to the network; any remaining units are thus “hidden.” Because the environment does not specify
the states of hidden units, the learning procedure must develop internal representations over these
unitsthat are useful for solving the task.

A number of useful properties arise naturally out of this style of computation.

e The ahility to bring a massive amount of knowledge to bear simultaneously in determining
the best interpretation of any input (Ballard et al., 1983).

¢ Reconstructive content-addressable memory (Hinton & Anderson, 1981; Pollack, 1990).
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e Automatic similarity-based generalization and a smooth transition from exceptions to regu-
larities (Hinton et a., 1986; McClelland & Rumelhart, 1985).

e Natural integration of multiple sources of information, such as top-down and bottom-up
(McClélland & Rumelhart, 1981).

e The ability to continually improve performance and build useful interna representations
using alocal learning rule (Hinton, 1989a).

e Robustness in the presence of noisy, incomplete, or partialy inconsistent information
(Derthick, 1988) and graceful degradation with damage (Hinton & Sejnowski, 1986; Smolen-
sky, 1986).

¢ Rapid relearning after damage and spontaneous recovery of unrehearsed knowledge (Hinton
& Plaut, 1987; Hinton & Sejnowski, 1986).

e A straightforward and efficient implementation in VLS| (Alspector & Allen, 1987; Mead,
1989) or massively parallel hardware (Pomerleau et al., 1988; Zhang et a., 1990).

Connectionist networks have been successfully applied to problems in a wide range of cognitive
domains, such as high-level vison and attention, learning and memory, reading and language,
speech recognition and production, and sequential reasoning (see McClelland et a., 1986, and
recent Cognitive Science Society conference proceedings).

1.2 Attractors

In some connectionist networks, the units are organized into a sequence of layers such that units
in later layers receive connections only from unitsin earlier layers. This type of “feed-forward’
architecture has the advantage that each unit need only compute its state once in processing an
input, but has the disadvantage that the possible ways in which units can interact are severely
restricted. In contrast, more complex, “recurrent” networks have no restrictions on how units can
be connected, enabling interactions among units within a layer, and feedback from later to earlier
layers. When presented with input, the units must update their states repeatedly, because changing
the state of a unit may change the input to earlier units. Each unit computes a new state at every
time step, called an “iteration.” Asaresult, the pattern of activity over the entire network changes
over time in response to a fixed input. The network must learn to gradualy settle down into the
appropriate fina pattern of activity that corresponds to the correct interpretation of the input.

This process can be conceptualized as movement in a multi-dimensional space that has a
dimension for the state of each unit in the network. At any instant, the current pattern of activity
of the network is represented as a particular point in this* state” space. When an input is presented
to the network, the initial pattern of states of al of the units constitutes the starting point. As
units update their states, the point representing the current pattern of activity movesin state space,
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eventually arriving at the point corresponding to the correct interpretation of theinput. Infact, there
isaregion in state space around this final point such that, if the network starts anywhere within
thisregion, it will still settle into the same final pattern of activity. The point corresponding to this
pattern is called an “attractor” in state space, and the surrounding region is called its “basin” of
attraction. The shapes and positions of the basins depend on the ways that unitsinteract, which in
turn depend on the connection weights. Thus learning in a recurrent network amounts to building
and shaping the attractor basins so that the network settlesto the appropriate attractor when started
at theinitial pattern of activity corresponding to each input.

In addition to “point” attractors, recurrent networks can be trained to settle into “limit cycle”
attractors, in which the network’s activity repeatedly moves through a fixed trgjectory in state
space (Pearlmutter, 1989). Recurrent networks can also develop “chaotic” attractors, in which the
trgjectory does not repeat but is constrained in itscomplexity (Skarda& Freeman, 1987). However,
in this thesis we will only be concerned with networks that settle to point attractors.

The usefulness of attractors becomes apparent when we consider how arecurrent network with
agiven set of weights mapsinitial activity patterns onto final activity patterns. All of the patterns
within a particular basin of attraction map to the same attractor pattern. Since points that are
nearby each other in state space represent similar patterns of activity, the operation of the attractor
can be thought of as a kind of similarity-based categorization. Thus, the fundamental property of
attractorsisthat they carve up the large, typically continuous space of al possible activity patterns
into a much smaller discrete set of (attractor) patterns on the basis of similarity. For this reason,
attractors are not appropriate for tasks, such as continuous function approximation (Lapedes &
Farber, 1987), in which dight differencesin input must be maintained to produce dight differences
in output. However, the ability of attractorsto give the same output to sSimilar inputsis quite useful
in many situations.

For example, consider a network that has learned to make some number of patterns into
attractors. Suppose we present the network with a noisy or incomplete version of one of these
patterns. Aslong asthe corrupted pattern ismore similar to the original than to any other (i.e. falls
within the appropriate attractor basin), the operation of the network in settling will “clean-up” or
“complete”’ thepattern (seeFigure 1.1). If each patterniscomposed of separatetypesof information
to be associated, such as a name with a face, then the ability of the network to reconstruct one
part given another can be used to implement associative or “ content-addressable” memory (Hinton
& Anderson, 1981). The network can also be thought of as generalizing to novel inputs that fall
within the basin of attraction of a familiar input. Whether this generalization is appropriate will
depend on the definition of the task and on details of the layout of attractor basins.

In addition to giving the same interpretation to similar inputs, attractors are aso useful when
similar inputs require very different interpretations (points A and B in Figure 1.1). An example
of thisisin understanding written words, in which it is common that very visually similar words
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Figure 1.1: A depiction of attractors in state space (left), and a demonstration of their ability to
clean-up or complete corrupted patterns (right) (from Hertz et al., 1991, pp. 12-13).

(e.g. car and cAP) must produce completely different meanings. Thisisdifficult for connectionist
networks in which the representation of an entity is distributed over a number of units (Hinton
et a., 1986). The reason is that other units are influenced by the input on the basis of a smple
weighted sum of unit activities. Since similar inputs are represented by similar patterns of activity,
they produce similar summed input to other units. In a feed-forward network, the bias to give
similar interpretations to similar inputs can be overcome either by introducing many layers of
non-linear units between the input and output, or by having very large weights between units. Both
of these approaches require very long learning times. In arecurrent network, unit non-linearities
arereapplied at every time step. Thusinitially small state differences can be magnified into quite
large ones as the network settles. In essence, the network can learn to position the boundaries
between attractor basins to “pull apart” similar initial patterns of activity so they settle to possibly
quite distant final patterns.

1.3 Damagein connectionist networks

The weight changes that occur during learning modify how units interact, determining which
patterns are attractors and which other patterns settle into them. I1n thisway, learning has the effect
of positioning and shaping the attractor basins in state space. Hence, we speak of a network as
developing or “building” attractorsover the course of learning.
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If a recurrent network has learned a task, we know that it has developed attractors for each
of the output patterns in the task, and that the initial activity corresponding to each input pattern
falls somewhere within the basin of attraction of the corresponding output pattern. However, we
know little else about the layout of attractor basins in state space—what the shapes of the basins
for trained patterns are like, and whether there are additional, “ spurious’ attractors. Also, we have
little understanding of what aspects of the design of the network most strongly influence the nature
of the attractorsit develops.

One might be tempted to map out the entire state space, by starting the network in the pattern of
activity corresponding to each sampled point in the space, and then noting what pattern the network
settles into. Unfortunately, not only would such a procedure be computationally intractable, but
the results would be in a form that contributed little to our understanding of the principles that
influence the organization of the attractors. A more restricted approach would be to systematically
test the generalization of the network to inputs that are similar to the ones on which it has been
trained. However, this approach is limited in that it only provides information about regions of
state space near the attractors for familiar patterns, but not about other attractors that may have
developed during learning.

Another way to understand the layout of attractorsin a network is to study its behavior under
damage. Damaging a connectionist network typically involves removing some of the units and/or
connections, or adding random noise to the weights. Attractors make a network more robust to
damage in the same way as they clean-up noisy or incomplete input. In fact, corrupted input
can be interpreted as damage to the input layer of the network. This damage changes the initial
pattern of activity, moving the starting point of the network in state space. Aslong as this point
still falls within the appropriate basin of attraction, the network behaves normally. However, if
the noise or damage moves the starting point outside of the basin of the correct attractor, the
operation of network will “clean-up” theinitial pattern into the final pattern corresponding to some
other attractor. This can be seen in Figure 1.1 by imagining that the dotted line between A and B
(representing a boundary between two attractor basins) movesto the other side of A. The new final
pattern for A may correspond to another familiar attractor, or it may correspond to an unfamiliar
“gpurious’ attractor. In either case, the network has misinterpreted the input and will generate an
incorrect response. If the damage is random, the likelihood of particular incorrect responses to
some input depends on the shapes and positions of the attractor basins in state space. In thisway,
the pattern of errors produced by the damaged network reflects the layout of the attractors that
develop through learning.

In actuality, the effects of damage to units and connections internal to the network are more
complex than for damage to input units. If the damaged units and connections are involved in the
interactions that implement the attractors, then damaging them corrupts the layout of the attractors
themselves (the dotted linesin Figure 1.1). Some attractors may disappear, others may be created,
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and the boundaries between existing attractors may move. These modifications can also cause
an input to fall within the basin of attraction of an inappropriate attractor. Since the shape of an
attractor influences the degree to which movement of its boundaries can “ capture” other inputs, the
pattern of errors produced by the network under this type of damage also reflects the nature of the
attractorsin state space. However, in this case the relationship of the resulting error pattern to the
original layout of attractor basinsisless straightforward than when only the input is corrupted.

1.4 Connectionist neuropsychology

Beyond their computational properties, amajor attraction of using connectionist networksto model
cognitive processes is that their general similarity to neurobiology suggests that the nature of
computation in these networks may provide insight into how cognitive processes are implemented
in the brain (Sgnowski et al., 1989). Evidence that is often put forward in support of this claim
isthat, like brains, connectionist networks degrade gracefully under damage. That is, with partial
damage, thenetwork’s performanceon atask isonly partially impaired rather than being compl etely
lost. However, most demonstrationsof this property have only considered the effects of damage on
very general measures of performance, such astotal error on atask. The relevance of connectionist
modeling to the neural implementation of cognitive processes would be far better established
if it were shown that the detailed pattern of breakdown and recovery of behavior in damaged
connectionist networks resembles that of patients with cognitive impai rments due to neurol ogical
damage.

Some particularly encouraging preliminary work in this direction involves modeling the cog-
nitive deficits of certain types of patients with brain damage by “lesioning” a connectionist model
of the normal process (Farah & McCléelland, 1991; Hinton & Shallice, 1991; Mozer & Behrmann,
1990; Patterson et al., 1990). Most of these initial investigations have focused on deficitsin word
reading, known as “acquired dysexias.” The work of Mozer & Behrmann (1990) and Patterson
et al. (1990) followed the standard approach in cognitive neuropsychology of using models of the
normal reading process to account for disorders of reading as a result of damage. The design of
each model was motivated to account for normal performance and not fundamentally altered in
accounting for patient data. Thelesion simulations provideindependent validation of the properties
of the model sthat enabl e them to reproduce phenomenathey were not initially designed to address.
In this way, these approaches avoid the criticism, often leveled against connectionist models (e.g.
Massaro, 1988), that their success at reproducing psychological datatellsuslittleif anything about
human cognition because the models are so underconstrai ned.

The work of Hinton & Shallice (1991) is somewhat different in nature. They were primarily
concerned with “deep dyslexia,” an acquired reading disorder in which patients can only pronounce
written words via their meaning, and occasionally make errorsin this process (e.g. misreading the
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word RIVER as “ocean”). These patients aso show visual influences in their errors (e.g. SWORD
= “words’), and arange of other symptoms. In modeling deep dyslexia, Hinton & Shallice were
less concerned with supporting a particular model of normal word comprehension performance, in
part becauseit islessfeasible given our current limited understanding of lexical semantics. Rather,
their goal was more general: to investigate the effects of damage on the behavior of amore general
type of network that maps from strings of letters to semantics. By not being tied to a particular
normal model, it becomes possible to systematically explore the space of modelsthat qualitatively
reproduce the neuropsychol ogical phenomena, allowing the relevance and implications of various
design decisions to be evaluated. To the extent that these design decisions arise out of general
connectionist principles, an understanding of their impact in the particular domain of acquired
dydexia sheds light on the overal enterprise of connectionist neuropsychology. To this end, a
major focus of thisthesisis an empirical investigation of the major design decisions of the Hinton
& Shallice model, aimed at clarifying and improving the properties of the model that led to its
successes, limitations and failures.

1.5 Thesisoverview

This thesis investigates the breakdown and recovery of behavior in lesioned attractor networks,
in order to analyze their behavior more thoroughly and identify the computational principles
that enable them to reproduce detailed neuropsychological phenomena. The term “connectionist
neuropsychology” is intended to apply to the thesis research in two ways. The first is in doing
cognitive neuropsychology with connectionist networks—using them to better understand patient
behavior. The second isindoing cognitive neuropsychology on connectionist networks—analyzing
their impaired behavior under damage as a way of gaining insight into the nature of their own
representations and processes. An important insight that emerges from the thesis is that the
structure of atask has a profound influence on the nature of the layout of attractorsin state space.
The organization of the thesisis as follows:

Chapter 2. A genera overview of the cognitive neuropsychology of reading is presented, em-
phasizing the reading behavior of deep dyslexics, who are the focus of much of the simulation work
inthe thesis. After abrief review of related effortsin modeling neuropsychological phenomena, a
summary and critical analysis of the Hinton & Shallice model is presented. Each of the four major
types of design decisions that went into developing the model, relating to the task, the network
architecture, the training procedure, and the testing procedure, motivates the research in one of the
four subsequent chapters.

Chapter 3. The Hinton & Shallice model was quite limited in the way it generated responses,
resorting to external criteriaapplied directly to semantic representations. A straightforward exten-
sion of the model to generate explicit pronunciations from semantics results in the inappropriate
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production of novel “blends’ of familiar responses under damage. Simulations in this chapter
illustrate these difficulties and demonstrate techniques for overcoming them.

Chapter 4. Aspects of the design of the network architecture that Hinton & Shallice used
were rather inelegant. In this chapter we investigate the effects of damage in arange of aternative
network architectures, each intended to evaluate the relevance of aparticular aspect of the original
network. The results demonstrate that the existence of attractors is critical for reproducing the
error pattern of deep dydexics, but that the architectural details that enable them to develop are
relatively unimportant. Additional simulations serve to verify that the general effects produced by
the networks aren’t due to idiosyncratic characteristics of the word set or interpretation procedure.
They also demonstrate that the networks behave like deep dydlexic patientsin terms of the pattern
of responses after individual lesions.

Chapter 5. The Hinton & Shallice model was trained with a powerful but biologically
implausible learning procedure known as “back-propagation through time.” Simulations in this
chapter replicate the behavior of deep dydexics using the more plausible learning procedure of
contrastive Hebbian learning in a deterministic Boltzmann Machine (DBM). A closely-related
stochastic GRAIN network is also developed and compared with the deterministic one. In addition
to being more plausible as procedures that might underly human learning, both DBM and GRAIN
networks have interesting computational characteristics not shared by back-propagation networks.
We conclude by demonstrating how these characteristics are useful for understanding two aspects
of deep dydexic reading behavior: differencesin confidencein error responses, and the preserved
ability to distinguish words from non-words.

Chapter 6. The final design issue that directly concerns the Hinton & Shallice model is the
definition of the task of reading via meaning. The original training set was too limited to address
important issues known to influencethe reading behavior of deep dydexics. Specifically, in patients
abstract words are read more poorly than concretewords, and are particularly proneto visual errors.
We reproduce these effects in a network that can pronounce both concrete and abstract words via
their semantics, defined so that abstract words have fewer semantic features. Surprisingly, severe
damage within semantics produces the opposite effects, with concrete words read more poorly,
similar to a particular, enigmatic patient with “concrete word dysexia.”

Chapter 7. A major motivation for many cognitive neuropsychologistsis that a more detailed
analysis of the breakdown of cognitive mechanisms due to brain damage may lead to the design
of more effective therapy to remediate these impairments. We attempt to extend the relevance and
usefulness of connectionist modeling in neuropsychology to address issues in the rehabilitation of
cognitive deficits following brain damage: the speed of recovery, degree of generalization, and
strategies for optimizing recovery. Two of the dyslexic networks are retrained on a subset of
the words after damage, and then tested for their performance on the remaining words. Relative
differences in the degree of relearning and generaization for different lesion locations can be
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understood in terms of the amount of structure in the subtasks performed by parts of the network.
Furthermore, retraining on words whose semantics are atypical of their category yields more
generalization to more prototypical words than vice versa, athough the word set istoo limited to
support definitive implicationsfor patient therapy.

Chapter 8. This chapter demonstrates the generality of the principles that help explain the
reading deficits in deep dyslexia, by extending them to account for the characteristics of another
syndrome in the related domain of visual object recognition and naming. A similar network is
trained to generate semantic representations of objects from high-level visua representations. In
addition to the standard weights, the network has more rapidly changing correlational weights
useful for implementing short-term associative memory. Under damage, the network exhibits the
complex semantic and perseverative effects of patients with a visual naming disorder known as
“optic aphasia,” in which previously presented objects meaningfully influence the response to the
current object. The greater structure in mapping visual to semantic representations for objects vs.
words explains why the errors of optic aphasics are predominantly semantic rather than visual.

Chapter 9. Thefina chapter summarizesthethes's, eval uating the computational generality and
empirical adequacy of using attractor networksto model deep dyd exia, relearning after damage, and
optic aphasia. The general impact of connectionist modeling in neuropsychology is discussed, as
well ashow investigations of the effects of damage provide uniqueinsightsinto the representational
and computational properties of connectionist networks. It is concluded that the breakdown
and recovery of behavior in lesioned attractor networks reproduces detailed neuropsychological
phenomena by virtue of the way the structure of atask shapes the layout of attractors.
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