Disparity and Luminance Preference are Correlated in Macaque V1, Matching Natural Scene Statistics.

Brian Potetz, Jason M. Samonds, Tai Sing Lee
The Statistics of Natural Images

- have helped us to understand how images are represented in the brain.
- More than images alone is necessary to understand inference.

Today’s Talk:

- Some findings from the statistics of natural 3D scenes
- We show how the macaque visual system exploits these trends to better infer depth from images
Acquiring a Co-Registered Range & Color Image Database

Riegl LMS-Z360

Color Image

Range Image
Da Vinci Correlation

• Correlation between log-intensity and log-distance: \(r = -0.23 \)

• Among bodies equal in size and distance, that which shines the more brightly seems to the eye nearer. - Leonardo da Vinci

• Later, psychologists verify this rigorously.

• The correlation is thought to arise from shadowing: concave surfaces and object interiors tend to be more shadowed than convex surfaces.

• This effect is especially obvious in:

Foliage:

Da Vinci Correlation

- Correlation between log-intensity and log-distance: \(r = -0.23 \)
- *Among bodies equal in size and distance, that which shines the more brightly seems to the eye nearer.* - Leonardo da Vinci
- Later, psychologists verify this rigorously.
- The correlation is thought to arise from shadowing: concave surfaces and object interiors tend to be more shadowed than convex surfaces.
- This effect is especially obvious in:

Piles of objects:

Da Vinci Correlation

• Correlation between log-intensity and log-distance: $r = -0.23$

• *Among bodies equal in size and distance, that which shines the more brightly seems to the eye nearer.* - Leonardo da Vinci

• Later, psychologists verify this rigorously.

• The correlation is thought to arise from shadowing: concave surfaces and object interiors tend to be more shadowed than convex surfaces.

• This effect is especially obvious in:

 Folds in fabric:
Da Vinci Correlation

- Correlation between log-intensity and log-distance: $r = -0.23$
- Among bodies equal in size and distance, that which shines the more brightly seems to the eye nearer. - Leonardo da Vinci
- Later, psychologists verify this rigorously.

- The correlation is thought to arise from shadowing: concave surfaces and object interiors tend to be more shadowed than convex surfaces.
- This effect is especially obvious in:

Folds in anything:
Da Vinci Correlation

• Correlation between log-intensity and log-distance: $r = -0.23$

• Among bodies equal in size and distance, that which shines the more brightly seems to the eye nearer. - Leonardo da Vinci

• Later, psychologists verify this rigorously.

• The correlation is thought to arise from shadowing: concave surfaces and object interiors tend to be more shadowed than convex surfaces.

• This effect is especially obvious in:

 Folds in anything:
Two Pixel Statistics

Probability that closer pixel is also brighter

Expected value of Δdepth given $\Delta\text{luminance}$

- Probability
 - Distance between pixels

- Δdepth (meters)
 - $\Delta\text{luminance}$
Single Cell Recording Experiment

Light Polarity

Dark Polarity

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 -0.8 -0.4 0.0 0.4 0.8
Horizontal Disparity (°)
Firing Rate (sps)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
Firing Rate (sps)

0.0 10.0 20.0 30.0 40.0 50.0
Contrast (%)

0.0 0.4 0.0 0.4 0.8
Near-to-Far
Horizontal Disparity (°)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
Firing Rate (sps)
Correlation between brightness and disparity preferences of V1 cells

48 V1 cells:

\[R = -0.39 \] (correlation value)
\[p = 0.01 \] (statistical significance)
Near cell that prefers white, responding to white & black discs

![Graph showing firing rate over time for black (B) and white (W) stimuli.](image-url)
Brightness Selectivity Is Delayed
Why this is important:

• Shows that the study of natural scene statistics can predict neural behavior in the brain.

• Shows that V1 is either directly involved with multiple-cue depth inference, or receives feedback from areas that are.

• Opens up a new avenue for exploring how the visual system performs inference under ambiguity.
Thank You!

Supported by NIMH IBSC MH64445 and NSF CISE IIS-0413211 grants
Rural vs Urban Images

Probability that closer pixel is also brighter

Expected value of Δdepth given Δluminance

Distance between pixels

Δdepth (meters)

Δluminance
Two Pixel Statistics

Probability that closer pixel is also brighter

Expected value of $\Delta \log(\text{depth})$ given $\Delta \log(\text{luminance})$

Distance between pixels

$\Delta \log_2(\text{luminance})$
Other Brightness Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>R (Correlation)</th>
<th>p (Significance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{W-B}{W+B})</td>
<td>-0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>(\frac{(W-G)-(B-G)}{</td>
<td>W-G</td>
<td>+</td>
</tr>
<tr>
<td>(\frac{\sum W - \sum B}{\sum W + \sum B})</td>
<td>-0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>(\frac{W-B}{</td>
<td>W-B</td>
<td>+2\sqrt{\frac{SSE}{n-m}}})</td>
</tr>
<tr>
<td>Center of Mass</td>
<td>-0.28</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Example Luminance Stimulus
Example Luminance Stimulus
Example Luminance Stimulus