Chapter 2

Connectionist modeling in neuropsychology

This thesis is concerned with the application of connectionist models in cognitive neuropsychol -
ogy, with the intent of better understanding both patients and networks. This chapter presents
background material that serves as the context and motivation for research presented in subsequent
chapters. It begins with an overview of cognitive neuropsychology, emphasizing studies of selec-
tive deficits in reading, known as “acquired dyslexias.” Following this, the role of computational
modeling in cognitive neuropsychology is discussed. The advantages of adopting a connectionist
approach are described and illustrated by specific applications in a number of domains. We focus
on efforts to reproduce the behavior of different types of dydexic patients within connectionist
models of reading. The reading behavior of “deep” dydexics in particular is then described in
moredetail. A previous preliminary attempt at modeling these patientsis presented and eval uated.
The specific strengths and weaknesses of the design of this model serve to motivate much of the
research presented in the thesis.

2.1 Cognitive neuropsychology

Many cognitive abilities can be selectively impaired as aresult of brain damage. Among these are
object recognition, selective attention, reading, writing, language understanding, speech produc-
tion, learning, memory, planning, and reasoning. The field of cognitive neuropsychology studies
the patterns of impaired and preserved abilities of brain-injured patients, and attempts to relate
them to models of normal cognitive functioning. The aim is both to explain the behavior of the
patientsin termsof the effects damagein the model, and to inform the model based on the observed
behavior of patients (Coltheart, 1985; Ellis & Young, 1987).

At first it may seem that little can be learned about the normal operation of an information-
processing device as complicated as the brain on the basis of how it behaves under damage. To
put it bluntly, “What can you possibly learn about the way a car works (or a vacuum cleaner, or
a computer) by pounding it with a ledgehammer” (Marin et a., 1976, p. 868; also see Gregory,
1961). A detailed consideration of the theoretical difficulties in relating studies of normal and
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impaired cognitive processes isbeyond the scope of this overview—readersarereferred to Shallice
(1988) for athorough treatment. For our purposes, we will consider it an open issue asto what and
how studies of brain-injured patients can contribute to our understanding of normal cognition. In
a sense, the degree to which this endeavor succeeds may be taken as evidence that brains are not
organized like cars, or (conventional) computers for that matter.

2.1.1 Modularity and dissociations

At its most basic level, the viability of cognitive neuropsychology rests on what is known as
the “modularity hypothesis’ (Fodor, 1983; Marr, 1976; Simon, 1969). On this hypothesis, the
“functional architecture” of themindiscomposed of relatively independent subsystems, or modules,
that specializein carrying out aparticul ar function or in processing a particular type of information.
The modules are aso clamed to be neuroanatomically separate, and so can be independently
impaired by brain damage. The most basic argument in favor of a modular organization is that it
simplifiesthe design and improvement of the system (Marr, 1976; Simon, 1969).

Any large computation should be split up and implemented as a collection of small
sub-partsthat are as nearly independent of one another as the overall task allows. If a
processisnot designedin thisway, asmall changein one place will have consequences
in many other places. This means that the process as a whole becomes extremely
difficult to debug or to improve, whether by a human designer or in the course of
natural evolution, because a small change to improve one part has to be accompanied
by many simultaneous compensating changes elsewhere. [Marr, 1976, p. 485]

Empirical support for modularity comes from existence of highly specialized cortical areas (Van
Essen, 1985), and the success of the “additive factors’ method in psychology (Sternberg, 1969).
Perhaps the most direct evidence for isolable cognitive subsystems comes from the occurrence of
sel ective cognitive deficits in some neurological patients.

An important methodology in cognitive neuropsychology for isolating cognitive modules in-
volves demonstrating “ dissociations’ between the performance of apatient on different tasks. Two
tasks are dissociated when the patient performs significantly worse on one than the other. 1deally,
performance on the poor task is much worse than that of normals, while performance on the good
task iswithin the normal range.

A single dissociation provides only limited information because it is possible that the poorly
performed task is smply much more difficult, but still well within the abilities of normals. Of
particular importance is the demonstration of a “double” dissociation, in which a second patient
is found who also exhibits a dissociation on the same two tasks, but in the opposite direction.
Under the assumption that the organization of cognitive processes in the two patientsis essentially
the same, a double dissociation rules out an explanation based simply on the relative difficulties
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of the tasks. In this case, the fact that each task can be selectively impaired while leaving the
other unaffected provides strong evidence that the two tasks are carried out by different cognitive
mechanisms.!

Rather more problematic, but still informative, are “associations’ among symptoms exhibited
by patients. If a patient isimpaired on both of two tasks, it suggests that they are subserved by
the same mechanism, which is now impaired. However, it may also be that they are subserved
by separate mechanisms that just happen to be affected by the same brain lesion because they
are neuroanatomically close, or perhaps the patient has suffered multiple lesions. The argument
for a common mechanism is strengthened somewhat if al or most of alarge number of similar
patients exhibit the same association, but neuroanatomical proximity remainsapossible, if perhaps
unpalatable, explanation. In fact, amajor empirical puzzle addressed by simulations in this thesis
is the remarkable consistency in the association of large, diverse set of symptoms exhibited by
virtually all patients with a particul ar type of acquired reading disorder.

2.1.2 Acquired dyslexia

One of the most intensely studied areas in cognitive neuropsychology in recent years has been the
types of selective deficitsin reading that can follow brain damage, known as*acquired dysexias.”
Prior tothe early 1970’s, the magjor distinction among such patients was simply whether the reading
deficit was accompanied by adeficit in writing—" alexiawith agraphia’—or whether it occurred in
isolation—*alexiawithout agraphia,” or “ purealexia’ (Dejerine, 1892).2 Little attempt wasmadeto
distinguish among different types of reading deficitsuntil Marshall & Newcombe (1973) identified
three separate types of acquired dyslexia based on thetypical patterns of errorsthat patients made
in reading aloud. “Surface” dydexiainvolved phonological confusionsin the procedure by which
words are sounded-out based on thetypical pronunciations of setsof letters(e.qg. INSECT = “insist”,
hard to soft ¢). “Deep” dydexiainvolved semantic confusions, in which words were often misread
as semantically related words (e.g. DINNER = “food”). The third typethat Marshall & Newcombe
identified, involving visual confusions between words, has not been as widely recognized as either
surface or deep dysexia.

A particularly notable aspect of Marshall & Newcombe's work is that they explained the
existence of these distinct types of dyslexiain terms of damage to a “ dual-route” model of normal
reading (see Figure 2.1). In the model, word pronunciations can be generated through either of
two mechanisms. The first is a phonological system that trand ates from spelling to sound by the
use of grapheme-phoneme correspondences (GPCs). This system enables people to read word-

1The logic of making inferences from single and double dissociationsis, in general, far more complicated than as
described here, particularly when a patient’s performance on the “unimpaired” task is not within normal limits.

°The terms “alexia’ and “dydexia,” referring to deficits in reading, are interchangeable for our purposes. “Ac-
quired” dydexia refers to reading disorders in a previoudly literate individua, usually as a result of brain injury.
“Developmental” dydexiarefer to reading disordersin individualswho never learned to read normally.
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Figure 2.1: Marshal & Newcombe's (1973) dual-route model of reading (from Shallice, 1988,
p. 71).

like nonsense letter strings (e.g. MAVE) as well as words with “regular” pronunciations.® The
second mechanism for pronouncing words is a semantic system that recognizes and assigns them
meaning. The specific pronunciation of a word can then be directly accessed from its meaning.
This semantic route enables people to read “exception” words that violate the standard GPC rules.
Surface dydexics were held to have damage to the semantic route, and thus read only by the
phonological route. Conversely, deep dydexics were held to read only via the semantic route
because the phonological route was damaged. The errors produced by these patients reflected the
imperfect operation of the remaining route in isolation. The third type of dysexia was thought
to involve damage to visua processes prior to each of these routes—in more recent terminology
it would be termed a “periphera” dyslexia, in contrast to surface and deep dydexia, which are
“central” (Shallice & Warrington, 1980).

Further research has examined the characteristics of both surface and deep dysexia in more
detail. Some of this research has prompted a divison of surface dyslexics into two separate
types (Shallice & McCarthy, 1985). Type | patients (e.g. M.P, Bub et a., 1985; K.T., McCarthy
& Warrington, 1986; H.T.R., Shallice et a., 1983) exhibit fluent and correct reading of words
with regular spelling-to-sound correspondences (e.g. MUST), even though word comprehension
is severely impaired. These patients can also appropriately pronounce non-words (e.g. NUST).
However, they often misread exception words, usually by giving amoreregular pronunciation (e.g.
PINT mispronounced to rhyme with MINT). This type of “regularization” error is most common
for exception words that occur infrequently—common exception words are read almost aswell as
regular words. Thusthereisan interaction between the effects of frequency and of regularity. Type
Il surface dydexics(e.g. J.C., S.T., Marshall & Newcombe, 1973; R.O.G., Shallice & Warrington,
1980) are also better at reading regular words than exception words, and show a frequency x

3“Regular” words, such as MUST, contain a spelling pattern (—UsST) that occur in many other words, always with
the same pronunciation. “Exception” words, such as HAVE, aso contain a common spelling pattern, but it is usualy
pronounced differently than itisin thisword (cf. GAVE, SAVE).
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regularity interaction. However, compared with Type | patients, they read more slowly with
many corrections, make more errors on regular words and non-words, produce alower proportion
of regularizations of exception words, and have better comprehension. In fact, Shallice (1988;
Shallice & McCarthy, 1985) argues that Type Il surface dydexiais caused by a more peripheral
visual disturbance, and that only Type | surface dyslexia, renamed “semantic’ dydexia, truly
reflects the isolated operation of the phonological route(s). Readers are referred to Patterson et al.
(1985) for a more comprehensive presentation of surface/semantic dyslexia

In contrast to surface dydexics, deep dysexics cannot read non-words, and their ability to
read aword is unaffected by the nature of its spelling-to-sound correspondences (Coltheart et al.,
1980). In addition to semantic errors, they also make visua errors (e.g. SCANDAL = “sandals’),
derivational or morphological errors (e.g. HIRE = “hired”), and function word substitutions (e.g.
AND = “of ). They also find content words much easier to read than function words, and concrete
words much easier to read than abstract words. The behavior of deep dysexics is described in
more detail below.

In addition to surface and deep dyslexia, a third type of central dyslexia, involving a more
selective impairment of the phonological route, was identified by Beauvois & Derouesné (1979;
also see Funnell, 1983; Patterson, 1982; Shallice & Warrington, 1980). Similar to deep dyslexics,
patients with “phonological” aexia cannot read non-words, and yet have no problem pronouncing
them. However, unlike deep dydexics, phonologica aexics have amost completely intact word
reading, and they show little if any effect of abstraction or part-of-speech, with the possible
exception of some difficulty on function words. Some theories of reading (e.g. Coltheart, 1985;
Morton & Patterson, 1980; Sartori et al., 1987; Schwartz et al., 1980) interpret the behavior of
these patients as providing evidence for athird, lexical non-semantic route, separate from both the
phonological and semantic routes. Other theories (e.g. Seidenberg & McClelland, 1989; Shallice
& McCarthy, 1985; Van Orden et al., 1990) propose a single, “broad” phonologica route that
maps between orthography and phonology at different levels of structure (individua graphemes-
phonemes to whole words).

Although these additional empirical findings show that Marshall & Newcombe's early model
of selective impairmentsin reading is far too simplistic, the form and underlying assumptions of
their explanation have survived and flourished in cognitive neuropsychology (Caramazza, 1984,
1986; Coltheart, 1985; Coltheart et a., 1987b; Patterson et al., 1985). The most basic among
these assumptions is that cognitive processes like reading should be described in terms of simple
interactions between functionally isolable subsystems. The resulting “functional architecture” is
typically cast as an information-processing flow diagram, otherwise known as a “box-and-arrow”
model. It isassumed that brain damage can selectively impair or eliminate particular components
in the model, while the remaining components continue to operate normally. Giving an account
of the deficits of a particular patient involves specifying a functiona architecture, together with
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Figure 2.2: An explanation for deep dyslexia in terms of lesions (enclosed by dotted lines) to a
functional architecturefor understanding and pronouncing written and spoken words (from Morton
& Patterson, 1980, p. 115). Written words are presented as stimuli to the upper-right “visual
analysis’ component, and its pronunciation is read out of the “response buffer” at the bottom. The
“grapheme-phoneme conversion” component corresponds to phonologica system in Figure 2.1,
while the pathway through the * cognitive system” corresponds to the semantic system. The third
(lexical non-semantic) route goes from “visual input logogens’ directly to “output logogens.”
Noticethat Morton & Patterson are claiming that deep dysexics have multiple partial impairments
along the semantic route in addition to complete impairment of the non-semantic routes.

a set of “lesions’ to the architecture, such that the resulting system “exhibits’ the same pattern
of impaired and preserved behavior as the patient. Figure 2.2 illustrates this approach for deep
dydexia(Morton & Patterson, 1980).

The fact that “exhibits’” must be scare-quoted in the preceding paragraph reveals a limitation
in the way this methodology has typically been applied. Specifically, most effort has focused
on identifying and fractionating the components of the functional architecture, whereas relatively
little effort has goneinto specifying the representati ons and computati onswithin each component—
exactly how the boxes work. In this way, conventional theorizing in cognitive neuropsychology
implicitly subscribes to the philosophy that it is possible to characterize a computation indepen-
dently of the precise details of how that computation is implemented (Marr, 1982). However,
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this approach makes it is difficult to derive predictions of the behavior of the model without more
specific claims about the nature of the representations and computations that actually produce the
behavior (Seidenberg, 1988).

The most explicit formulations of theinterna operations of componentsin neuropsychological
models of reading are based on Morton’s (1969) “logogen” model. At the core of the approach is
a set of evidence-accumulating threshold devices, called “logogens,” that mediate the recognition
and/or response to particular words. A distinguishing feature of the model is that the logogens
themsel ves contain no semanticinformation, but can interact directly withwhat istypically referred
to asthe*” cognitivesystem.” Theexact natureof the cognitive system isunspecified, but istypically
assumed to contain all of the higher-order processing not explicitly accounted for by other parts
of the model (Morton & Patterson, 1980). Unfortunately, models of thisform are rarely explicitly
implemented and damaged—more often the predictions of the behavior of the damaged model are
based on little more than informed intuition.

2.2 Computational modeling in cognitive neuropsychology

Typically, predictions of the behavior of amodel, both in normal operation and under damage, have
consisted of descriptions based on fairly general notions about how the various modules would
operate and interact. While these types of predictions may suffice for capturing the more general
characteristics of normal and impaired cognitive functioning, they become increasingly unreliable
as the model is elaborated to account for more detailed phenomena. Computational modeling
makes it possible to demonstrate the sufficiency of the underlying theory in accounting for the
phenomena by making the behavior of a detailed cognitive model explicit. A working smulation
guarantees that the underlying theory is neither vague nor internally inconsistent, and the behavior
of the ssimulation can be used to generate specific predictions of the theory. However, building a
working simulation involves making design decisionsthat introduce theoretically irrelevant details.
It isoften difficult to identify what aspects of amodel areresponsiblefor its success, and the degree
to which these aspects are theoretically motivated. The most comprehensive approach involves an
interplay between computational and empirical work, in which simulations focus experimentation
on particular issues, and empirical results constrain the devel opment of the computational model.

2.2.1 Conventional implementations

There are many aternative computational formalisms within which to develop computational
models of neuropsychological disorders. Perhaps the most straightforward modeling approach
denies the importance of the choice of formalism. In this way it retains the perspective of most
box-and-arrow theorizing, that the identity and function of each component in the model can be
abstracted from the details of how that function isimplemented. The clearest example of this style
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of researchisfoundin Kosdyn et al.’s (1990) work in modeling object recognition and visuospatial
processing in high-level vision.

Although adetail ed description of the operation of the model fallsoutside our current concerns,
a consideration of the general form and approach of the model is instructive. The model is
cast within a conventional box-and-arrow framework (see Figure 2.3). There are components
for recognizing objects based on features derived from information in a“visual buffer” that falls
within an “attentional window.” Other components associate object identity with the identitiesand
positions of parts of the object, and carry out the spatial transformations that relate the predicted
parts with what is found in the visual buffer. The model aims to reproduce, and thereby account
for, awide range of normal and impaired behavior in high-level vision.

A guiding principle in the design of the model is the “hierarchical decomposition constraint,”
which requires that elaboration of the model must only involve subdividing existing components
rather than introducing components that cut across existing boundaries. The assumption is that
consideration of implementation detailsisonly germane after the overall organization of the system
issettled. Infact, Kosslyn et al. (1990) providevery few detailsof theimplementation of themodel,
stating “we are interested in the ways subsystems interact, not in how they actually process input”
(p. 243). Nonethel ess, some aspects of the implementation can be inferred from descriptionsin the
text and from personal communication with S. Kossyn.

The model isimplemented as aconventional program, in which each component is a subroutine
that manipulates data structures such as lists and arrays. Components can operate in parallel;
however, each component must complete its computation before it generates output to other
components (cf. McClelland, 1988). The control structure that determines when components
operate is specified externally based on the task that is being performed. The effects of “ damage”
to each component, or pathway between components, are explicitly defined based on the nature of
the computation performed by the component.

The implemented model performs a range of recognition and discrimination tasks on a small
set of schematic, hand-segmented inputs. When the definitions of damage are applied to the model,
it fails to perform some or all of the tasks depending on the nature of the damage. Some of these
impairments are similar to the basic characteristics of some neuropsychological patients. Although
many types of patients are discussed in the context of the model, no attempt is made to actually
replicate their behavior in any detail.

In evaluating this type of work, it is important to determine how the development of a com-
putational model contributes to our understanding beyond the unimplemented description of the
theory. The role of computational modeling is less interesting if it merely verifies the coherence
of the theory. Idedly, modeling should contribute to the development of the theory per se. In
fact, Kosslyn and his colleagues identify anumber of waysin which the development of the model
from earlier work (Kosslyn, 1987) was shaped by the process of developing a working imple-
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Figure 2.3: Kosdlyn et a.’s (1990) model of high-level vison. The top figure (p. 214) presents
the major subsystems of the model; the bottom figure (p. 237) presents the decomposition of these
subsystems into specific functional components.
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mentation (footnote p. 241). Unfortunately, the possible opportunities for this type of interaction
between modeling and theorizing are significantly limited by the lack of attention paid to imple-
mentation details. In essence, the computational formalism of conventional programming is too
unconstrained—it provides little bias towards carrying out computations in one way vs. another.
Computationa modeling can have a much more profound impact on theorizing when the nature of
the formalism strongly influences the organization of the representations and computations in the
model.

2.2.2 Connectionist approaches

Computational modeling is most interesting when the formalism significantly contributes to a
natural explanation for empirical phenomena that are counterintuitive when viewed within other
formalisms. For this reason, connectionist networks are becoming increasingly influential in a
number of areas of psychology as a methodology for devel oping computational models of cogni-
tive processes. These networks compute via the massively parallel cooperative and competitive
interactions of alarge number of simple neuron-like processing units. Typically, the specific unit
interactions are not directly under the control of the experimenter, but are determined by a genera
learning procedure. In thisway, the formalism places strong constraints on the nature of the com-
putation that is available in modeling, often with interesting consequences. Networks of thisform
have been applied to awide range of problemsin perception, language, and reasoning (McClelland
et a., 1986).

In addition to their usefulness in modeling normal cognitive functioning, a number of general
characteristics of connectionist networks suggest that they may be particularly well-suited for
modeling neuropsychological phenomena (Allport, 1985).

e “Modular” theories of cognitive processes can be expressed naturally by dedicating separate
groups of units to represent different types of information. In this way the approach can
be viewed as an elaboration of, rather than alternative to, more traditional “box-and-arrow”
theori zing within cognitive neuropsychology (cf. Seidenberg, 1988).

e Partial lesions of neurological areas and pathways can be modeled in a straightforward
way by removing a proportion of units in a group and/or connections between groups. In
contrast, simulations of neuropsychological findings within more traditional computational
formalisms(e.g. Kossyn et a., 1990) must typically make more specific assumptions about
how damage affects particular components of the system.*

4K osslynet a. (1990) suggest that each component of their model could beimplemented by a separate connectionist
network, but they mentionno implicationsof doing so. Infact, thelogic of their “ hierarchical decomposition” approach
implies that they believe a connectionist implementation would have no interesting consequences for the theoretical
design of their system.
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e Since knowledge and processing in a connectionist network is distributed across a large
number of units and connections, performance degrades gracefully under partial damage
(Hinton & Sejnowski, 1986). This meansthat arange of intermediate states between perfect
performanceand total impairment can occur. Together with therichness of the computational
formalism, thisallows behavior moredetailed than the ssimple presence or absence of abilities
to be investigated (Patterson, 1990).

A number of authors have attempted to explain patient behavior based on intuitions about
how connectionist networks or other “cascaded” systems (McClelland, 1979) would behave under
damage, without actually carrying out the simulations (e.g. Miller & Ellis, 1987; Riddoch &
Humphreys, 1987; Shallice & McGill, 1978; Stemberger, 1985). However, the highly distributed
and dynamical nature of these networks makes such unverified predictions somewhat suspect.
More recently, a few researchers have begun to explore the correspondence of the behavior of
damaged connectionist networks and patient behavior in awide range of domains. McClelland &
Rumel hart (1986) model ed the patterns of retrograde and anterograde memory deficitsin amnesics
by degrading the consolidation of weight changes during learning. Cohen & Servan-Schreiber
(1989) reproduced the characteristics of the abnormal use of context in schizophrenics by adjusting
the sengitivity of units to their inputs in a way that corresponded to the influence on individual
neurons of the abnormal levels of excitatory neurotransmitters in these patients. Levine (1986;
Bapi & Levine, 1990; Levine & Prueitt, 1989) model ed the tendency of patients with frontal lobe
damage to repeat previous responses, and be overly distracted by novel stimuli, by disrupting the
interactions between sensory and reinforcement representations in an ART network (Carpenter &
Grossberg, 1987). Farah & McClelland (1991) reproduced a selective deficit in recognizing and
recalling functional information about living vs. non-living things (Warrington & Shallice, 1984)
by introducing damage to visual semantics, under the hypothesis that the representations of living
things rely more heavily on visual vs. functional information. More recently, Cohen et al. (1992)
mimicked the apparent difficulty that some patients with parietal damage have in “disengaging”
attention from an ipsilesiona location to attend to a contralesional stimuli (Posner et al., 1984)
by unilaterally damaging a competitive mechanism for alocating attention. Each of these studies
shows how particular computational properties of connectionist networks can contribute to our
understanding of complex, often counterintuitive, neuropsychologica phenomena.

2.3 Connectionist modeling of acquired dydexia

Perhaps the most detailed attempts at relating the behavior of damaged connectionist networks
to that of brain-injured patients has been in the domain of acquired dydexia (Hinton & Shallice,
1991; Mozer & Behrmann, 1990; Patterson et al., 1990). This isin part because investigations
of reading in both cognitive psychology and neuropsychology (Coltheart, 1987) have produced
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a rich, and often counterintuitive, set of empirical findings. In addition, reading is appealing
as a domain for computational modeling because the surface forms (i.e. strings of letters and
phonemes) are fairly smple. Furthermore, reading is a particularly appropriate domain in which
to use relatively unstructured connectionist models (cf. Feldman et a., 1988; Sgjnowski et a.,
1989) to study the neural implementation of cognitive processes asitisunlikely that thebrainrelies
on speciaized neura circuitry to accomplish such an evolutionarily recent skill. Nonetheless,
separate neuroanatomical areas may become specialized for particul ar reading processes asaresult
of experience during reading acquisition, and thus be independently susceptible to brain damage
(cf. Farah, 1990). Because much of the research presented in this thesis concerns connectionist
modeling of particular deficitsin reading, we will review this work in more detail.

2.3.1 Neglect and attentional dyslexias

Neglect dydexia is a peripheral reading disorder, typically following right parietal damage, in
which patients often ignore the leftmost portion of written material, even when it falls entirely
within the intact portions of their visua fields (Caplan, 1987; Kinsbourne & Warrington, 1962;
Sieroff et a., 1988; also see the specia issue of Cognitive Neuropsychology, 7(5-6), 1991, on
“Neglect and the Peripheral Dydexias’). The accuracy of reading astring lettersis better when the
stimulusis presented further to theright (Behrmann et al., 1990; Elliset al., 1987), or when it forms
aword (Behrmann et a., 1990; Brunn & Farah, 1991; Sieroff et al., 1988). Incorrect responses
typicaly consist of words in which the leftmost letters of the stimulus are omitted (e.g. CHAIR =
“hair™), replaced (e.g. HOUSE = “mouse”), or augmented (e.g. LOVE = “glove’). When two letter
strings are presented (e.g. SUN FLY), the left one is often ignored (Sieroff et al., 1988), but this
occurs less frequently when they combine to form a compound word (e.g. cow BOY; Behrmann
et a., 1990). Thus, the severity of the deficit isinfluenced both by peripheral (sensory) and central
(lexical) manipulations. Neglect dydexia often accompanies more generalized hemispatial neglect
(Bisiach & Vallar, 1988; Friedland & Weinstein, 1977) but has been dissociated fromit in aleast
some patients (Costello & Warrington, 1987). Itistraditionally interpreted asadeficit in allocating
gpatial attentionto contralesional stimuli (Posner eta., 1984). Infact, explicitinstructionsor cueing
manipulations that bias attention towards the left can often aleviate the deficit (Karnath, 1988;
Riddoch & Humphreys, 1983; Riddoch et al., 1991), and neglect-like attentional manipulationsin
normals can elicit analogous lexical effects (Behrmann, 1991; Behrmann et al., 1991).

Mozer & Behrmann (1990) reproduced these characteristics of neglect dyslexiain apre-existing
connectionist model of word recognition, known as MORSEL (for Multiple Object Recognition
and SEL ective attention; Mozer, 1988; 1990; see Figure 2.4). Retinotopic letter features are
combined into letters, and then into “letter clusters,”® by the operation of ahierarchically organized

SLetter clusters are context-dependent triples of lettersthat explicitly represent spaces (designated by “*”) and can
span across an intermediate position (designated by “_"). For example, the letter clusters for the isolated word CAT
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Figure 2.4: The main components of MORSEL (from Mozer & Behrmann, 1990, p. 98).
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subnetwork called BLIRNET (for Builds Location Invariant Representations). The input of letter
featuresto BLIRNET is partially gated by an Attentional Mechanism (AM) that attempts to form
a spatially contiguous “ spotlight” of activity on the basis of where |etter features occur. The letter
cluster activity produced by BLIRNET is cleaned-up into the pattern for a particular word under
the top-down influence of Iexical/semantic units within a Pull Out network.

Mozer & Behrmann (1990) model the attentional impairment in neglect dyslexiaby introducing
amonotonic gradient of damage to the connectionsfrom theletter featuresto the AM, with damage
most severe on the left and least on the right. This damage biases the AM towards forming an
inaccurate spotlight that includes only the rightmost | etters of asingleinput string, or the rightmost
of twoinput strings. Letter featuresthat fall outsidethe spotlight aretransmitted to BLIRNET much
less effectively, so that the resulting letter cluster activity isinaccurate, particularly in representing
the left-hand side of the input. The clean-up of the Pull Out network can often reconstruct the
correct pattern of activity for the letter string from this corrupted activity, particularly when the
entire input forms aword (corresponding to some of the lexical/semantic units). However, when
clean-up within the Pull Out network fails, the result is often the pattern for another word that
differs from the presented word only on the left. Reading accuracy is better if the letter string is
presented further to the right because the damage from these positions to the AM is less severe.
Similarly, accuracy isimproved by cueing in the model through the unimpaired top-down input to
the AM from so-called “Higher Levels of Cognition.” In thisway, the damaged model reproduces
the main characteristics of neglect dyslexia.

Inadditionto neglect dyslexia, Mozer & Behrmann (in press) describe how damagein MORSEL
might al so account for another type of peripheral dydexia, known as* attentional” dysexia(Shallice
& Warrington, 1977). Attentional dysexics can correctly read single words or letters when
presented in isolation, but have difficulty when multiple items are presented together. Thus, these
patients often cannot identify the individua letters within a word that they can read. Identifying
aletter is somewhat improved when it is flanked by digitsrather than other letters (e.g. 83B40 vs.
LHBMC). In addition, when multiple words are presented, |etters can migrate between the words
in the response (e.g. WIN FED read as FIN FED). Similar letter migration errors occur in normals
under brief masked exposure (Mozer, 1983; Shallice & McGill, 1978).

Mozer & Behrmann propose that attentional dyslexia arises when the AM is unable to focus
its spotlight on only one of multiple items. Many types of damage in the model would cause
the spotlight to capture everything in the visual field. One possibility is that reduced connection
weights in the AM dlow the formation of the spotlight. In fact, Mozer (1988) produced letter
migration errorsin MORSEL when the AM was given insufficient time to settle into focusing on
just one of two words. The Pull Out network occasionally recombines the letter clusters from

are**C, **_A, *CA, *_AT, CAT, C_T*, AT*, A_** and T**. Letter clusters provide a unique representation for most
words (but see Pinker & Prince, 1988, for a discussion of their limitations). The scheme isloosely modeled after that
of Wickelgren (1969).
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Figure 2.5: Seidenberg & McCléelland’s general framework for lexical processing (left), and the
structure of the portion of this framework that was implemented (right) (from Seidenberg &
McClelland, 1989, pp. 526-527).

both words inappropriately. Individual lettersin words cannot be identified because the AM must
focusits spotlight on asingleletter in order for BLIRNET to generate the letter cluster activity that
corresponds to that |etter as the response. Reading aletter in the context of digitsis easier than in
the context of other |etters because the network does not form clusters between letters and digits,
so in the former case the letter cluster activity more closely approximates that for isolated letter
presentation.

Thus onetype of attentional manipulationin MORSEL leadsto neglect dydexia, while another
leads to attentional dysexia. MORSEL was originally developed to account for aspects of word
reading in normals—the fact that it exhibits both neglect and attentional dyslexia under damage
providesindependent support for the model.

2.3.2 Surfacedysexia

Recall that surface dydexics can correctly pronounce regular words and non-words, but often make
regularization errors on low-frequency words (e.g. YACHT = “yatched”). Thus they would appear
to be reading entirely by a phonological route that sounds-out words based on spelling-to-sound
correspondences. Patterson et al. (1990) attempted to reproduce smilar effects by damaging a
model of word pronunciation that had been previoudy demonstrated to account for a wide range
of effects in normal reading (Seidenberg & McClelland, 1989, see Figure 2.5). The model takes
the form of a connectionist network that maps orthographic representations of the written forms
of words onto phonologica representations of their pronunciations. In this way it is closely
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related to Segjnowski & Rosenberg’s (1987) NETtak model. Orthographic representationsin the
Seidenberg & McClelland model are roughly similar to the letter clustersin MORSEL, except that
each of the 400 orthographic units is involved in representing a number of related letter clusters
instead of just one. Phonological representations, composed of triples of phonemic features, are
distributed ssimilarly over 460 phonological units (for details, see Rumelhart & McClelland, 1986).
In one version of the network, there are 200 hidden units that receive connections from each
orthographic unit, and that send connections back to these units as well as to each phonological
unit. The network was trained with back-propagation (Rumelhart et al., 1986b) to generate both
the orthographic and phonological representation of each of 2897 monosyllabic English words
when presented with its orthographic representation asinput. The frequency with which each word
was presented to the network during learning was proportional to the logarithm of its frequency of
occurrence in written English (Kucera & Francis, 1967). After 250 sweeps through the training
corpus (about 150,000 word presentations), the network’s pronunciation of 97.3% of the words
matched the correct pronunciation better than any alternative pronunciation that differed by asingle
phoneme. A number of the incorrect responses were regul arizations of low-frequency words (e.g.
SOOT = “suit”).

The model succeeds at simulating a broad range of empirical phenomenain reading. The most
important results for our purposesinvolve the time required to pronounce different types of words,
where naming latency in the model is defined to be directly proportion to the distance between the
generated and correct pronunciation. Specifically, in normal subjects and in the model, (a) there
isamain effect of frequency, with high-frequency words read more quickly that low-frequency
words (Forster & Chambers, 1973; Frederiksen & Kroll, 1976), and (b) there is a frequency x
regularity interaction, with the faster naming times for regular vs. exception words being much
larger for those words with low frequency compared with those with high frequency (Seidenberg,
1985; Seidenberg et a., 1984; Taraban & McClelland, 1987; Waters & Seidenberg, 1985), and
(c) words are read better than non-words (McCann & Besner, 1987). These effects occur in the
model because both frequency and regularity combineto strengthen common associations between
subpatterns of the orthographic and phonological representations.

Perhaps the main contribution of the Seidenberg & McClelland model is that it demonstrates
that a single mechanism can pronounce regular words, exception words, and non-words (although
see Besner et al., 1990, for criticism of the model’s word and non-word reading performance, and
Seidenberg & McClelland, 1990, for argoinder). In contrast, most models of reading claim that
exception words must be pronounced by a separate “lexical” mechanism because their spelling-to-
sound correspondences violate the rules that apply to regular words and non-words (see Patterson

6This connectivity would suggest that the implemented network is recurrent and would have to repeatedly update
unit states in processing a given input. However, unit states are computed only once in the Seidenberg & McCleland
simulations. Thus, it is more accurate to think of the implemented mode as a feed-forward network that sends
connections to a separate group of orthographic (output) unitsrather than back to the input units.
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& Coltheart, 1987, for a review). Strong evidence in favor of this separation comes from the
characteristics of two classes of acquired dysexics: “surface’ dydexics are much better at reading
regular words than exception words, and “phonological” aexics are much better at reading words
than non-words. Accounting for these two patterns of deficits in terms of damage to a single
naming mechanism presents a difficult challenge for the Seidenberg & McClelland model.

Unfortunately, Patterson et al. (1990) decline to consider how the model might account for
phonological alexia. However, the model does seems ideally suited for reproducing surface
dydexia because neither it nor the patients (at least Type I) can rely on semantic mediation in
reading. Accordingly, Patterson and her colleagues “lesioned” the model, by removing different
proportions of units or connections, and compared its performance on different classes of words.
The pronunci ation generated by the damage network to agiven word was compared with the correct
pronunciation as well as a plausible aternative—for exception words, the aternative consisted of
the“regularized” pronunciation. After damage, regular and exception words are read equally well,
and there is no effect of frequency in reading exception words. Exception words are much more
likely than regular words to produce the alternative (regularized) pronunciation, but a comparison
of the phonemic featuresin errorsrevealed that the network shows no greater tendency to produce
regularizations than other errorsthat differ from the correct pronunciation by the same number of
features. This pattern of resultsis unlike that of surface dyslexics, who read regular words much
better than exception words, and are worse at reading exception words with low frequency, and are
particularly prone to regularization errors (also see Behrmann & Bub, in press).

Using amoredetailed procedurefor analyzing responses, Patterson (1990) found that removing
20% of the hidden units produced better performance on regular vs. exception words and a slight
(non-significant) trend towards a frequency x regularity interaction. Thus, both high- and low-
frequency regular words are read well (93% for both). High-frequency exception words are also
read reasonably (86%) but low-frequency exception words are more impaired (78%). In addition,
half of the errorsto exception words were regularizations. These effects are similar to those seen
in some surface dyslexics, but not as dramatic.

Taken together, the attempts to model surface dyslexia by damaging the Seidenberg & Mc-
Clelland model have been less successful than its ability to account for normal reading behavior.”
However, Patterson et al. (1990) and Seidenberg & McCleland (1990) point out a number of
possible elaborations to the model that might improve its ability to behave like surface dydexics
when it is damaged.

“Interestingly, Olsen & Caramazza (1988) were also unsuccessful at reproducing the characteristics of “lexical
agraphia’ (Beauvois& Derouesng, 1981), awriting disorder ana ogousto surface dys exia, by damaging aconnectionist
model of spelling analogousto NETtalk (Sejnowski & Rosenberg, 1987). However, more recent work by L oosemore
et a. (1991) appears promising.
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2.3.3 Deep dyslexia

In the conclusion of their review article, “Deep Dydexia since 1980,” Coltheart, Patterson
& Marshall (1987a) argue that deep dysdexia presents cognitive neuropsychology with a maor
challenge. They raise two main issues specific to the domain of reading. First, they argue
that standard “ box-and-arrow” information-processing accounts of deep dyslexia (e.g. Morton &
Patterson, 1980, see Figure 2.2) provideno explanation for the observed combinationsof symptoms.
If apatient makes semantic errorsin reading aloud, why are many other types of behavior virtually
always observed? Second, they point out that the standard explanations for semantic errorsand for
effects of abstractness involve different impairments along the semantic route.
Theloss of semantic information for abstract wordsthat explained visual errorsin oral
reading cannot readily explain semantic errors in ora reading, since semantic errors
typically occur on moderately concrete words.... The deficit in the semantic routine
that gives a pretty account of semantic errorsis, rather, an abnormal soppinessin the
procedure of addressing a phonological output code from a set of semantic features.

. Must we now postulate several different semantic-routine impairments in deep
dydexia, and if so, why do we not observe patients who have one but not the other: in
particular, patients who make semantic errors but do not have difficulty with abstract
words? [Coltheart et al., 1987a, pp. 421-422]

Recently, Hinton & Shallice (1991) have put forward a connectionist approach to deep dysdexia
that addresses the first of the above points. They reproduced the co-occurrence of semantic,
visual, and mixed visual-and-semantic errors by lesioning a connectionist network that develops
“attractors’ for word meanings. While the success of their smulationsis quite encouraging, there
islittleunderstanding of what underlying principlesareresponsible for them. A major focusof this
thesisisto evaluate and, where possible, improve on the most important design decisions made by
Hinton & Shallice.® First, weimproveon therather arbitrary way that the mode! realized an explicit
response by extending it to generate phonological output from semantics. Next, we demonstrate
therobustness of the account by examining network architecturesdifferent fromthe original model.
Thirdly, we evauate the significance of the particular learning procedure used to train the origina
model by re-implementing it in a more plausible connectionist formalism. Finally, we investigate
whether the remaining characteristics of deep dydexia—in particular, Coltheart, Patterson &
Marshall’sthird issue relating to effects of abstractness—can be explained by essentially the same
account proposed for the co-occurrence of error types.

Theremainder of thischapter presentsabrief overview of thereading behavior of deep dydexics,
motivationsfor a connectionist account, asummary of the Hinton & Shallice results, and agenera
evaluation of these results that serves to motivate much of the research presented in the thesis.

8This research was done in collaboration with Tim Shallice—a more condensed description can be found in Plaut
& Shdlice (19914).
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2.4 Deep dydexia

Despite its familiarity as a concept in cognitive neuropsychology, deep dysexia remains contro-
versa. It was first suggested as a symptom-complex by Marshall & Newcombe (1973), who
described two patients (G.R. and K.U.). Both made semantic errors in attempting to read aoud
and also made visual and derivational errors. Coltheart (1980a) was able to add another 15 cases.
Kremin (1982) added another eight and over ten more are referred to in Coltheart et al. (1987a).

Beginningwiththesemanticerror, Coltheart (1980a) al so extended thelist of common properties
to 12, namely (examples of errorsare from D.E., Patterson & Marcel, 1977)

1. Semantic errors (e.g. BLOWING = “wind’, VIEW = “scen€”’, NIGHT = “deep”’, GONE =
Hlogn);

2. Visua errors (e.g. WHILE = “white”, SCANDAL = “sandals’, POLITE = “politics’, BADGE
= “bandage’);

3. Function-wordsubstitutions(e.g. WAS=- “and”, ME = “my”, OFF = “from”, THEY = “the");
4. Derivational errors(e.g. CLASSIFY = “class’, FACT = “facts’, MARRIAGE = “married”, BUY
= “bought”);
5. Non-lexical derivation of phonology from print isimpossible (e.g. pronouncing non-words,
judging if two non-words rhyme);
6. Lexical derivation of phonology from print isimpaired (e.g. judging if two words rhyme);
7. Words with low imageability/concreteness (e.g. JUSTICE) are harder to read than words with
high imageability/concreteness (e.g. TABLE);
8. Verbs are harder than adjectives which are harder than nounsin reading aoud;
9. Functions words are more difficult than content words in reading aoud;
10. Writingisimpaired (spontaneous or to dictation);
11. Auditory-verbal short-term memory isimpaired;

12. Whether aword can beread at all depends onits sentence context (e.g. FLY asanouniseaser
than FLY asaverb).

Given the uniformity of the patients symptoms, Coltheart characterized the symptom-complex as
asyndrome.

In fact, not al these properties are aways observed when an acquired dydexic patient makes
semantic errors in reading. Thus patient A.R. (Warrington & Shallice, 1979) did not show the
concreteness and content word effects (7 and 9), and had relatively intact writing and auditory
short-term memory (10 and 11). Three other patients have been described who make semantic
errorsin reading aloud (and do so also when any other speech responses are required) and yet make
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few if any visual errors (Caramazza & Hillis, 1990; Hillis et a., 1990).° The lack of complete
consistency across patients therefore led to criticisms of the attempt to characterize the symptom-
complex as directly reflecting an impairment to some specific processing component. Some of
these arguments were specific to deep dysexia. Thus Shallice & Warrington (1980) held that deep
dydexia was not a “pure syndrome.” Others, though, made more genera critiques. Morton &
Patterson (1980) and Caramazza (1984; 1986) denied the theoretical utility of generalizing over
patients for extrapolation to normal function, and Shallice (1988) more specifically claimed that
error patterns did not provide an appropriate basis for this purpose.

Despite these objections to the theoretical utility of the deep dyslexia symptom-complex,
Coltheart et al. (1987a) stress that work since 1980 reinforces the virtually complete uniformity
of symptom pattern found across a large number of patients. This means that to dismiss deep
dydexiaastheoreticaly irrelevant would be at |east as dangerous as to accept it uncriticaly asthe
manifestation of some specific impairment. For the present we will leave consideration of these
methodological criticisms of deegp dydexia until the Genera Discussion. We will provisionally
assume that it isavalid theoretical concept.

Many other properties of the reading of individual deep dyslexic patients have been recorded.
In thisthesis we will be particularly concerned with four.

1. Additional types of reading errors. Mixed visual-and-semantic (e.g. SHIRT = “skirt”) were
recorded in al of the patients reviewed by (Coltheart, 1980a) on whom there is adequate
data; in K.F. (Shallice & McGill, 1978) and P.S. (Shalice & Coughlan, 1980) they were
also shown to occur at above the rate which one would expect if they were al arising as
visual errors or as semantic errors independently. Another error type which was observed
even earlier by Marshall & Newcombe (1966) is that of visual-then-semantic errors (e.g.
SYMPATHY = “orchestra’, presumably via symphony), described in eight of the patients
reviewed by (Coltheart, 1980a).

2. Influencesof semantic variablesonvisual errors. Ingenera, the abstract/concrete dimension
does not just relate to the issue of how successfully different types of words are read. The
stimuli on which visua errors occur tend to be more abstract than the responses produced
and also more abstract than the stimuli for which other types of responses occur (see e.g.
Shallice & Warrington, 1980).

3. Confidence in errors. The confidence with which errors are produced has been studied in

90One could argue that two of these patients at least are hardly “acquired dyslexics’ since their problemis held to
be at the phonol ogical output lexicon. Thisthough, presupposesthat one can make a clear distinction between reading
impairments and other difficulties. Yet, while it remains generally accepted that non-semantic phonological reading
procedures are grossy impaired in deep dysexic patients (see e.g. Marshall & Newcombe, 1973), it has been argued
that there are additiona deficits in the semantic reading route and that these can differ in their location, with some
patients even being “output” deep dydexics (Friedman & Perlman, 1982; Shallice & Warrington, 1980). Thus, the
“clear distinction” between reading and non-reading difficultiesis absent from the literature.
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three patients. PW. and D.E. (Patterson, 1978) were much more likely to be sure that they
were correct for visual errors than for semantic errors, but G.R. gave as high confidence
ratings both for visual errors and for semantic errors as for correct responses (Barry &
Richardson, 1988).

4. Lexical decison. Deep dyslexics can often distinguish words from orthographically regular
non-words, even when they are quite poor at explicitly reading the words (Patterson, 1979).
Lexical decision was “surprisingly good” for nine of the 11 cases listed by Coltheart (19804)
for which there was data.

Turning to theoretical accountsof the symptom-complex, wewill follow Marshall & Newcombe
(1973) and many others by presuming that phonological reading procedures are grossly impaired
in these patients and that this can account for characteristics (5), (6), and presumably (11) (see
discussions in Coltheart, 1980a; Coltheart et al., 1987a). However, if it is held that the complete
cluster of propertieshave acommon functional origin, what can it be? The most prosaic possibility
isthat the syndrome arises from a set of functional deficits which co-occur for anatomical reasons
(e.g. Morton & Patterson, 1980; Shallice, 1988; Shallice & Warrington, 1980). If, however, the
impairments are only specified in terms of damage to hypothetical subcomponents or transmission
routes, many guestions remain to be answered. Why do visual and derivationa errors so often
co-occur with semantic ones? Why do mixed visual -and-semantic and visual-then-semantic errors
occur? If the general advantage for concrete words results from impaired access to abstract
semanticsper se, why hasonly one patient (C.A.V., Warrington, 1981) been observed with superior
performance on abstract words? How does one account for the effects of concreteness on visua
errors? Ad hoc explanations have been given for some of these points (see Morton & Patterson,
1980; Shallice & Warrington, 1980) but nothing resembling a well-devel oped theory along these
lines exists.

An interesting version of the “anatomical coincidence” explanation is the claim that deep
dydexic reading reflects reading by the right hemisphere (Coltheart, 1980b; 1983; Saffran et al.,
1980). The attraction of this hypothesis is the similarities that have been demonstrated between
reading in deep dyslexia and in patients reading with an isolated right hemisphere (e.g. Patterson
et a., 1989; Zaidel & Peters, 1981). However, these analogies have been criticized (see e.g.
Patterson & Besner, 1984a; Shallice, 1988) and at least one patient has been described with
many deep dydexic characteristics whose reading was abolished after a second left hemisphere
stroke (Roeltgen, 1987). Overdl, while the theory is based on empirical analogues for certain
deep dydexic characteristics (e.g. semantics by which the right hemisphere might produce the
symptom-complex), it is principally an attempt to localize rather than to provide a mechanistic
account. Since no mechanistic account exists for any other neuropsychological syndrome except
for neglect dydexia (Mozer & Behrmann, 1990), this is hardly a strong criticism of the theory
from present-day perspectives. However, an explanation oriented towards this more complex goal
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remains a major target for understanding deep dyslexia.

2.5 Motivation of a connectionist account

Much of theinitial motivation for pursuing a connectionist account of deep dyslexia comes out of
preliminary work by Hinton & Sejnowski (1986) on the effects of damagein networks. They were
not primarily concerned with modeling deep dyslexia, but rather with investigating how distributed
representations can mediate in mapping between arbitrarily related domains (Hinton et al., 1986).
The task they chose was a highly simplified version of the mapping orthography to semantics. each
of 20 three-letter words was to be associated with an arbitrary semantics consisting of a random
subset of 30 semantic features. The network used to accomplish the mapping had three layers of
units. Thirty “grapheme” units, in three groups of 10, represented the three letters of each word.
These units were fully connected to 20 “intermediate” units, which in turn were fully connected
to 30 “sememe” units, one for each semantic feature. In addition, the sememe units were fully
interconnected. The units produced stochastic binary output and all connections were symmetric.
The network was trained with the Boltzmann Machine learning procedure (Ackley et a., 1985) to
settle into the correct pattern of activity over the sememe units for each word when the grapheme
unitsfor the letters of the word were clamped on.

The undamaged network performed the task almost perfectly, but when single intermediate
units were removed, 1.4% of the responses of the network were incorrect. Interestingly, 59% of
these incorrect responses were the exact semantics of an alternative word, and these “word” errors
were more semantically and visually similar to the correct word than would be expected by chance.
Assuming that the pattern of semantic activity would be the basis for an overt naming response, a
single locus of damage in the network produced semantic, visual, and mixed reading errors.

Hinton & Sejnowski interpret this behavior in the following way. Interactions among the
sememe units enable them to “clean-up” an initially noisy or incomplete pattern of semantic
activity into the pattern corresponding to the exact semantics of the input word. Under normal
operation thisinitial pattern is always closer to the semantics of the correct word than to that of
any other, and so the clean-up interactions produce a correct response. However, the damaged
network occasionally produces an initia pattern of semantic activity that is closer to the meaning
of another word, usually one that shares letters and/or semantic features with the correct word.
When semantic clean-up is applied in this case, the network produces the exact semantics of the
incorrect word, resulting in a“word” error that tends to be semantically and/or visually related to
the correct word. While Hinton & Sejnowski’s demonstration is highly oversmplified, it is quite
suggestive that damage to networks that map from orthography to semantics can produce a pattern
of errorsqualitatively similar to that of deep dydexics.
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2.6 A preéliminary connectionist model of deep dysexia

Based on this promising initial work, Hinton & Shallice (1991, hereafter H&S) undertook to
model deep dydexia more thoroughly. Developing the model involved making four sets of design
decisions that apply to the development of any connectionist ssmulation:

e Thetask: What input/output pairsisthe network trained on and how are they represented as
patterns of activity over groups of input and output units?

e Thenetwork architecture: What type of unit isused, how are the units organized into groups,
and in what manner are the groups connected?

e Thetraining procedure: How are examples presented to the network, what procedureis used
to adjust the weights to accomplish the task, and what is the criterion for halting training?

e Thetesting procedure: How isthe performance of the network eval uated—specifically, how
arelesions carried out and how is the behavior of the damaged network interpreted in terms
of overt responses that can be compared with those of patients?

The following four subsections describe the characteristics of the model in terms of each of these
issues. The adequacy and limitations of these decisions are then discussed and serve to motivate
the simulations presented in thisthesis.

2.6.1 Thetask

H& S defined a version of the task of mapping orthography to semantics that is somewhat more
sophisticated (although still far from realistic) than that used by Hinton & Sejnowski. Orthography
was represented in a similar way, in terms of groups of position-specific letter units (McClelland
& Rumelhart, 1981). In order to keep the task simple, 40 three- or four-letter words were chosen
with restrictions on what letters could occur in each position, resulting in a total of 28 possible
graphemes (see Table 2.1).

Rather than assign to each word a completely arbitrary semantics, H& S designed a set of 68
semantic features intended to capture intuitive semantic distinctions (see Table 2.2). On average,
about 15 of the 68 features were present in the semantic representation of a word. The words
were chosen to fall within five concrete semantic categories. indoor objects, animals, body parts,
foods, and outdoor objects. The assignment of semantic features to words ensured that, in general,
objects in the same category tended to be more similar (i.e. shared more features) than objects
in different categories (see Figure 2.6). However, H&S did not directly demonstrate that their
semantic categories faithfully reflect the actual semantic smilarity among words. Figure 2.6
conveys some sense of the similarity within and between categories, but a more direct impression
can be obtained from a full display of the similarity (i.e. proximity in semantic space) of each
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| Letters allowed in each position

IBCDGHLMNPRT|AEIOU|[BCDGKMPRTW]/EK|

| Words in each category

I ndoor Body Outdoor
Objects | Animals | Parts Foods Objects
BED BUG BACK BUN BOG
CAN CAT BONE HAM DEW
coT cow GUT HOCK DUNE
CuP DOG HIP LIME LOG
GEM HAWK LEG NUT MUD
MAT PIG LIP POP PARK
MUG RAM PORE PORK ROCK
PAN RAT RIB RUM TOR

Table 2.1: The words used by H& S, organized into categories.

| Semantic features

1 max-size-less-foot 21 indoors 46 made-of-metal
2 max-size-foot-to-two-yards | 22 in-kitchen 47  made-of-wood
3 max-size-greater-two-yards | 23  in-bedroom 48 made-of-liquid
4  main-shape-1D 24 in-livingroom 49 made-of-other-nonliving
5 main-shape-2D 25 on-ground 50 got-from-plants
6 cross-section-rectangular 26 on-surface 51 got-from-animals
7 cross-section-circular 27 otherwise-supported | 52 pleasant
8 haslegs 28 in-country 53 unpleasant
9 white 29 found-woods 54  man-made
10 brown 30 found-near-sea 55 container
11 green 31 found-near-streams | 56 for-cooking
12  color-other-strong 32 found-mountains 57 for-eating-drinking
13 varied-colors 33 found-on-farms 58 for-other
14 tranparent 34 part-of-limb 59 used-alone
15 dak 35 surface-of-body 60 for-breakfast
16 hard 36 interior-of-body 61 for-lunch-dinner
17 soft 37 above-waist 62 for-snack
18 sweet 38 mammal 63 for-drink
19 tastes-strong 39 wild 64 particularly-assoc-child
20 moves 40 fierce 65 particularly-assoc-adult
41 doesfly 66 used-for-recreation
42 does-swim 67 human
43 does-run 68 component
44 living
45 carnivore

Table 2.2: Semantic features used by H&S. Features within a block were considered “closely

related” for the purposes of determining the network architecture.
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BED
CAM
cCaT
Cur
GEM
MAT
MUG
PAM
BUG
CAT
COl
noG
HAWE
PIG
RAM
RAT
BACK
BOME
GUT
HIF
LEG
LIF
FORE
RIB
BUM
HAM
HOCK
LIME
HUT
FOF
FORE
RUM
BOG
DOEL
DUHE
LOG
MUD
FARK
ROCK
TOR
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40

35

11111111112222222222333333333534444444444555555555560606E666
123456789012345678901 2340678901 2345678901 2345678901 2345678901 2345675

Figure2.6: The assignment of semantic featuresto wordsused by H& S. A black rectangleindicates
that the semantic representation of the word listed on the left contains the feature whose number
(from Table 2.2) islisted at the top.
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Figure 2.7: The similarity matrix for the semantic representations of words. The size of each
sguare represents the proximity of the representations of apair of words, wherethe largest squares

(along the diagonal) represent the closest possible proximity (1.0) and a blank square represents

the farthest possible proximity (0.0).
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pair of words, shown in Figure 2.7. Because the words are ordered by category, the extent and
uniformity of the similarity within each category isreflected by an 8-by-8 block along the diagonal
of the matrix, while between-category similarity is reflected in off-diagonal blocks. A number
of interesting characteristics are apparent from the similarity matrix. Words for “body parts’ are
quite similar to each other and quite different from wordsin other categories. In contrast, “indoor
objects’ are not uniformly similar to each other, and many are quite similar to “foods,” particularly
those that are used with food (i.e. CUP, CAN, MUG, PAN). “Outdoor objects’ also vary considerably
in their similarities with each other, and are often also similar to “animals’ (which are also found
outdoors). However, the overall strength of thefive on-diagonal blocks supportsthe use of category
membership as ageneral measure of semantic similarity.

A further requirement of a satisfactory approximation of the task of mapping orthography to
semantics that H& S did not verify for their representations is that the relationship between the
visual and semantic representations of a word is arbitrary in genera. In other words, the visual
similarity of two words (as defined below) provides no information about their semantic smilarity,
and vice versa. While this holds for the full set of English morphemes, it is possible that visual
similarity is somewhat predictive of semantic similarity for the representations of the particular 40
wordsused by H& S. If thiswere the case, it would compromise their arguments about the expected
“chance’ ratesof mixed visual-and-semantic errorsassuming visual and semanticinfluencesoperate
independently. One way to test the independence of visua and semantic similarity is that the
probability of a randomly selected word pair being both visualy and semantically similar, m,
should be approximately equal to the product of the independent probabilities of visua, v, and
semantic, s, Smilarity. Among all possiblenon-identical word pairsintheH& Sword set, m = .062,
v =.36,and s = .18, s0 vs = .065isroughly equal to m. Thus visual and semantic similarity are
approximately independent in the H& S word set.

2.6.2 Thenetwork

Unlike the binary stochastic units and symmetric connections used by Hinton & Sejnowski, H& S
used real-valued deterministic units and one-way connections. The 28 grapheme units were
connected to agroup of 40 intermediate units, whichin turn were connected to the 68 sememe units.
In order to reduce the number of connections, only a random fourth of the possible connections
were included.

Following Hinton & Sejnowski’s argument for the importance of alowing the sememe units
to interact, H& S introduced connections at the semantic level in two ways. First, they added
direct connections between sememe units. Rather than include all possible 4624 such connections,
only sememe units that represent closely related features (defined in Table 2.2) were connected.
While these direct connections help the network ensure that sememes are locally consistent, not
all relationships among semantic features can be encoded by pairwise interactions alone. In order



CHAPTER 2. CONNECTIONIST MODELING IN NEUROPSY CHOLOGY 38

scconns
~\___AA A A
C 68 sememe units )
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Figure 2.8: The network used by H& S. Notice that sets of connections are named with the initials
of the names of the source and destination unit groups (e.g. giconns for grapheme-to-intermediate
connections).

to allow combinations of sememes to directly influence each other, H& S also introduced a fourth
group of 60 “clean-up” units that receive connections from, and send connections to, the sememe
units. This pathway can enforce more global consistency among semantic features. Asin the
“direct” pathway from graphemes to sememes via the intermediate units, only a random fourth of
the possible connections in this clean-up pathway wereincluded. The resulting network, depicted
in Figure 2.8, had about 3300 connections.

2.6.3 Thetraining procedure

The network was trained in the following way. The grapheme units were set to the appropriate
input pattern for aword, and all other units were set to 0.2. The network was then run for seven
iterations in which each unit updated its state once per iteration, generating a pattern of activity
over the sememe units. The network was initialized to have small random weights, so that at the
beginning of training the pattern of semantic activity produced by the word was quitedifferent from
its correct semantics. An iterative version of the back-propagation learning procedure, known as
“back-propagation throughtime” (Rumelhart et al., 1986b, see Appendix 10), was used to compute
the way that each weight in the network should change so as to reduce this difference for the last
three iterations. These weight changes were calculated for each word in turn, at which point the
accumulated weight changes were carried out and the procedure was repeated. After about 1000
sweeps through the 40 words, when the network was presented with each word, the activity of
each sememe unit was within 0.1 of its correct value for that word, at which point training was
considered complete.
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2.6.4 Thetesting procedure

After training, the intact network produced the correct semantics of each word when presented with
its orthography. The network was then “lesioned” in three ways. (@) ablation: removing arandom
subset of the units in a layer, (b) disconnection: removing a subset of the connections between
layers, and (c) noise: adding uniformly distributed random noise to the weights on connections
between layers. Under damage, the semantics produced by a word typically differed somewhat
from the exact correct semantics. Yet even though the corrupted semantics would fail the training
criteria, it still might suffice for the purposes of naming. H& S defined two criteria that had to be
satisfied in order for the damaged network to be considered to have made a response:

1. A proximity criterionensured that the corrupted semantics was sufficiently closeto the correct
semantics of some word. Specifically, the cosine of the angle (i.e. normalized dot product)
between the semantic vector produced by the network and the actual semantic vector of some
word (in the 68-dimensional space of sememes) had to be greater than 0.8.°

2. A gap criterionensured that no other word matched nearly aswell. Specifically, the proximity
to the generated semantics of the best matching word had to be at least 0.05 larger than that
of any other word.

If either of these criteria failed, the output was interpreted as an omission; otherwise the best
matching word was taken as the response, which either could be the correct word or an error.

In order to compare the behavior of the network under damage with that of deep dydexics,
H& S systematically lesioned sets of unitsor connections over arange of severity. For 10 instances
of each lesion type, al 40 words were presented to the network and omission, correct, and error
responses were accumulated. Figure 2.9 shows the overall correct response rate for lesions of
each main set of connections over arange of severity.!* Asan approximation to the standard error
classification used for patients (cf. Morton & Patterson, 1980), an error was defined to be visually
similar to theinput word if the two words overlapped in at least one letter, and semantically similar
if the two words belonged to the same category. Errors were then classified into four types:

e visual (V): responsesthat are visually (but not semantically) smilar to the stimulus (e.g. CAT
= “cot”).

10A number of distance metrics defined for vectorsin the unit hypercube are reasonabl e candidates for comparing the
network’s output with known responses. Possibilities other than angle cosine include correlation, hamming distance,
euclidean distance, and norms for powers higher than 2. Many of these metrics behave similarly. H& S chose angle
cosine over themore familiar metric of euclidean distance because not al directions of difference between two vectors
would be equally disruptive to an output system. In particular, they argued that differences in direction are more
significant than differences in magnitude (which maintain the relative levels of unit activity).

1To make it easier to interpret this and subsequent graphs we will adopt the convention of using “closed” markers
(i.e. dot and asterisk) for sets of connectionsin the direct pathway, “open” markers (i.e. square and diamond) for sets
of connectionsin the clean-up pathway, and “lin€’ markers (i.e. plus and cross) for any other sets of connections.
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Figure 2.9: Overall correct response rate of the H& S model for “disconnections’ of a range of
severity of each main set of connections. See Figure 2.8 for the meaning of “csconns,” etc.

e semantic (S): responses that are semantically (but not visualy) smilar to the stimulus (e.g.
CAT = “dog”).

e mixed visual-and-semantic (V+S): responses that are both visually and semantically similar
to the stimulus (e.g. CAT = “rat”).

e other (O): responses that are unrelated to the stimulus (e.g. CAT = “mug”).

Table 2.3 shows the distribution of error types for al types of lesions, summed over instances
which resulted in between 25—-75% correct responses. The most important result isthat al lesions
produced semantic, visual-and-semantic, and visual errors at rates higher than would be expected
by chance (with the sole exception of the lesion type most resistant to damage). “Chance” is
determined by comparing the ratio of each error rate to that of “other” errors with the predicted
ratio under the assumption that error responses are generated randomly from the word set. Also,
for al but one lesion type—disconnect(isconns)—the number of mixed visual-and-semantic errors
was greater than would be expected if visual and semantic similarity were caused independently.
Furthermore, the network showed a greater tendency to produce visua errors with early damage
(closer to the graphemes) and semantic errors with later damage (closer to the sememes) athough
even damage completely within the semantic clean-up system produced an above-chance rate of
visual errors. It is clear that these errors were not produced randomly because then there would
have been a high rate of “other” errors (based on the distribution of possible error types), whereas
all errors produced by clean-up damage were either visual, visua-and-semantic, or semantic.

H& S also demonstrated that, even when the semantics produced by the system were insufficient
to plausibly drive aresponse system, enough information was often avail abl e to make between- and
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Overadl Conditional probabilities
Error Rates Vis&

Lesion n Rate | Vis Sem Sem Other
disconnect(giconns) | 4 48 | 342 447 132 7.9
noise(giconns) 4 39460 270 20.6 6.3
ablate(intermediate) | 3 31243 459 243 54
disconnect(isconns) | 2 34111 296 556 3.7
noise(isconns) 3 24| 241 483 20.7 6.9
disconnect(scconns) | 2 02| — 1000 — —
noise(scconns) 4 18| 69 724 207 —
ablate(cleanup) 2 34| 74 630 259 —
disconnect(csconns) | 3 34341 317 341 —
noise(csconns) 2 23278 389 333 —
Chance 29.9 6.2 118 522

41

Table2.3: Thedistribution of error typesproduced by lesions of al typesand locationsthat resulted
in 25-75% correct performance in the H& S model. “n” refers to the number of lesion severities
producing performance falling within the 25-75% range, and “Rate” is the average percentage of
word presentations producing explicit error responses for these lesions. “Chance’ refers to the
distribution of error typesif responses were chosen from the word set at random. Notice that there
werefew if any “Other” errorswith many of thelesions even though more than 50% of the possible

error response are of thistype.



CHAPTER 2. CONNECTIONIST MODELING IN NEUROPSY CHOLOGY 42

within-category discriminations. For instance, removing al of the connections from the sememe
to clean-up units reduced explicit correct performance to 40%. However, of the 60% remaining
trials producing an omission, 91.7% of these resulted in semantics that were closer to the centroid
of the correct category than to that of any other category (chance is 20%), and 87.5% were closer
to the semantics of correct word in that category than to that of any other word in the category
(chanceis 12.5%). The effect was weaker with earlier damage: removing 30% of the grapheme-
to-intermediate connections produced 35.3% correct performance with 48.3% between-category
and 49.0% within-category discrimination on omission trials.

Finally, a peculiar and interesting effect emerged when the connections from the clean-up to
sememe units were lesioned. The network showed a significant selective preservation of wordsin
the “foods’ category (75% correct) relative to those in other categories (next best, 34% correct).'?
The effect was quite specific; it did not occur for other lesions in the network, nor for the same
lesion in asecond version of the network trained with different initial random weights.

2.6.5 Attractors

An important concept in understanding these results is that of an “attractor.” The sememe units
in the H& S network change their states over time in response to a particular orthographic input.
The initial pattern of semantic activity generated by the direct pathway may be quite different
from the exact semantics of the word. Interactions among sememe units, either directly viaintra-
sememe connections or indirectly viathe clean-up units, serve to gradually modify and “clean-up”
the initial pattern into the final, correct pattern. As described in the Introduction, this process
can be conceptualized in terms of movement in the 68-dimensional space of possible semantic
representations, in which the state of each sememe unit is represented along a separate dimension.
Since unit states are bounded between 0 and 1, this space is actually ahypercube. At any instant in
processing a word, the entire pattern of activity over the ssmeme units correspond to a particular
point in semantic space. The exact meanings of familiar words correspond to other points in the
space—to be precise, particular corners of the hypercube. The states of sememe units change over
time in such away that the point representing the current pattern of semantic activity “moves’ to
the point representing the nearest familiar meaning. In this way, familiar meanings are attractors
in the space of semantic representations.

H& S offer an intuitive explanation for co-occurrence of visual and semantic influences on
errors in terms of the effects of damage in a network that builds attractors in mapping between
two arbitrarily related domains. Connectionist networks have difficulty learning to produce quite
different outputs from very similar inputs, yet very often visually similar words (e.g. CAT and COT)
have quite different meanings. One effective way a network can accomplish this mapping is to

2This effect was significant at the 0.01 level and not at the 0.1 level as incorrectly stated in Hinton & Shallice
(1991).
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Figure 2.10: How damage to semantic attractors can cause visua errors. The solid ovals depict the
normal basins of attraction; the dotted one depicts a basin after semantic damage.

construct large basins of attraction around each familiar meaning, such that any initial semantic
pattern within the basin will move to that meaning (see Figure 2.10). Visually similar words are
then free to generate fairly similar initial semantic patterns as long as they each manage to fall
somewhere within the appropriate basin of attraction. In thisway the network learns to shape and
position the basins so as to “pull apart” visually similar words into their final distinct semantics.
Damage to the semantic clean-up distorts these basins, occasionally causing the normal initia
semantic pattern of aword to be* captured” within the basin of avisually similar word. Essentially,
the layout of attractor basins must be sensitive to both visual and semantic similarity, and so these
metrics are reflected in the types of errorsthat occur as a result of damage.

2.7 Evaluation of the mode

The aim of H&S's work was to provide a unified account of the nature and co-occurrence of
semantic, visual and mixed reading errors in deep dyslexia. Most previous explanations of why
virtually all patients who make semantic errors also make visua errors (e.g. Gordon et a.,
1987; Morton & Patterson, 1980) have had to resort to proposing lesions at multiple locations
along the semantic route. Shallice & Warrington (1980) speculated that an inability to adequately
access part of the semantic system might give rise to the occurrence of errors. However, H& S
actually demonstrated that all of these error types arise naturally from single lesions anywhere
in a connectionist network that builds attractors in mapping orthography to semantics. Only the
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quantitative distribution of error types varied systematically with lesion location.

There are two main types of criticism leveled against the H& Smodel. The first has to do with
the limited range of empirical phenomenait addresses. Of the aspects of deep dydexiawhich pose
problems for theory, only three were modeled—the very existence of semantic errors in reading
aloud, the frequent co-occurrence of visual errorswith semantic errors, and therelatively high rates
of occurrence of mixed visual-and-semantic errors. However, an adequate theory of deep dysexia
would also need to account for afair number of other aspectsof the syndrome. Certain aspects—(5),
(6) and (10) of Section 2.4—involve difficulties in mapping directly between print and sound and
are covered by the assumption of the grossimpairment inthe operation of the non-semantic route(s).
Two others—(3) function word substitutions and (4) derivational errors—can interpreted as special
cases of semantic or mixed visual-and-semantic errors, and so can be explained in the way that
these errors are (see Funnell, 1987). Another two—(11) auditory short-term memory impairments
and (12) context effects—are dismissed by Coltheart et al. (1987a) as too vague. However, this
still leaves (7) the effects of imageability on reading, (8) and (9) the effects of part-of-speech, and
also anumber of the additional effects—the interactions between the abstract/concrete dimension
and visua errors, confidence ratings, lexical decision, and the visual-then-semantic errors. These
phenomenawill all be considered directly in thisthesis. Onefinal effect, the impaired writing, will
be addressed in the General Discussion.

The second type of criticism of the H& Smodel relatesto itsgenerality. Most attemptsto model
acquired dyslexia by lesioning connectionist networks (Mozer & Behrmann, 1990; Patterson et al.,
1990) have been based on pre-existing model sof word readinginnormals(Mozer, 1988; Seidenberg
& McClelland, 1989). These studies have primarily aimed to provide independent validation of
the properties of the normal models that enable them to reproduce phenomena they were not
initially designed to address. The work of H& Sis rather different in nature in that they were not
concerned with supporting a particular model of normal word comprehension. Rather, H& S had
the more general goal of investigating the effects of damage in a fairly genera type of network
in the domain of reading via meaning. To the extent that the behavior of the damaged network
mimicked that of deep dydexics, the principles that underly the network’s behavior may provide
insight into the cognitive mechanisms of reading in normals, and their breakdown in patients. In
thisway, therelevance of H& S's ssmulations to cognitive neuropsychology depends onidentifying
and evaluating those aspects of the model which are responsible for its ability to reproduce patient
behavior.

H&S argue that the co-occurrence of different error types obtained in deep dydexia is a
natural consequence of lesioning a connectionist network that maps orthography to semantics
using attractors. However, their conclusions were essentially based on a single type of network
that inevitably had many specific features. It was only an assumption that these specific features
did not significantly contribute to the overall behavior of the network under damage. Clearly itis



CHAPTER 2. CONNECTIONIST MODELING IN NEUROPSY CHOLOGY 45

impossible to evaluate every possible aspect of the model. H& S attempt to motivate and justify
many of the decisions that went into developing their model. In considering the significance of
these decisions, it is important to bear in mind that they each reflect a tradeoff between (at |east)
three types of constraint: (a) empirical data from cognitive psychology and neuropsychology,
(b) principles of what connectionist networks find easy, difficult or impossible to do, and (c)
limitations of the computational resourcesavailablefor running ssmulations. Each of thefollowing
major design issues serves to motivate the investigations described in a subsequent chapter.

2.7.1 Thetask

The grapheme and sememe representations used by H& S clearly fail to reflect the full range of
orthographic and semantic structure in word reading. The use of position-specific letter units, the
selection of semantic features, and their assignment to words, was based more on computational
than empirical grounds. However, these representationsexhibit the characteristicsthat are essential
for demonstrating the influences of both visual and semantic similarity on deep dyslexic reading:
(a) visually similar words (with overlapping letters) have similar representationsover the grapheme
units, (b) semantically similar words (in the same category) have similar representations over the
sememe units, and (c) there is no systematic relationship between the orthographic and semantic
representations of aword.

One concern involves the adequacy of the definitions of visual and semantic similarity. These
were chosen to be analogous to those used for patients, but they only approximate the actua
similarity structure of the visual and semantic representations used for words. The impact of the
adequacy of this approximation on the error pattern produced under damage was not eval uated.

A more severe limitation is that the model was trained on only 40 words, allowing only avery
coarse approximation to the range of visual and semantic similarity among words in a patient’s
vocabulary. In particular, important variables known to affect patients' reading behavior, such as
word length, frequency, syntactic class, and imageability/concreteness, were not manipulated. In
addition, thereisthe potential problem that some of the observed effects may arise from operations
of asmall subset of the stimulus set with statistically unusual properties. The general impact of this
limitation will be addressed in the General Discussion. More specifically, simulations presented
in Chapter 6 attempt to extend the H& S approach to account for effects of concreteness in deep
dydexic reading performance.

2.7.2 Thenetwork

H& S provide only agenera justification for the network architecture they chose. Hidden unitsare
needed because the problem of mapping orthography to semanticsis not linearly separable. Recur-
rent connections are required to allow the network to develop semantic attractors, whose existence
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constitutes the major theoretical claim of the work. The choices of numbers of intermediate and
clean-up units, restrictions on intra-sememe connections, and connectivity density were an attempt
to give the network sufficient flexibility to solve the task and build strong semantic attractors,
while keeping the size of the network manageable. Some aspects of the design, particularly the
selective use of intra-sememe connections, were rather inelegant and ad hoc. Chapter 4 elaborates
on the implications of these distinctions and describes ssimulations involving a range of network
architectures that attempt to directly evaluate their impact on the pattern of errors produced under
damage.

2.7.3 Thetraining procedure

H& Sjustify the use of an admittedly implausible learning procedure in two ways. The first isto
emphasi ze that they were not directly concerned with simulating aspects of reading acquisition, but
only its breakdown in mature, skilled readers. Thus the learning procedure can be viewed solely
as a programming technique for determining a set of weights that is effective for performing the
task. The second justification they useisto point out that back-propagation isonly one of a number
of ways of performing gradient descent learning in connectionist networks. Other more plausible
gradient descent procedures, such as contrastive Hebbian learning in deterministic Boltzmann
Machines (Hinton, 1989Db; Peterson & Anderson, 1987), are more computationally intensive than
back-propagation but typically develop similar representations. 1n Chapter 5we present smulations
that attempt to replicate and extend the H& S results using a deterministic Boltzmann Machine and
aclosdaly related stochastic GRAIN network (McClelland, 1990; 1991).

2.7.4 Thetesting procedure

Perhaps the most serious limitation of H& S's work involves the use of proximity and gap criteria
in determining the response produced by the network under damage. These criteriawere intended
to approximate the requirements of a system that would actually generate responses based on
semantic activity. H& S provided evidence that the main qualitative effects obtained do not depend
on specific values for these criteria, but their adequacy as an approximation to an output system
was left unverified.

Idedlly, the response criteriawould be replaced by extending the network to produce an actual
phonological response. This response could then be compared directly with the oral responses
of patients. Unfortunately, preliminary attempts to implement such an output system produced a
high rate of phonological “blends’ (literal paraphasias) under damage to the input network, which
are amost never produced by deep dydexics. Chapter 3 illustrates this problem and presents
simulations that overcomeit, allowing explicit phonological responses to replace the criteriaH& S
used to evaluate the effects of lesions.



