Chapter 3

Response generation: M apping semantics
to phonology

Most data on deep dysexic reading comes from tasks in which the patient produces a verba
response to a visually presented word. Since the output of the H&S model to a letter string
consists of a pattern of semantic activity, some external procedureis needed to convert this pattern
into an explicit response so that it can be compared with the oral reading responses of deep
dydexics. The procedure H& S used compares the semantic activity produced by the network
with the correct semantics of all known words, selecting the closest-matching word as long as the
match is sufficiently good (the proximity criterion) and sufficiently better than any other match
(the gap criterion). The rationale for these criteriais that semantic activity that is too unfamiliar
or ambiguous would be unable to drive an output system effectively. In thisway H&S's use of
response criteria differs from approaches that simply take the best-matching known output as the
response regardless of the quality of thematch (e.g. Patterson et al., 1990; Sejnowski & Rosenberg,
1987).

However, satisfying the criteriaonly coarsely approximatesthe requirementsof an actual output
system. In particular, while it may be reasonable that semantics which failed the criteria could
not drive a response system, no evidence was given that semantics which satisfied the criteria
could succeed in generating a response. Also, the criteria are insensitive to the relative semantic
and phonological discriminability of words and so may be inadvertently biased towards producing
certain effects. In addition, by not implementing an output system H&S can consider only the
“input” and “central” forms of deep dydexia (Shallice & Warrington, 1980) and must assume that
the specific nature of the output system plays no role in these patients reading errors. Finally, a
best-match procedure is rather powerful and knowledge-intensive. At agenera level, if too much
of the difficulty of a problem is pushed off into the assumed mechanisms for generating the input
or interpreting the output, therole of the network itself becomes less interesting (Lachter & Bever,
1988; Pinker & Prince, 1988). This is especialy ironic as a best-match (categorization) process
is exactly the sort of operation at which connectionist networks are supposed to excel (Hinton &

a7



CHAPTER 3. RESPONSE GENERATION: MAPPING SEMANTICS TO PHONOLOGY 48

Anderson, 1981; Hopfield, 1982).

For all of the above reasons, it would be a significant advance over the use of response criteria
to extend the H& S model to derive an explicit phonological response on the basis of semantic
activity. It turns out that developing such a network involves overcoming difficulties which are
fairly general to connectionist networks and have arisen in a number of contexts (e.g. Nystrom
& McCléeland, 1991; Rumelhart & McClelland, 1986; Seidenberg & McClelland, 1989). In
the domain of acquired dyslexia, the problem is that the damaged network produces responses
which are inappropriate “blends’ of known responses. In this chapter, we illustrate this problem
and demonstrate a method for overcoming it, allowing us to develop networks that map from
orthography to phonology via semantics which produce very few blends under damage. The
effects of lesions to the “input” portion of these network that map from orthography to semantics
are compared with those using theresponse criteriato provideapost hoc evaluation of the generality
of the H& Sresults. Finally, we subject these networksto lesions of the “output™ portionsthat map
from semantics to phonology, and compare the resulting behavior with that produced by earlier
damage.

3.1 Phonological blends

The problems that occur in realizing an effective output system are best illustrated by describing
what happens when the most straightforward procedureisused. Specifically, we devel op an output
network analogous to the input network, but that takes as input the semantic representation of a
word and produces a phonol ogical representation of theword. This network isthen combined with
an input network that mapsfrom orthography to semantics (essentially identical to the H& Smodel),
resulting in a much larger network that maps from orthography to phonology via semantics.

3.1.1 Thetask

The input to the network consists of the 40 semantic representations that served as output in the
H& S model (described in Figure 2.6, p. 35). A phonological output representation was defined in
termsof 33 position-specific phoneme units (see Table 3.1). For each word, exactly oneunitin each
of three positionsis active, possibly including a unit in the third position that explicitly represents
the absence of a third phoneme. This representation allows the units that represent aternative
phonemes in the same position to competein a “winner-take-all” fashion.

3.1.2 Thenetwork

In order to minimize the number of independent assumptions in the complete network, the archi-
tecture of the output network was designed to be as similar as possible to that of the H& S input
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| Phonemes allowed in each position |
[bddy ghj kIl mnprtf]aar awe ewi ieoocaowu|[bdgknmpt - |

| Phonological representation of each word |

Indoor Objects Animals Body Parts Foods Outdoor Objects
BED /bed/ |BuG /bug/ BACK /bak/ BUN /bun/ BoOG /bog/
caN  [kan/ | cat lkat/ BONE /boan/ |HAM /ham DEwW /dy ew-/
cor /kot/ |cow [kow-/ |Gcur /gut/ Hock /[ hok/ DUNE /dy ewn/
cup  /kup/ | DoG /dog/ HIP [hi pl/ LiME /liem |Loc [/l og/
GEM [j em | HAWK [hawk/ | LEG /1 egl NUT  /nut/ Mub /mud/
MAT /mat/ | PG Ipi g/ LIP 1 pl/ POP /popl/ PARK [/ par k/
MUG /mug/ | RAM [ram PORE /[/paw-/ | PORK [pawk/ | rock [r ok/
PAN /pan/ | RAT /rat/ RIB [ri bl RUM  /rumn TOR [/t aw-/

Table 3.1: A phonological representation for wordsin termsof 33 position-specific phoneme units.
The letter(s) used to represent phonemes are not from a standard phonemic alphabet but rather are
intended to have more intuitive pronunciations. Also note that the definitions are based on British
rather than American pronunciations (e.g. HAWK and PORK rhyme).

network. The sememe (input) unitswere connected to agroup of 40 intermediate units, which were
in turn connected to the 33 phoneme units. A group of 60 clean-up units were interconnected with
the phoneme units. Only arandom fourth of the possible connectionsin each of these pathwayswas
included. In addition, the competing phoneme units for each position were fully interconnected.
The resulting network had atotal of 2410 connections.

3.1.3 Thetraining procedure

The output network was trained in exactly the same manner as the H& S network (described in
Section 2.6.3) with one difference. The network was run for eight iterations instead of seven to
alow information about the input to cycle through the phonologica clean-up loop and influence
the phoneme units an extratime. After about 1500 sweeps through the set of words, the network
successfully activated each phoneme unit to within 0.1 of its correct state for each word.

This output network was then combined with an input network, identical to the one H& S used,
that had been similarly trained to generate semantics from graphemic input. The sememe units of
the input network replaced the input units of the output network. The resulting network, shown
in Figure 3.1, had atotal of 6110 connections. This combined network was trained further by
fixing the weights of the input network and running the entire network for 14 iterations on each
input, allowing the output network to adapt. This additional training was required to ensure that
the output network operated correctly when receiving input from the input network (which need
not be correct until the sixth iteration) instead of being clamped throughout its operation. Fixing
the weights of the input network ensured that it continued to generate the correct semantics of each
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Figure 3.1: The architecture of a network that maps from orthography to phonology via semantics.

word. After an additional 34 sweeps through the training set, the combined network succeeded in
producing the correct phonemes of each word given its graphemes as input.

3.1.4 Theeffectsof lesions

After training, the complete network successfully derives the semantics and phonology of each
word when presented with its orthography. In order to model the reading behavior of deep dyslexic
patients, we simulate their neurological damage by removing a proportion of the connections
between groups of unitsin the network. This damage impairs the ability of the network to derive
the correct pronunciationsof words. Consequently, we need someway of interpreting the corrupted
output of the network as an explicit response. In addition, patientsfrequently produce no response
to aword, or respond “I don’'t know.” In order for the network to behave analogoudy, we also
need away of determining when the damaged network does not respond because the phonological
output isill-formed. It isimportant to point out that this type of criterion is quite different from
the H& S criteria, which ensure that an output is semantically familiar. The criterion we employ
does not rely on any knowledge of the particular words the network has been trained on—it only
considers the form of the output representation.

Given our phonological representation, a natural criterion is to require that one and only one
phoneme unit be active in each of the three positions in order to produce a response. Since units
have real-valued outputs which are rarely 0.0 or 1.0, we need a more precise definition of “active”
and “inactive.” Inaddition, wewould likethe definitionto generalizeto other types of binary output
representations. Accordingly, we use the following procedure to determineif and how the network
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responds. For each phoneme position, interpreting the outputs of units as independent probabilities
defines a probability distribution over possible binary output vectors for that position. If, for every
position, the most probable output vector has exactly one active phoneme and probability greater
than 0.5, the phonemes they each represent are produced as the response. More formaly, if y; is
the output of phoneme unit ; and

b — 0 ify; <0.5
71 1 otherwise

isits output converted to binary, then the network produces aresponse if for every position p,

H (1—|y; — b;]) > 0.5

tEP
and exactly one b; = 1. The response produced is the concatenation of the phonemes represented
by each : for which b, = 1. If the criterion is not satisfied for any position, the output activity
produced by the network is considered ill-formed and it fails to respond. This procedureis closely
related to the maximum-likelihood interpretation of the cross-entropy error function used to train
the network (Hinton, 1989a). Notice that there are a large number of legal responses other than
those the network is trained to produce. This expressiveness is one of the strengths of using a
distributed output representation but it is not without its problems, as we are about to see.

Each of the four main sets of connections in the input network was subjected to “lesions’ by
chosing at random and removing a proportion of the connections. A wide range of severities
were investigated: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, and 0.7. Twenty instances of each
location and severity of lesion were carried out, and correct, omission, and error responses were
accumulated according to the above procedure. Error responses were categorized in terms of their
relation to the input word. In addition to visual and semantic similarity (as defined by H& S and
described in Section 2.6.4), words can also be phonologically similar—that is, have overlapping
phonemes. Since visual and phonological smilarity typically co-occur, we considered an error to
be phonological only if it was more phonologically than visually similar (e.g. HAwk / h awk/ and
PORK / p awk/ using British pronunciations). In addition, some potential errors are appropriately
categorized as phonol ogical-and-semantic under this definition (e.g. DEw / dy ew -/ and DUNE
/ dy ewn/ ). It should be pointed out that errorscategorized asvisual or mixed visual-and-semantic
may actually result from phonological rather than visual influences—the current word set does not
contain enough words that dissociate visual and phonological similarity to investigate the relative
contribution of these two influences. We will take up the issue of distinguishing the influences of
visual and phonologica similarity on errorsin the General Discussion.

The nature of the output representation and criterion creates a new type of “blend” error
consisting of alitera paraphasia—a phonologically reasonable output that does not correspond to
a word known to the network. Non-blend errors were divided into visual, visual-and-semantic,
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Figure3.2: Error rates produced by lesionsto each main set of connectionsin theinput network. In
thisand following similar figures, phonological errorsare shown as an extrabar over visual errors,
and phonological-and-semantic errors are shown as an extra bar over visua-and-semantic errors.
“Chance” isthe distribution of error types if responses were chosen randomly from the word set.
Its absolute height is set arbitrarily—only the relative rates are informative. Results are averaged
over lesion densities which produced an overall correct response rate between approximately 20%
and 80%. The number of lesion severitiesincluded in the calculation of error ratesisindicated in
parentheses below the label for each lesion location.

semantic, phonological-and-semantic, phonological, and other errors. Figure 3.2 presents the
average rates of each of these error types for each lesion location. The first thing to notice is
that the rates of visual, mixed visual-and-semantic, and semantic errorsreplicate the H& S results.
However, the most striking aspect of the results is the high rate of blends. These errors stand in
sharp contrast to the behavior of deep dydexics, who very rarely produce nonword responses to
words (see Appendix 2 of Coltheart et al., 1987a). Table 3.2 presents some typical examples of
blend errors produced by the network under a variety of lesions. The semantic activity produced
by each input is characterized by its proximity (as defined in Section 2.6.4) with the semantics of
the two nearest known words. It isinformative to compare the phonology of these words with the
response of the network. Semantic activity that is near two words often produces a phonological
output that isamixture of thewords phonemes(e.g.RIB (+HIP) =/ r i p/ ), whichiswhy we call
these errors “blends.” Occasionally, new phonemes are introduced under the pressure of mixed
semantics (e.g. ROCK (+TOR) =/ r a k/ ). Interestingly, semanticsthat would easily satisfy H& S's
criteriafor a correct response may still be sufficiently inaccurate for the output system to produce
ablend (e.g. RAT (prox 0.98, gap 0.26) = / r a g/ ). On the other hand, semantics that are quite
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Nearest Semantics
Input Response Word | Best prox \ Next prox Lesion
RAT /r ag/ RAT RAT 098 poc 0.72 | G=I(0.1)

RocK /r ak/ ROCK ROcK 0.97* TOrR 0.83 | G=I(0.2
RUM /hop/ HOCK RUM  0.84* Hock 0.77 | G=I(0.5)
RIB lripl HIP HIP 0.92* RIB 0.83 | 1=5(0.2)
BOG /buk/ BUG BoG 060 RAM 057 | I=:5(0.25)

LIME /bawg/ BOG HAWK 063 RAT 059 | 1=:5(0.4)
GUT /but/ GUT GUT 0.63 PORE 0.62 | S=C(0.15)
BUN /bon/ BOG BUN 087 pPop 075 | s=C(0.3)

DUNE /kut/ CuUP CAT 061 PG 0.60 | s=C(0.5)
RAT /bag/ BOG RAT 0.94* BuGc 0.75 | c=5(0.1)
CAN /kun/ CAN CAN  0.96* mMuGc 0.80 | c=:5(0.15)
GEM /bom BOG GEM 0.70 BUN 0.67 | C=5(0.4)

Table 3.2: Examples of nonword “blend” errors produced by the network. “Nearest Word” is the
word whose phonological representation has the closest proximity to the phonological output of
the network. “Semantics’ lists the best and next-best words whose semantic representations have
the closest proximity p to the semantic activity produced by the network. Semantics that satisfy
the response criteria are marked with an asterisk.

far from any known word may still produce a response, albeit incorrect (e.g. BOG(prox 0.63) =
/ b uk/). Clearly the current output system behaves quite differently from what the H& S criteria
assume about a response system.

In order to better understand blends, we compared correct, error, and blend responses in terms
of the “goodness’ of their phonological output, defined as the minimum, over phoneme positions,
of the probability of the most likely output vector at that position (ignoring the 0.5 criterion for
an explicit response used previously). As Figure 3.3 shows, correct, error, and blend responses
differ significantly in the goodness of their phonological output (means, correct: 66.4, errors. 54.0,
blends: 47.1, ¢(9606) = 39.4, p < .001 for correct vs. errors, ¢(4025) = 16.6, p < .001 for
errors vs. blends). The figure reveals that increasing the minimum probability criterion to 0.6
would maximally discriminate between correct and blend responses while retaining a significant
proportion of error responses. Figure 3.4 shows the distributions of the minimum probability for
each error types, illustrating that increasing the criterion would increase the proportion of mixed
visual-and-semantic errors but otherwise leave the relative distribution of error types essentially
unchanged.! However, even with the higher response criterion a substantial number of blends till

1Thelack of adifference between the goodness of visua and semantic errors suggests that, according to the model,
the higher confidence that deep dysexicshaveintheir visual as compared with semantic errors (Patterson, 1978) does
not arise from differences at the phonological output level. Chapter 5 investigates whether thiseffect can be accounted
for by a“goodness’ measure applied to other parts of the network.
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Figure 3.3: Distribution of the minimum output probability at any position for correct, error, and
blend responses.
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Figure 3.4: Distribution of the minimum output probability at any position for visual, mixed
visual-and-semantic, semantic, and other errors.
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occur. Indeed, no value for the response criterion would eliminate blends and leave a substantial
number of correct responses.

3.1.5 An explanation for blends

In attempting to understand why blends occur, it isimportant to keep in mind that any pattern of
activity that the network settlesinto is an attractor that has devel oped in the course of training.? We
know that the network develops appropriate attractors for the 40 words since it produces correct
responses when presented with their semantics. However, in the course of training the network
develops other, spurious attractors. These attractors tend to be patterns that are combinations of
trained patterns because, when the phonology of aword istrained as aresponse, other phonological
patterns are also reinforced to the extent that they overlap with the trained pattern. The existence
of spurious attractors is a well-known property of associative networks (e.g. Hopfield, 1982)
and is one way of characterizing their limited storage capacity. The existence of these additional
attractorsis not a problem during normal operation because inputs that would settle into them are
never presented. In fact, they are not a problem for any test of generalization involving novel
input that is sufficiently similar to familiar input (i.e. near infeature space, or drawn from the same
distribution) so astofall into the same attractor basins. However, damageto theinput network often
generates semantic activity which is quite unlike any of the inputs on which the output network
has been trained. When this semantic activity consists of a mixture of the semantic features of
two words (e.g. RIB and HIP), rather than fall into the attractor for one or the other of these words
(either producing a correct response or a conventional error) the network occasionally settles into
a spurious attractor for a combination of the phonemes of the two words (e.g./ r i p/), resulting
inablend.

Viewed another way, blends are the result of the natural tendency of connectionist networks to
givesimilar outputsto similar inputs. Thisproperty isoneof the major attractionsof these networks
because it enables them to generalize appropriately in many tasks when presented with novel input
which issimilar to trained input. However, what constitutes an appropriate generalization depends
onthetask. Consider Seidenberg & McClelland’s(1989) model of word pronunciation, which maps
from the orthography to the phonology of monosyllabic words. The model pronounces non-words
by combining the common pronunciations of subsets of itsletters, producing a phonological output
that is different from that of any known word. Thus, in thistask a blend at the level of phonemes
is the correct response to a novel input, and lexicalization (i.e. producing the exact pronunciation
of a similar word) would be inappropriate. In fact, one of the problems with the Seidenberg
& McCleland model is that, in response to a non-word, the model occasionally produces an
inappropriate blend at the level of phonemic features. For example, when presented with the letter

2Actually, it would be more accurate to say that training has produced the potential for this pattern to be an attractor
given someinput.
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string vosT the network produces a blend of the vowel pronunciations of LOST and POST rather
than choosing one or the other (J. McClelland, personal communication).® Thus the problem of
blends occurs when a network is not sufficiently constrained at the appropriate level of structurein
the output: for the Seidenberg & McClelland task thisis the phonemic level; for our task it is the
lexical level (also see Rumehart & McClelland, 1986; Sejnowski & Rosenberg, 1987).

We must emphasize that, while some neurological patients with more general phonological
difficultiesproduceliteral paraphasiasinoral reading, the deep dyd exic patientswhom the damaged
model is intended to emulate do not, and hence their occurrence makes the current output system
unacceptable. To some readers it may seem strange that inappropriate behavior under damage
should makethenormal network unsatisfactory. After al, the network succeeds at thetask onwhich
it was trained—pronouncing all 40 words. However, our concern is not just with accomplishing
the task, but with the way that the network accomplishes the task—the nature of its representations
and processes. Most connectionist research tests the adequacy of a network beyond its specific
training by how well it generalizes to novel input. In asimilar way, damage to a network has the
effect of providing the remaining portions of the network with unfamiliar input. However, damage
can affect internal representations in ways that cannot be directly mimicked by manipulations of
theinput to the network. For thisreason, we suggest that the behavior of the network under damage
provides a more general, and for some purposes more informative, indication of the nature of the
representations and processes the network develops during training.

3.2 Eliminating blends

Oneway to eliminate blendswould be to present the network with all possible patterns of semantic
activity and explicitly train it to produce no response except to those patterns that correspond to
known words. Such a procedure is unacceptable for both empirical and computational reasons: it
involves presenting the network with far moreinformation than isavailableto readers, and it would
beintractableto trainthe network on alargefraction of the exponential number of possible semantic
patterns. A better approach isto present only known words, but alter the training procedurein such
away that the network develops much larger and stronger basins of attraction for these words.*
In this way, initial phonological patterns that are a mixture of the phonemes of two words will

3In general, the model often produces non-word pronunciations that differ from what normal subjects would
consider the correct pronunciation (Besner et d., 1990, but see Seidenberg & McCleland, 1990), suggestingthat it has
not sufficiently learned the appropriate regul arities both between and within the phonemes of word pronunciations.

4The relationship between the strength of an attractor and the size of its basin of attraction is somewhat subtle.
Given unlimited settling timein an undamaged network, attractors with larger basinsare stronger in the sense that they
pull more distant patternsto them. However, attractors with “deeper” basins (i.e. those representing activity patterns
that better satisfy the constraintsimposed by the input and weights) are more robust with limited settling time (asin our
networks) or under damage, and are in this sense stronger than attractors with larger, more shallow basins. Chapter 5
describes simulationsusing an aternative learning procedure in which networks devel op strong attractorsnaturally, so
that no specific training techniques are required to eliminate phonological blends under damage.
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be much more likely to fal into the attractor of one or the other of the words, rather than into
a spurious attractor for a blend. Developing strong attractors for known words is equivalent to
having a strong “lexical bias’ in the responses of the network.

3.2.1 Thenetwork architecture

In the original architecture with 25% connectivity density, the probability that any clean-up unit
would receive connections from three particular phonemes, or receive connections from two
and send to athird, is only 0.25° = 0.016. Hence it is unlikely that individual clean-up units
can effectively bind together the phonemes of each word—these units must work together to
appropriately constraint the phoneme units. To allow clean-up units to more directly constrain
combinations of phonemes, a dightly different architecture will be used from the previous one.
Rather than use 60 clean-up units which are each interconnected with a random fourth of the
phoneme units, only 20 clean-up units will be used, but these will be fully interconnected with all
of the phoneme units. The resulting network has only about 330 more connections. Notice that,
with only 20 clean-up units, the network cannot devote a single unit to each word. Nonetheless,
each of these units can have a more powerful influence on phonological activity than could less-
densely connected units. In addition, two versions of the phonological clean-up pathway will
be developed, with and without interconnections among phoneme units at the same position. A
comparison of these versions will alow us to evauate the importance of direct connections in
developing strong attractors. The pathway with intra-phoneme connections (I1P) has atotal of 1744
connections, while the other (nol P) has 1373 connections. The direct pathway from semantics to
phonology still has 40 intermediate units and 25% connectivity, for a total of 1034 connections.
These two pathways are depicted in Figure 3.5.

3.2.2 Thetraining procedure

Our training strategy will beto develop each output network incrementally. First, the phoneme and
clean-up units will be trained on noisy versions of the pronunciations of wordsin order to develop
strong attractors for these patterns, independent of any input from semantics. This phonological
clean-up pathway will then be fixed, and a direct pathway from semantics to phonology will
be trained, first separately, then with the phonological clean-up added, and finally with its input
generated by the input network.

This training procedure differsfrom the standard approach in two main ways:. the use of noisy
input and incremental training. 1n generating noisy input for an example, the activity of each input
unit will be moved from 0.0 or 1.0 towards 0.5 by the absolute value of a random number drawn
from a gaussian distribution with mean 0.0 and fixed standard deviation. The target states for
the output units are unchanged. Training on noisy input amounts to enforcing a particular kind
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Figure3.5: Thearchitecturesof the separately-trained partsof the output network: (&) the phonolog-
ical clean-up pathway (withintra-phonemeconnections), and (b) the direct semantics-to-phonol ogy
pathway.

of generalization: inputs which are near known patterns must give identical responses. Thus the
basin of attraction for each trained pattern must be at least large enough to include the patterns that
can be generated from it with the amount of noise used during training. An additional effect of
training on noisy input isthat thereis apressure for weightsto remain small so that the effect of the
noise on the rest of the network is minimized. This influence, much like explicit “weight decay”
(Hinton, 1989a), causes the knowledge of the task to be more evenly distributed across al of the
connections, making the network more uniformly robust to lesions (Farah & McClelland, 1991).
Incremental training has two main advantages. First, it reduces the computational demands of
training, since the time to train a connectionist network with back-propagation scales much worse
than linearly in the size of the network (Plaut & Hinton, 1987). Second, and more important for
our purposes, training parts of the network separately encourages each part to accomplish as much
of the task as possible, without relying on the strengths of the other parts.® Specifically, when
training the complete network, if the direct pathway can generate reasonable phonology from even
noisy semantics, there is less pressure on the phonological clean-up pathway to develop strong
attractors for the correct patterns. Training them separately forces them each to compensate for
the noise independently so that their combination is more robust. 1t should be mentioned that,

SA somewhat different use of incremental training is to enable separate parts of the network to independently
specialize on different aspects of a task (Waibel, 1989). In fact, some recently developed connectionist learning
procedures (Hampshire & Waibel, 1989; Jacobs et a ., 1991; Nowlan, 1990) enable amodul ar network to automatically
discover and carry out useful task decompositions, but the way that the outputs of separate modules can combine in
such systemsistypically restricted to selecting asingle “expert” or asimple linear combination.
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Figure 3.6: Examples of phoneme unit activities for the word coT corrupted by gaussian noise
with standard deviation 0.25.

although the approach of developing phonological attractorsindependent of semanticsis primarily
computationally motivated, it is not unreasonable on empirical grounds that attractors for word
pronunciations might develop as part of the process of learning to speak before these attractors
would become available in reading.

Both the IP and nol P versions of the clean-up pathway were trained to produce the correct
phonemes of each word during the last three of six iterations when presented with these phonemes
corrupted by gaussian noise with a standard deviation of 0.25. Figure 3.6 provides examples of
noisy inputs for the word coT. Because the phoneme units are both the input and output units for
these networks, the phonemes cannot be presented by clamping the states of these units. Rather,
these unitswere given an external input throughout the six iterations which, in the absence of other
inputs, would produce the specified corrupted activity level (i.e. o~(y) where y is the activity
and o isthe input-output function of the unit). This technique is known as “soft clamping.” The
direct pathway was trained to produce the phonemes of each word from the semantics of each
word, corrupted by gaussian noise with standard deviation 0.1. The input units were clamped in
the normal way. Each pathway was trained to activate the phoneme units to within 0.2 of their
correct values for a given input. After very extensive training they accomplished this in general,
but the amount of noise added to their inputs made it impossible to guarantee this performance
on any given trial. For this reason, training was halted when each pathway consistently met the
stopping criterion and ceased to improve.

Two complete output networks were then formed by combining each of the two clean-up
pathways with a separate copy of the direct pathway. The direct and clean-up pathways have
non-overlapping sets of connections, except for the biases of the phoneme units. For these, the
biases from the clean-up pathway were used. The output networkswith and without intra-phoneme
connections have 2745 and 2374 connections, respectively. The two output networks were then
given additional training on noisy input, during which only the weightsin the direct pathway were
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Figure 3.7: Overdl correct performance of the nolP and IP networks after removing various
proportions of connections in each of the four main setsin the input network.

allowed to change. In thisway the direct pathway adjusted its mapping to more effectively use the
fixed phonological clean-up in generating correct word pronunciations.

Finally, each output network was attached to separate copies of the input network to which the
original output system was attached, and given afinal tuning. In addition to the clean-up weights,
the weights of the input network were aso not allowed to change during this training to ensure
that it continued to derive the correct semanticsfor each word. Thisfinal tuning ensured that each
output network operated appropriately when its input was not clamped, but rather generated over
time by an actual input network. Each of these final stages of training each required less than 100
sweeps through the set of words.

3.2.3 Theeffects of lesions

Fixing the weights of the input network during final tuning means that the IP and nol P output
networks can be directly compared with the original output system, since all three output networks
receive the identical semantic input. To further aid the comparison, the nol P and | P networks were
subjected to the identical lesions as were applied to the origina network (using the same random
number generator seeds). In addition, the minimum phoneme response probability for the network
to produce a response was increased from 0.5 to 0.6, as discussed in Section 3.1.4.

Figure 3.7 shows the overall performance rates of the two networks. Notice that the two
patterns of correct responses across lesion locations are rather similar, but that the output network
with intra-phoneme connections (1P) is more robust—that is, produces higher correct rates for
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equivalent lesion locations and severities (paired ¢(35) = 12.9, p < .001).

Figure 3.8 shows the distributions of error types for the nol P and IP networks. Although these
dataare roughly balanced for overall correct performance, lesionsto the IP network produce much
higher error rates (as opposed to omissions) compared with the nol P network. For both networks,
the rate of blend errors is quite low at every lesion location, particularly for the network with
intra-phoneme connections (#'(1,54) = 9.71, p < .005). In addition, the IP network has higher
overall error rates (F'(1,54) = 35.2, p < .001) but also a higher proportion of “other” errors
(F(1,54) = 19.7, p < .001). These results all indicate that intra-phoneme connections contribute
significantly to the development of strong attractors for words, but that one consequence of having
such strong attractorsisthat words unrelated to the stimulus are more often produced as responses.
Intra-phoneme connections also appear to influence the distribution of error types. In particular,
the 1P network produces a higher proportion of visual/phonologica errors (£'(1,54) = 49.2,
p < .001). This makes sense if the intra-phoneme connections are producing strong phonological
attractors and many of the errorsin this network that are categorized as visual actually result from
phonological similarity. The fact that the rate of semantic errorsis relatively low suggests that the
damaged input network tends to produce mixtures of the semantics of words rather than the clean
semantics of asingle word, presumably due to the lack of sufficiently strong semantic attractors.

Oneissueiswhether the pattern of errorscould have arisen by chance—that is, if error responses
were related to stimuli only randomly. If the distribution of error types for agiven lesion location
occurred by chance, the ratios of their rates with the rate of “other” errors would approximate the
corresponding ratios for the “Chance” error distribution (see Figure 3.8). However, for both the
nol P and IP network, theratios for visual, mixed visual-and-semantic, and semantic errorsto other
errorsare anumber of timeslarger than those predicted by chance. For the nol P network, theratios
with other error are larger than the chance value by at |least afactor of 3.3 for visual errors, 11.7 for
visual-and-semantic errors, and 2.9 for semantic errors. For the nol P network, the ratios are larger
by at least afactor of 3.2 for visua errors, 6.6 for visual-and-semantic errors, and 2.0 for semantic
errors.

In addition, it is possible that mixed visual-and-semantic errors arise smply from the chance
rate of semantic similarity among visual errors, and the chance rate of visual similarity among
semantic errors, rather than reflecting an additional influence on errors. The expected rate M of
mixed errorscan be calculated from the observed rates V' and S of visua errorsand semantic errors
assuming only a chance rate of smilarity along the other dimension (Shallice & McGill, 1978):

s v
M<V S
- 1—5+ 1—v

where v and s are the proportions of stimulus-response pairs that are visually and semanticaly
similar, respectively. Infact, the actual rates of mixed visual-and-semantic errors are higher than
the expected rate for every lesion location using the nol P network but not the IP network. Thus,
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Figure 3.8: Error rates produced by lesions to each main set of connections in the input network of
the nol P and IP networks. Notice that the y-axes are scaled differently in the two graphs, and the
absolute heights of the “Chance” distributions are set arbitrarily.
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Figure 3.9: Overall correct performance using the response criteria, after removing various pro-
portions of connectionsin each of the four main setsin the input network.

while both networks replicate the occurrence of visual, mixed visua-and-semantic, and semantic
errorsfor lesions throughout the input network, the finding of higher than expected rates of mixed
errors appears to be less general. We will consider the conditions under which it occurs in more
detail in Chapter 4.

3.3 Comparison with response criteria

H& S approximated the behavior of a network for generating phonological output from semantics
by applying proximity and gap criteriato the semantics produced by the lesioned network. They
attempted to demonstrate that their results were not dependent on the exact values of these criteria,
but they provided no evidenceon their adequacy in approximating an actual response system. Given
our success at implementing networks that map from orthography to phonology via semantics, we
can now directly compare their behavior with those produced using the response criteria.

The identical set of lesions that were applied to the input network of the nol P and IP networks
were now applied to input network in isolation. Correct, omission, and error responses were
accumulated according to theresponsecriteria. Figure 3.9 showsthe percentage of wordsresponded
to correctly across the range of lesion densities of each of the sets of connections. In genera, the
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Figure 3.10: The relative proportion of error types produced by lesions to each main set of
connectionsin the input network.

pattern of correct performance using the response criteriais quite similar to that produced using
the output networks, particularly the one with intra-phoneme connections.

Figure 3.10 presents the rates of the various error types for each lesion location. The response
criteria produce a lower overal error rate than either the nol P or IP networks (#'(1,46) = 19.0,
p < .001vs. nolP, F(1,50) = 46.4, p < .001 vs. IP). Since these data are balanced for proportion
of correct responses, this suggests that semantic patterns which fail the response criteria are
frequently sufficient to produce (often incorrect) phonological output. The criteria also produce
a lower proportion of “other” errors than either network (£'(1,46) = 24.4, p < .001 vs. nolPR,
F(1,50) = 207.1, p < .001 vs. IP). Whilethe proportion of visual errorsislow for lesion locations
other than G = I, their proportion relative to “other” errors is greater for all lesion locations
than predicted by chance. The same applies to mixed visua-and-semantic and semantic errors,
replicating the original H& S results. Furthermore, the rate of visual-and-semantic errors for each
lesion location is much higher than that predicted from the rates of visual and semantic errors
assuming independence. Perhaps most interestingly, the response criteria cause a much higher
proportion of the errors to be semantically related to the stimulus (F'(1,46) = 44.2, p < .001
vs. nolP, F'(1,50) = 298.5, p < .001 vs. IP). As described in the previous section, the relatively
weak semantic influences in the networks, particularly the one with intra-phoneme connections,
suggests the attractors developed by the input network are insufficiently strong relative to those
in the output networks. The use of criteria that apply directly to semantics compensate for (and
therefore conceal) the limitations of the input network. Nonetheless, H& S's main results about the
qualitative mixture of error types for lesions throughout the network stand.
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Figure 3.11: Overal correct performance of the nolP and IP networks after removing various
proportions of connectionsin each of the four main setsin the output network. Theinitialsfor the
intermediate and clean-up units are subscripted with “p” (for “phonological”) to distinguish them
from the intermediate and clean-up units in the input network.

3.4 |Impairmentsin mapping semantics to phonology

Beyond revealing limitations of the original input network, implementing a phonological output
system ensures that behavior under damage is due entirely to properties of the complete network
and not to those of an interpretation procedure external to the network. Since the output system
operates on the same principles as the input system, the number of independent assumptions of
the entire system is minimized. In addition, a number of additional issues can be addressed in a
model that maps orthography to phonology via semantics that cannot be addressed in a network
that only derives semantics. In particular, it becomes possible to investigate impairments in
deriving phonology from intact semantics by lesioning connections in the phonological output
system. Many theories of deep dydexic reading (e.g. Caramazza & Hillis, 1990; Coltheart et al.,
1987a; Marshal & Newcombe, 1966) explain semantic errors entirely on the basis of this type of
damage—implementing acompl ete semantic route allows usto compare how the resulting behavior
compares with that produced by earlier damage.

Accordingly, we subjected each main set of connections in the output network of the nol P and
I P networks to 20 instances of lesions of a variety of severity, accumulating correct, omission, and
error responses. Figure 3.11 shows the overal correct performance for both networks. Two main
points are of interest. The first is not particularly surprising—intra-phoneme connections make
the IP net somewhat more robust to damage overall than the nol P network. The second is that
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intra-phoneme connections are particularly helpful for damage to connections from the clean-up
units to the phoneme units. Presumably the direct interactions among phoneme units compensate
to some extent for the lost (and erroneous) clean-up, and also make the network less dependent on
the connections in the clean-up pathway.

Figure 3.12 presents the distributions of rates of errors categorized in terms of their visual/pho-
nological and semantic similarity. Considering the network without intra-phoneme connections
(nol P) first, lesions to the “direct” pathway (S=Ip and Ip=-P) produce a mixture of visual/pho-
nological errors and semantic errors with relatively few blends, but also a rather high proportion
of “other” errors. Asthe lesions are subsequent to the operation of intact semantic clean-up, the
high proportion of visual/phonological errors almost certainly reflects phonological rather than
visual similarity.® However, most striking is the extremely low error rate for lesions within the
phonological clean-up pathway (P=-Cp and Cp=-P). Although many wordscan till beread correctly
with impaired clean-up, it is very rare that phonology will be cleaned up into the pronunciation of
another word. This result provides direct support for H& S's claim that attractors are critical for
producing error responses.

Lesionsof the network with intra-phoneme connections (I P) produce asimilar pattern of results.
Theadditional strength of the phonological attractorsinthisnetwork isevidenced by itsmuch higher
overall error rates, lower proportion of blends, and higher proportions of visual/phonological and
other errors.

It is interesting to compare these effects of lesions on the “output” side of the nolP and IP
networks with those produced by lesions on the “input” side (see Figure 3.8, p. 62). The error
patternsfor lesionsto the direct pathways are quite similar, although output lesions tend to produce
a somewhat stronger influence of semantic similarity and a higher proportion of “other” errors
than input lesions. Not surprisingly, output clean-up lesions produce far fewer errorsand far more
blends than input clean-up lesions. However, for the IP network the distributions of error types
other than blends for input and output lesions are fairly similar. Thus, lesions anywhere along the
direct pathway from orthography to phonol ogy via semantics produce qualitatively similar patterns
of errors. In this way, the implication from H& S's results, that a patient’s error pattern aone
providesinsufficient information for identifying lesion location, appearsto generalizeto lesions all
along the semantic route.

81t is till possiblethat errors produced by damage after semantics would show influences of visual similarity. The
output network receives input from semantics before its activity has settled correctly, and theinitial semantic patterns
are influenced by visual similarity (see Figure 2.10, p. 43, and the discussion in the following chapter). However,
this effect on errors due to damage in the output network is likely to be small relative to the effect of phonological
similarity.



CHAPTER 3. RESPONSE GENERATION: MAPPING SEMANTICS TO PHONOLOGY 67

2.0+

E ] [ visual/Phonological 7
8 [ visual/Phonological-and-Semantic
o — Il Semantic
& 154 [ Blend
% Other
a —
5 1.0 ]
]
0.54 %
0.0 o [ L
S=1 lp=>P P =P Chance
(6) P P (6) (6) o o (5)
nolP output network
10.04 [ visual/Phonological 7
E — [ visual/Phonological-and-Semantic
g - Bl Semantic
’g)_ sol M Blend
e ] L Other
IS
@
’é 6.0 77 ) —
0
4.0
2.0+
0.0 SN - _
S| lp=>P P =P Chance
) P P (6) (8 < < ]

IP output network

Figure 3.12: The relative proportion of error types produced by lesions to each main set of
connectionsin the output half of the nol P and IP networks.



CHAPTER 3. RESPONSE GENERATION: MAPPING SEMANTICS TO PHONOLOGY 68

3.5 Summary

We have shown how the procedure that H& S used to derive explicit responses from their network
can be replaced by extending the network to directly produce a phonological response on the basis
of semantics. Lesion experiments with such a network replicated the main finding of a mixture of
visual and semantic influencesin errorsfor avariety of lesionlocations. Lesons between semantics
and phonology aso produced qualitatively similar results, but with some interesting differences
relating to theimpact of phonological cleanup. The next chapter considersthe generaity of H&S's
results from another perspective—the importance of network architecture.



