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Recent advances in the technology of multiunit recordings make it pos-
sible to test Hebb’s hypothesis that neurons do not function in isolation
but are organized in assemblies. This has created the need for statisti-
cal approaches to detecting the presence of spatiotemporal patterns of
more than two neurons in neuron spike train data. We mention three
possible measures for the presence of higher -order patterns of neural
activation—coef �cients of log-linear models, connected cumulants, and
redundancies—and present arguments in favor of the coef�cients of log-
linear models. We present test statistics for detecting the presence of
higher -order interactions in spike train data by parameterizing these in-
teractions in terms of coef�cients of log-linear models. We also present a
Bayesian approach for inferring the existence or absence of interactions
and estimating their strength. The two methods, the frequentist and the
Bayesian one, are shown to be consistent in the sense that interactions
that are detected by either method also tend to be detected by the other. A
heuristic for the analysis of temporal patterns is also proposed. Finally, a
Bayesian test is presented that establishes stochastic differences between
recorded segments of data. The methods are applied to experimental data
and synthetic data drawn from our statistical models. Our experimen-
tal data are drawn from multiunit recordings in the prefrontal cortex of
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behaving monkeys, the somatosensory cortex of anesthetized rats, and
multiunit recordings in the visual cortex of behaving monkeys.

1 Introduction

Hebb (1949) conjectured that information processing in the brain is achieved
through the collective action of groups of neurons, which he called cell as-
semblies. One of the assumptions on which he based his argument was
his other famous hypothesis: that excitatory synapses are strengthened
when the involved neurons are frequently active in synchrony. Evidence
in support of this so-called Hebbian learning hypothesis has been pro-
vided by a variety of experimental �ndings over the last three decades
(e.g., Rauschecker, 1991). Evidence for collective phenomena con�rming
the cell assembly hypothesis has only recently begun to emerge as a re-
sult of the progress achieved by multiunit recording technology. Hebb’s
followers were left with a twofold challenge: to provide an unambiguous
de�nition of cell assemblies and to conceive and carry out the experiments
that demonstrate their existence.

Cell assemblies have been de�ned in terms of both anatomy and shared
function. One persistent approach characterizes the cell assembly by near
simultaneity or some other speci�c timing relation in the �ring of the in-
volved neurons. If two neurons converge on a third one, their synaptic
in�uence is much larger for near-coincident �ring, due to the spatiotem-
poral summation in the dendrite (Abeles, 1991; Abeles, Bergman, Margalit
& Vaadia, 1993). Thus syn-�ring and other speci�c temporal relationships
between active neurons have been posited as mechanisms by which the
brain codes information (Gray, König, Engel, & Singer, 1989; Singer, 1994;
Abeles & Gerstein, 1988; Abeles, Prut, Bergman, & Vaadia, 1994; Prut et al.,
1998).

In pursuit of experimental evidence for cell assembly activity in the brain,
physiologists thus seek to analyze the activation of many separate neurons
simultaneously, preferably in awake, behaving animals. These multineuron
activities are then inspected for possible signs of interactions among neu-
rons. Results of such analyses may be used to draw inferences regarding
the processes taking place within and between hypothetical cell assem-
blies. The conventional approach is based on the use of cross-correlation
techniques, usually applied to the activity of pairs (sometimes triplets)
of neurons recorded under appropriate stimulus conditions. The result
is a time-averaged measure of the temporal correlation among the spik-
ing events of the observed neurons under those conditions. Application
of these measures has revealed interesting instances of time- and context-
dependent synchronization dynamics in different cortical areas. For inter-
actions among more than two neurons, Gerstein, Perkel, and Dayhoff (1985)
devised the so-called gravity method. Their method views neurons as par-
ticles that attract each other and measures simultaneously the attractions
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between all possible pairs of neurons in the set. The method, although it
allows one to look at several neurons globally, does not account for non-
linear synapses or for synchronization of more than two neurons. Recent
investigations have focused on the detection of individual instances of syn-
chronized activity called unitary events (Grün, 1996; Grün, Aertsen, Vaadia,
& Riehle, 1995; Riehle, Grün, Diesman, & Aertsen, 1997) between groups of
two and more neurons. Of special interest are patterns involving three or
more neurons, which cannot be described in terms of pair correlations. Such
patterns are genuine higher order phenomena. The method developed by
Prut et al. (1998) for detecting precise �ring sequences of up to three units
adopts this view, subtracting from three-way correlations all possible pair
correlations. The models reported in this article were developed for the
purpose of describing and detecting correlations of any order in a uni�ed
way.

In the data we analyze, the spiking events (in the 1 ms range) are encoded
as sequences of 0s and 1s, and the activity of the whole group is described as
a sequence of binary con�gurations. This article presents a family of statisti-
cal models for analyzing such data. In our models, the parameters represent
spatiotemporal �ring patterns. We generalize the spatial correlation mod-
els developed by Martignon, von Hasseln, Grün, Aertsen, and Palm (1995),
to include a temporal dimension. We develop statistical tests for detecting
the presence of a genuine order-n correlation and distinguishing it from an
artifact that can be explained by lower-order interactions. The tests com-
pare observed �ring frequencies on the involved neurons with frequencies
predicted by a distribution that maximizes entropy among all distributions
consistent with observed information on synchrony of lower order. We also
present a Bayesian approach in which hypotheses about interactions on a
large number of subsets can be compared simultaneously. Furthermore, we
introduce a Bayesian test to establish essential differences (i.e., differences
that are not to be attributed to noise) between different phases of recording
(e.g., prestimulus phase versus stimulus phase).

We compare our log-linear models with two other candidate approaches
to measuring the presence of higher-order correlations. One of these candi-
dates, drawn from statistical physics, is the connected cumulant. The other,
drawn from information theory, is mutual information or redundancy. We
argue that the coef�cients of log-linear models, or effects, provide a more
natural measure of higher-order phenomena than either of these alternate
approaches.

We present the results of analyzing synthetic data generated from our
models to test the performance of our statistical methods on data of known
distribution. Results are presented from applying the models to multiu-
nit recordings obtained by Vaadia from the frontal cortex of monkeys, to
multiunit recordings obtained by Diamond from the somatosensory cortex
of rats, and to multiunit recordings obtained by Freiwald from the visual
cortex of behaving monkeys.
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2 Measures for Higher -Order Synchronization

2.1 Effects of Log-Linear Models. The term spatial correlation has been
used to denote synchronous �ring of a group of neurons, while the term tem-
poral correlation has been used to indicate chains of �ring events at speci�c
temporal intervals. Terms like couple and triplet have been used to denote
spatiotemporal patterns of two or three neurons (Abeles et al., 1993; Grün,
1996) �ring simultaneously or in sequence. Establishing the presence of
such patterns is not straightforward. For example, three neurons may �re
together more often than expected by chance1 without exhibiting an au-
thentic third-order interaction. For example, if a neuron participates in two
couples, such that each pair �res together more often than by chance, then
the three involved neurons will �re together more often than the indepen-
dence hypothesis would predict. This is not, however, a genuine third-order
phenomenon. Authentic triplets and, in general, authentic nth-order corre-
lations must therefore be distinguished from correlations that can be ex-
plained in terms of lower-order correlations. We introduce log-linear mod-
els for representing �ring frequencies on a set of neurons and show that
nonzero coef�cients or effects of these log-linear models are a natural mea-
sure for synchronous �ring. We argue that the effects of log-linear models
are superior to other candidate approaches drawn from statistical physics
and information theory. In this section we consider only models for syn-
chronous �ring. Generalization to temporal and spatiotemporal effects is
treated in section 3.

Consider a set of n neurons. Each neuron is modeled as a binary unit
that can take on one of two states: 1 (�ring) or 0 (silent). The state of the n
units is represented by the vector x D (x1, . . . , xn), where each xi can take
on the value zero or one. There are 2n possible states for the n neurons. If
all neurons �re independent of each other, the probability of con�guration
x is given by

p(x1, . . . , xn) D p(x1) ¢ ¢ ¢ p(xn). (2.1)

Methods for detecting correlations look for departures from this model of
independence. Following a well-established tradition, we model neurons as
Bernoulli random variables. Two neurons are said to be correlated if they do
not �re independently. A correlation between two binary neurons, labeled
1 and 2, is expressed mathematically as

p(x1, x2) 6D p(x1)p(x2). (2.2)

Extending this idea to larger sets of neurons introduces complications. It
is not suf�cient simply to compare the joint probability p(x1, x2, x3) with

1 That is, more often than predicted by the hypothesis of independence.



Neural Coding 2625

Figure 1: Overlapping doublets and authentic triplet.

the product p(x1)p(x2)p(x3) and declare the existence of a triplet when the
two are not equal. This would confuse authentic triplets with overlapping
doublets or combinations of doublets and singlets. Thus, neurons 1, 2, and
3 may �re together more often than the independence model, equation 2.1,
would predict because neurons 1 and 2, and neurons 2 and 3, are each
involved in a binary interaction (see Figure 1).

Equation 2.2 expresses in mathematical form the idea that two neurons
are correlated if the joint probability distribution for their states cannot
be determined from the two individual probability distributions p(x1) and
p(x2). Now consider a set of three neurons. The probability distributions for
the three pair con�gurations are p(x1, x2), p(x2, x3), and p(x1, x3).2 A gen-
uine third-order interaction among the three neurons would occur if it were
impossible to determine the joint distribution for the three-neuron con�gu-
ration using only information on these pair distributions. A canonical way
to construct a joint distribution on three neurons from the pair distribu-
tions is to maximize entropy subject to the constraint that the two-neuron
marginal distributions are given by p(x,x2), p(x2, x3), and p(x1, x3). This is
the distribution that adds the least information beyond the information con-
tained in the pair distributions. It is well known3 that the joint distribution
thus obtained can be written as

p(x1,x2,x3) D expfh0 C h1x1 C h2x2 C h3x3 C h12x1x2 C h13x1x3 C h23x2x3g, (2.3)

where thehs are real-valued parameters andh0 is determined from the other
hs and the constraint that the probabilities of all con�gurations sum to 1. In
this model, there is a parameter for each individual neuron and each pair
of neurons. Each of these parameters, which in the statistics literature are
called effects, can be thought of as measuring the tendency to be active of
the neuron(s) with which it is associated. Increasing the value of hi without

2 Note that these pairwise distributions also determine the single-neuron �ring fre-
quencies p(x1 ), p(x2), and p(x3), which can be expressed as their linear combinations.

3 See, for example, Good (1963) or Bishop, Fienberg, and Holland (1975).
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changing any other hs increases the probability that neuron i is in its “on”
state. Increasing the value ofhij without changing any otherhs increases the
probability of simultaneous �ring of neurons i and j. It is instructive to note
that there is a second-order correlation between neurons i and j in the sense
of equation 2.2 precisely when hij 6D 0.

Not all joint probability distributions on three neurons can be written in
the form of equation 2.3. A general joint distribution for three neurons can
be expressed by including one additional parameter:4

p(x1, x2, x3) D expfh0 C h1x1 C h2x2 C h3x3

C h12x1x2 C h13x1x3 C h23x2x3 C h123x1x2x3g. (2.4)

Holding the other parameters �xed and increasing the value of h123 in-
creases the probability that all three neurons �re simultaneously. Equa-
tion 2.3 corresponds to the special case of equation 2.4 in whichh123 is equal
to zero, just as independence corresponds to the special case of equation 2.3
in which all second-order terms hij are equal to zero. It seems natural, then,
to de�ne a genuine order-3 correlation as a joint probability distribution
that cannot be expressed in the form of equation 2.3 because h123 6D 0. As
will be shown in section 3, this idea can be extended naturally to larger sets
of neurons and temporal patterns.

Parameterizations of the general form equations 2.3 and 2.4 are called log-
linear models because the logarithm of the probabilities can be expressed as
a linear sum of functions of the con�guration values. They correspond to the
coef�cients of the energy expansions of generalized Boltzmann machines
in statistical mechanics.The parameters of the log-linear model are called
effects. A joint probability distribution on n neurons is represented as a
log-linear model in which effects are associated with subsets of neurons.
A genuine nth-order correlation on a set A of n neurons is de�ned as the
presence of a nonzero effect hA associate d with the set A in the log-linear
model representing the joint distribution of con�guration frequencies.

The information-theoretic justi�cation for our proposed de�nition of
higher-order interaction is theoretically satisfying. But if the idea is to have
practical utility, we require a method for measuring the presence of genuine
correlations and distinguishing them from noise due to �nite sample size.
Fortunately, there is a large statistical literature on estimation and hypoth-
esis testing using log-linear models. In the following sections, we discuss
ways to detect and quantify the presence of higher-order correlations. We
also apply the methods to real and synthetic data.

4 This can be seen by noting that log p(x1, x2 , x3) can be expressed as a set of linear
equations relating the con�guration probabilities to the hs. These equations give a unique
set of hs for any given probability distribution.
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2.2 Other Candidate Measures of Higher -Order Interactions. Before
closing this section, we mention two further approaches to measuring the
existence of higher-order correlations in a set of binary neurons. Connected
cumulants are measures of higher order correlations used in statistical me-
chanics as well as in nonlinear system theory. They were introduced by Aert-
sen (1992) as a candidate parameter for spatiotemporal patterns of neural
activation. Their introduction was motivated by their role in the Wiener-
Volterra theory of nonlinear systems.

For three neurons, for instance, the connected cumulant is de�ned by

C123 D hx1x2x3i ¡ hx1i hx2x3i ¡ hx2i hx1x3i ¡ hx3i hx1x2i

C 2 hx1i hx2i hx3i . (2.5)

In these expressions, the symbol h¢i stands for expectation. Thus, the symbol
hxii denotes the expected �ring frequency of the ith neuron. This formula
can easily be generalized to any number of neurons.

Another approach to measuring higher-order correlations uses the con-
cept of mutual information drawn from information theory. This approach
was originally suggested by Grün (1996). For three neurons, the parameter
de�ned by

I3(x1, x2, x3) D H(x1) C H(x2) C H(x3) ¡ H(x1, x2) ¡ H(x1, x3)

¡ H(x2, x3) C H(x1, x2, x3), (2.6)

where H denotes entropy (see Cover & Thomas, 1991, for details), is a mea-
sure of higher-order correlation. This formula can easily be generalized to
any number n of neurons, for n > 1.

De�ning second-order interactions as either C12 D hx1, x2i ¡ hx1ihx2i
or I2 D H(x1, x2) ¡ H(x1) ¡ H(x2) is equivalent to the above de�nition as
a nonzero effect of the appropriate log-linear model. However, extending
these measures to correlations of order 3 or higher does not yield equivalent
characterizations of the set of distributions exhibiting no interaction of the
given order. A detailed discussion of both measures as well as a presentation
of statistical methods for their detection is given in Deco, Martignon, and
Laskey (1998).

In this article we argue that an interaction among a set of neurons should
be modeled as a nonzero effect in a log-linear model for the joint distribu-
tion of spatiotemporal con�gurations of the involved neurons. There are
several reasons for this choice. First, log-linear models are natural exten-
sions of the Boltzmann machine. As we already mentioned, de�ning inter-
actions as nonzero effects of log-linear models has a compelling information-
theoretic justi�cation. Second, methods exist for estimating effects and test-
ing hypotheses about the degree of interaction using data from multiunit
recordings. Third, the models can be used to examine behavioral corre-
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lates of neuronal activation patterns by estimating, comparing, and test-
ing hypotheses about similarities and differences in log-linear models for
data segments recorded at different times under differing environmental
stimuli.

3 A Mathematical Model for Spatiotemporal Firing Patterns

The previous section described several approaches to generalizing the con-
cept of pairwise correlations to larger numbers of neurons. Parameters of
log-linear models were proposed as a measure of higher-order correlations
and justi�ed by their ability to distinguish true higher-order correlations
from apparent correlations that can be explained in terms of lower-order
correlations. For clarity of exposition, the discussion was limited to syn-
chronous �ring on groups of two and three neurons. In this section, we
generalize the approach to arbitrary numbers of neurons and temporal cor-
relations.

Consider a set L of n binary neurons and denote by p the probability
distribution on sequences of binary con�gurations of L . Assume that the
sequence of con�gurations xt D (x1t, . . . , xnt) of n neurons forms a Markov
chain of order r. Let d be the time step, and denote the conditional distribu-
tion for xt given previous con�gurations by p(xt | x(t¡d), x((t¡2d), . . . , x(t¡rd)).
We assume that all transition probabilities are strictly positive and expand
the logarithm of the conditional distribution as

p(xt | x(t¡d), x(t¡2d), . . . , x(t¡rd)) D exp

(
h0 C

X

A2J

hAXA

)
. (3.1)

In this expression, each A is a subset of pairs of nonnegative indices (i, m),
where at least one value of m is equal to zero. The set A represents a possible
spatiotemporal pattern. The index i indicates a neuron, and the index m
indicates a time delay in units of d. The variable xA D

Q
1· j·k x(ij ,mj ) is equal

to 1 in the event that all neurons represented by indices in A are active at
the indicated time delays, and is equal to zero otherwise. For example, if
there are 10 instances in which neuron 4 �res 30 ms after neuron 2, and if
the time step is 10 ms, then xA D 1 for A D f(2, 0), (4, 3)g. The set J for
which hA 6D 0 is called the interaction structure for the distribution p. The
parameterhA is called the interaction strength for the interaction on subset A.
Clearly,hA D 0 means A /2 J and is taken to indicate absence of an order-|A |
interaction among neurons in A. We denote the structure-speci�c vector of
nonzero interaction strengths by h J .

De�nition 1. We say that neurons fi1, i2, . . . , ikg exhibit a spatiotemporal pat-
tern if there is a set of time intervals m1d, m2d, . . . , mkd with r ¸ mi ¸ 0 and at
least one mi D 0, such that hA 6D 0 in (1), where A D f(i1, m1), . . . , (ik, mk)g.
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Figure 2: Nonzero h123 due to common hidden inputs H and/or K.

De�nition 2. A subset fi1, i2, . . . , ikg of neurons exhibits a synchronization or
spatial correlation if hA 6D 0 for A D f(i1, 0), . . . , (ik , 0)g.

In the case of absence of any temporal dependencies, the con�gurations
at different times are independent, and we drop the time index:

p(x) D exp

(
hw C S

A2J

hAXA

)
(3.2)

where each A is a nonempty subset of L and xA D
Q

i2A xi.
Of course, we expect temporal correlation of some kind to be present,

one such example being the refractory period after �ring. Nevertheless,
equation 3.2 may be adequate in cases of weak temporal correlation and
generalizes naturally to the situation of temporal correlation. Increasing
the bin width can result in temporal correlations of short time intervals
manifesting as synchronization.

It is clear that equations 2.3 and 2.4 are special cases of equation 3.2 for the
case of three neurons. The interaction structure J for equation 2.4 consists of
all nonempty subsets of neurons. For equation 2.3, the interaction structure
consists of all single-neuron and two-neuron subsets.

Although the models, equations 3.1 and 3.2, are statistical and not physi-
ological, one would naturally expect synaptic connection between two neu-
rons to manifest as nonzerohA for the set A composed of these neurons with
the appropriate delays. One example leading to nonzero hA in equation 3.2
would be simultaneous activation of the neurons in A due to common input
(see Figure 2a). Another example is simultaneous activation of overlapping
subsets covering A, each by a different unobserved input (see Figure 2b).
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An attractive feature of our models is that the two cases of Figure 2 can
be distinguished when the neurons in A exhibit no true lower-order inter-
actions. Suppose a model such as depicted in Figure 2 is constructed for
all neurons, both observed and unobserved. The model of Figure 2a corre-
sponds to a log-linear expansion with only individual neuron coef�cients
and the fourth-order effect hH123 , where H is a hidden unit, as in Figure 2.
The model of Figure 2b contains individual neuron effects and the triplet
effects hH12 and hK23 , where K is another hidden unit different from H.
When the probabilities are summed over the unobserved neurons to obtain
the distribution over the three observed neurons, both models will contain
third-order coef�cients h123 . However, the model of Figure 2a will contain
no nonzero second-order coef�cients, and the model of Figure 2b will con-
tain nonzero coef�cients of all orders up to and including order 3. Thus
log-linear models have the desirable feature that the existence of a nonzero
hA coupled withhB D 0 for B ½ A indicates a correlation among the neurons
in A possibly involving unobserved neurons. On the other hand, a nonzero
hA together with hB 6D 0 for B ½ A may indicate an interaction that can
be explained away by interactions involving subsets of A and unobserved
neurons.

4 Estimation and Testing Based on Maximum Likelihood Theory

4.1 Construction of a Test Statistic for the Presence of Interactions.
We are interested in the problem of detecting nonzero hA for subsets A of
neurons in a set of n neurons whose �ring frequencies are governed by
model 3.1 or 3.2. That is, for a given set A, we are interested in testing which
of the two hypotheses,

H0: hA D 0

H1: hA 6D 0

is the case. We wish to declare the existence of a higher-order interaction
only when the observed correlations are unlikely to be a chance result of a
model in which hA D 0.

We apply the theory of statistical hypothesis testing (Neyman & Pearson,
1928) to construct a test statistic whose distribution is known under the null
hypothesis. Then we choose a critical range of values of the test statistic that
are highly unlikely under the null hypothesis but are likely to be observed
under plausible deviations from the null hypothesis. If the observed value
of the test statistic falls into the critical range, we reject the null hypothesis
in favor of the alternative hypothesis.

Consider the problem of testing hA 6D 0 against hA D 0 in the log-linear
model, equation 3.2 for synchronous �ring in observations with no tem-
poral correlation. A reasonable test statistic is the likelihood ratio statistic,
denoted by G2. To construct the G2 test statistic, we �rst obtain the maximum
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likelihood estimate of the parameters hJ under the null and alternative hy-
potheses. We construct our test statistic by conditioning on the silence of
neurons outside A. We compute estimates p1(x) and p0(x) for the vector
of con�guration probabilities under the alternative (H1) and null (H0) hy-
potheses, respectively. Using these probability estimates, we compute the
likelihood ratio test statistic,

G2 D 2N
X

x
p1(x)

¡
ln p1(x) ¡ ln p0(x)

¢
, (4.1)

where N is the sample size for the test (the number of con�gurations of 0s
and 1s in which neurons outside of A are silent). As the sample size for the
test tends to in�nity, the distribution for this test statistic under H0 tends to
a chi-squared distribution, where the number of degrees of freedom is the
difference in the number of parameters in the two models being compared.
In this case, the larger model has a single extra parameter, so the reference
distribution has one degree of freedom. The interpretation of test results
is as follows. If the value of the test statistic is highly unusual for a chi-
squared distribution with one degree of freedom, this casts doubt on the
null hypothesis H0 and is therefore regarded as evidence that the additional
parameter hA is nonzero.

4.2 A Caveat on Statistical Power. An explicit expression forhA in terms
of the probabilities of con�gurations is given by

hA D
X

B½A

(¡1) |A¡B| ln p(ÂB) (4.2)

where ÂB represents the con�guration of 1s on all elements of B and 0s
elsewhere.Thus,hA is fullydeterminedby the probabilities of con�gurations
that have 0s outside A. Conditioning on the silence of neurons outside A
and thus discarding observations for which neurons outside A are active
simpli�es estimation of hA and construction of a test statistic for H1 against
H0. The distribution of the test statistic does not depend on whether there
are nonzero coef�cients associated with sets containing neurons outside A.

Ignoring all observations for which neurons outside A are �ring, as the
above test does, reduces statistical power as compared with a test based
on all the observations.5 This is not a major dif�culty when overall �ring
frequencies are low and the number of neurons is small, but can make the
approach infeasible for large numbers of neurons. An alternative approach
would be to construct a test using all the data. To construct such a test,

5 A statistical hypothesis test has a high power if the probability of correctly rejecting a
false null hypothesis is high and high signi�cance if the probability of incorrectly rejecting
a true null hypothesis is low.
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it is necessary to estimate parameters for an interaction structure over all
neurons, which allows for hB 6D 0 for all sets B for which it is reasonable to
expect that interactions may be present (typically, all subsets of neurons less
than or equal to a given order). Unfortunately, neither of these approaches
scales to large numbers of neurons. As the number of neurons grows, the
probability that some neuron outside the set A is �ring also grows, increas-
ing the fraction of the data that needs to be discarded for the �rst approach.
The second approach suffers from the problem that the number of simul-
taneously estimated parameters grows as an order }A} polynomial in the
number of neurons, resulting in unstable parameter estimates when the
number of neurons is large.

In contrast, as we will argue, the natural Occam’s razor (Smith and
Spiegelhalter, 1980) associated with the Bayesian mixture model that will
be introduced in section 5 permits that method to be applied usefully even
with very large sets of neurons. Although we do regard statistical signif-
icance of a coef�cient as a useful indicator of existence of correlation of
the associated neurons, the Bayesian approach described below makes use
of all the data and is well suited to problems involving large numbers of
parameters.

4.3 Estimating Parameters Under Null and Alternative Hypotheses.
The maximum likelihood estimate of h J under the alternative hypothesis
H1: J D 2A is easily obtained in closed form by setting the frequency
distribution p1(x) over con�gurations of neurons in the set A to the sample
frequencies and solving for h2A . The maximum likelihood estimate for h J

under the null hypothesis H0: J D 2A ¡ A may be obtained by a standard
likelihood maximization procedure such as iterative proportional �tting
(IPF) (see, for instance, Bishop et al., 1975). As an alternative to IPF, we have
developed a simple one-dimensional optimization procedure, described in
the appendix, which we call the constrained perturbation procedure (CPP).
We have found computation time for CPP to be much faster than for IPF.
Once the estimate h J has been obtained, one can solve for the estimated
con�guration probabilities p0(x) for the null hypothesis.

5 Statistical Tests Based on Bayesian Model Comparison

5.1 Detecting Synchronizations Using the Bayesian Approach. An al-
ternative approach to the Neyman and Pearson hypothesis testing described
in section 4 is Bayesian estimation. Standard frequentist methods may run
into dif�culties on high-dimensional problems such as the one treated in this
article. In contrast, high-dimensional problems pose no essential dif�culty
in the Bayesian approach as long as prior distributions are chosen appro-
priately. For this reason, and also because of advances in computational
methods, the Bayesian approach has been gaining in favor as a theoretically
sound and practical way to treat high-dimensional problems.
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In this section we focus on the problem of determining synchronization
structure in the absence of temporal correlation, as represented by equa-
tion 3.2. A heuristic treatment of temporal correlations is discussed in sec-
tion 5.3, and a full treatment of spatiotemporal interactions will appear in a
future article.

To apply the Bayesian approach, we assign a prior probability to each
interaction structure J and a continuous prior distribution for the nonzero
parameters h J . A sample of observations from multiunit recordings is used
to update the prior distribution and obtain a posterior distribution. The
posterior distribution also assigns a probability to each interaction struc-
ture and a continuous probability distribution to the nonzero hA given the
interaction structure.

The prior distribution can be thought of as a bias that keeps the model
from jumping to inappropriately strong conclusions. In our problem, it is
natural to assign a prior distribution that introduces a bias toward models
in which most hA are zero. We use a prior distribution in which all hA are
independent of each other and are probably equal to zero. We then assume
a continuous probability density for hA conditional on its being nonzero, in
which values very different from zero are less likely than values near zero.
Because of the bias introduced by the prior distribution, a large posterior
probability that hA 6D 0 indicates reasonably strong observational evidence
for a nonzero parameter. A formal speci�cation for the prior distribution is
given in the appendix.

We estimate posterior distributions for both structure and parameters in
a uni�ed Bayesian framework. A Markov chain Monte Carlo model compo-
sition algorithm (MC3) is used to search over structures (Madigan & York,
1993). Laplace’s method (Tierney & Kadane, 1986; Kass & Raftery, 1995) is
used to estimate the posterior probability of structures. For a given interac-
tion structure, hA is estimated by the mode of the posterior distribution for
that structure, and its standard deviation is estimated by the appropriate
diagonal element of the inverse Fisher information matrix. The posterior
probability that hA 6D 0 is the sum of the probability of all interaction struc-
tures in which hA 6D 0. An overall estimate for hA given that it is nonzero is
obtained as a weighted average of structure-speci�c estimates, where each
structure is weighted by its posterior probability and the result is normal-
ized over structures in which hA 6D 0. Formulas for the estimates may be
found in the appendix.

5.2 Detecting Changes in Synchronization Patterns. The Bayesian ap-
proach can also be used to infer whether there are systematic differences in
�ringrates and interactions duringdifferent timesegments.A fully Bayesian
treatment of this problem would embed the model 3.3 in a larger model, in-
cluding all time segments under consideration, and would explicitly model
hypotheses in which the hA are identical or different in different time seg-
ments. We instead apply a simpler approach, in which we choose a single
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interaction structure J rich enough to provide a reasonable �t to both seg-
ments of data. We compute separate posterior distributions h J1 and h J2
under the hypothesis that the two segments are governed by different dis-
tributions and a combined posterior distribution for h Jc that treats both
segments as a single data set. Using a method described in detail in the
appendix, we use these estimates to compute a posterior probability for the
hypothesis that the two segments are governed by the same distribution.

5.3 A Heuristic for Detecting Temporal Patterns. The correct approach
to modeling temporal structure is the Markov chain de�ned in equation 3.2.
As currently implemented, our methods are unable to handle temporal cor-
relation for even very small sets of neurons. In this section we describe a
heuristic that can be useful as an approximation. We see a temporal pattern
as a shifted synchrony. Suppose we observe that neuron frequently 1 �res
exactly two bins after neuron 2. When do we declare that that this phe-
nomenon is signi�cant? As a heuristic, we shift the data of neuron 2 two
bins ahead of neuron 1 and neglect the two �rst bins of neuron 1 and the
last two of neuron 2. We now have an arti�cially created parallel process for
these two neurons such that the temporal pattern has become a synchrony.
We will declare that a temporal pattern is signi�cant if the synchrony ob-
tained by performing the corresponding shifts is signi�cant. For clusters of
three neurons, three-dimensional displays are easily obtained. For clusters
with more than three neurons, graphical displays can still be provided by
using projection techniques (Martignon, 1999).

Figure3 illustrates the histogram of the correlations between two neurons

Figure 3: Histogram of estimated interactions of two neurons (1,2 of Table 4).
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recorded by Freiwald in the visual cortex of a macaque (see section 7.2). This
histogram, as one would expect, is equivalent to the one obtained by means
of the method proposed by Palm, Aertsen, and Gerstein (1988) based on the
concept of surprise.

5.4 Discussion of the Bayesian Approach. The frequentist procedures
described in section 4 are designed to address the question of whether a
particular set A of neurons, �xed in advance of performing the test, exhibits
an interaction, as evidenced by hA 6D 0. The problem we face is different:
we wish to discover which sets of neurons are involved in spatiotempo-
ral patterns. The Bayesian approach is designed for just such problems.
Our Bayesian procedure automatically tests all hypotheses in which hA 6D 0
against all hypotheses in which hA D 0, for every A we consider. A major
advantage for our application is that we have no need to choose a spe-
ci�c null hypothesis against which to test the alternative hypothesis each
time.

The Bayesian approach is often more conservative than the frequentist
approach.Wehave sometimes obtained a low posterior probability thathA 6D
0 even when a frequentist test rejects hA D 0. We consider this conservatism
an advantage.

Another advantage of the Bayesian approach is its ability to treat situa-
tions in which the data do not clearly distinguish between alternate models.
Suppose each of two hypotheses, hA 6D 0 and hB 6D 0, can be rejected indi-
vidually by a standard frequentist test, but neither can be rejected when the
other nonzero effect is in the model. This might occur when the sets A and
B overlap, the model containing onlyhA\B is inadequate to explain the data,
but the data are not suf�cient to determine which neurons outside A \B are
involved in the interaction. Because the two models hhA D 0, hB 6D 0i and
hhA 6D 0, hB D 0i are nonnested, constructing a frequentist test to determine
which effect to include in the model is not straightforward. The Bayesian
mixture approach handles this situation naturally. A mixture model will
assign a moderately high probability to the hypothesis that each effect indi-
vidually is nonzero and a very small probability to the hypothesis that both
are nonzero.

The theoretical arguments in favor of the Bayesian approach amount to
little unless the method is practical to apply. Until recently, computational
constraints limited the application of Bayesian methods to very simple prob-
lems. Naive application of the model described is clearly intractable. With n
neurons and considering only synchronicity with no temporal correlation,
there are 22n

interaction structures to consider. Clearly it is infeasible to enu-
merate all of these for even moderately sized sets of neurons. We performed
explicit enumeration for problems of four or fewer neurons. For larger sets,
we sampled interaction structures using MC3. We have found that our MC3

approach discovers good structures after a few hundred iterations and that
a few thousand iterations are suf�cient to obtain accurate parameter esti-
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mates. However, the algorithm we currently use estimates the entire set of
probabilities, one for each con�guration, for each structure considered. The
algorithm thus scales as 2nr and becomes intractable for large numbers of
neurons or long temporal windows.6 Our current implementation in Lisp-
Stat (Tierney, 1990) on a 133 MHz Macintosh Power PC enumerates the 2048
interaction structures for four neurons in about 1 hour and samples 5000
structures on six neurons in about 8 hours. We reimplemented our sampling
algorithm in C++ on a 300 MHz Pentium computer and achieved speedup
of more than an order of magnitude. Nevertheless, it is clearly necessary
to develop faster estimation procedures. We are working on approximation
methods that scale as a low-order polynomial in the number of neurons
and the length of the time window. With such approximation methods, the
Bayesian approach will become tractable for more complex problems. In
this article our objective is to demonstrate the value of the methods on data
sets for which our current approach is feasible. Future work will extend the
reach of our methods to larger data sets and problems of temporal correla-
tion.

In summary, the Bayesian approach is naturally suited to simultaneous
testing of multiple hypotheses. With appropriate choice of prior distribu-
tion, it handles simultaneous estimation of many parameters with less dan-
ger of over�tting than frequentistmethods becauseof its bias toward models
with a small number of adjustable parameters. It treats nonnested hypothe-
ses with no special dif�culty. It provides a natural way to account for situa-
tions in which the data indicate the existence of higher-order effects but are
ambiguous about the speci�c neurons involved in the higher-order effects.
The approach described here is thus quite attractive from a theoretical per-
spective, but is currently tractable only for small sets of neurons exhibiting
no temporal correlation. Further work is needed to develop computation-
ally tractable estimation procedures for larger sets of neurons exhibiting
temporal correlation.

6 Applying the Models to Simulated Data

The�rst simulation we present describes four neurons modeled as integrate-
and-�re units. Three neurons labeled 1,2,3 are excited by a fourth one, la-
beled 0, which receives an input of 2. The resolution is of 1 msec and the
simulation is of 200,000 msec. The units’ thresholds are of 10 MV (reset
of 0 MV), t D 25 ms, and the refractory time is 1 msec. A gaussian noise
is added to the potential (s D 0.5 MV). Figure 4 describes three different
situations.

6 This intractability also plagues naive application of the frequentist tests described in
section 4 above, which also rely on computing the entire vector of con�guration probabil-
ities for the null and alternative hypotheses
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Figure 4: Three connectivity situations

In the �rst two graphs of Figure 4 (from left to right) we depict situa-
tions in which neuron 0 excites neurons 1, 2, and 3. In the second graph
there are two additional interactions. In the third graph we depict a situa-
tion where neuron 0 excites only one of the remaining three neurons and
there are other interactions between neurons 1, 2, and 3. Data were gener-
ated from simulations for the three situations. Both the frequentist and the
Bayesian methods were used with the three sets of data. The triplet (1,2,3)
was detected as signi�cant at the 0.0001 level by the frequentist method
and a probability of 0.99 by the Bayesian method for data corresponding to
the situation described by the �rst graph. The triplet was also signi�cant at
the 0.0001 level and had a probability of 0.97 for data corresponding to the
second situation. In data corresponding to the third situation, none of the
methods detected the triplet.

To test the ability of our models to identify known interaction structures,
we applied our models to synthetically generated data. We generated data
randomly from a four-neuron model of the form 3.3, where we speci�ed J

and hA. Table 1 shows the hA for |A | ¸ 2 in the model we used to generate
the data.

With four neurons and constraining all the single-neuron effects to be in
the model, there are 11 effects to be estimated. Thus, there are 211 D 2048 dif-
ferent interaction structures to be considered. We were able to enumerate all
interaction structures for the Bayesian model average, eliminating the need
for the MCMC search. Table 1 shows the results of the Bayesian analysis for
simulated segments of length 10,000 up to 640,000. It is interesting to note the
increasing ability to detect interactions as the segment length increases, as
well as the increasing accuracy of the estimates of the interaction strengths.
It is also interesting to note that the third data set assigns a 45% probability
to an effect for A D f1, 3, 4g, a set for which hA D 0, but there is considerable
overlap with sets for which there are true interactions. In general, it may be
possible to determine that certain neurons are involved in interactions with
certain other neurons, even when it is not possible to determine precisely
which other neurons are also involved in speci�c interactions.
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Table 1: Results from Simulated Synchronization Patterns.

10,000 Samples 40,000 Samples 160,000 Samples 640,000 Samples

Cluster
A hA

P(hA 6D 0) MAP
Est. hA

P(hA 6D 0) MAP
Est. hA

P(hA 6D 0) MAP
Est. hA

P(hA 6D 0) MAP
Est. hA

1,2 0 0.01 0.02 0.01 0.06 0.00 0.00 0.00 0.01
1,3 0.05 0.02 0.12 0.00 0.03 0.27 0.06 1.00 0.05
1,4 0.10 0.01 0.05 0.72 0.13 1.00 0.12 1.00 0.11
2,3 0 0.01 ¡0.03 0.00 ¡0.02 0.00 ¡0.01 0.00 ¡0.01
2,4 0.30 0.52 0.21 1.00 0.33 1.00 0.30 1.00 0.30
3,4 0.50 1.00 0.57 1.00 0.52 1.00 0.51 1.00 0.50
1,2,3 0.30 0.03 0.20 1.00 0.39 1.00 0.36 1.00 0.30
1,2,4 0 0.01 0.10 0.21 0.20 0.00 0.04 0.00 0.00
1,3,4 0 0.04 0.20 0.01 0.09 0.45 0.11 0.00 0.01
2,3,4 0 0.03 0.19 0.00 ¡0.03 0.00 0.12 0.00 0.01
1,2,3,4 0.20 0.10 0.43 0.02 0.18 0.03 0.12 1.00 0.21

7 Detecting Synchronization in Experimental Data

7.1 Recordings from the Frontal Cortex of Rhesus Monkeys. In this
section we present results from �tting our model to data obtained by Vaadia
and collegues. The recording and behavioral methodologies were described
in detail in Prut et al. (1998). Brie�y, spike trains of several neurons were
recorded in frontal cortical areas of rhesus monkeys. The monkeys were
trained to localize a source of light and, after a delay, to touch the target
from which the light was presented. At the beginning of each trial, the
monkeys touched a “ready-key,” and then a central red light was turned on
(ready signal). Three to 6 seconds later, a visual cue was given in the form
of a 200 ms light blink coming from the left or the right. After a delay of 1
to 32 seconds, the color of the ready signal changed from red to yellow and
the monkeys had to release the ready key and touch the target from which
the cue was given.

The spikes of each neuron were encoded as discrete events by a sequence
of zeros and ones with time resolution of 1 millisecond. The activity of the
whole group of simultaneously recorded six neurons was described as a se-
quence of con�gurations or vectors of these binary states. Since the method
presented in this article for detecting synchronizations does not take into
account nonstationarities, the data were selected by cutting segments of
time during which the cells did not show signi�cant modulations of their
�ring rate. This selection was performed by the experimenter by means of
eyeballing heuristics. The segments were taken from 1000 ms before the cue
onset to 1000 ms thereafter. The duration of each segment was 2 seconds. We
used 94 such segments (total time of 188 seconds) for the analysis presented
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Table 2: Results for Preready Signal Data, Coef�cients with Posterior
Probability > 0.20.

Cluster A G2 Posterior Probability MAP Estimate Standard Deviation
of A of QhA of hA

4,6 .001 0.99 0.49 0.11
3,4 .232 0.18 0.59 0.25
3,4,6 .257 0.38 0.78 0.29
2,3,4,5 0.13 0.48 2.34 0.82
1,4,5,6 .98 0.29 ¡1.85 1.20

below. The data were then binned in time windows of 40 milliseconds. The
choice of the bin length was determined in discussion with the experimenter
(see also Vaadia et al., 1995, for the rationale). The frequencies of con�gu-
rations of zeros and ones in these windows are the data used for analysis
in this article. We analyzed recordings prior to the ready signal separately
from data recorded after the ready signal. Each of these data sets is assumed
to consist of independent trials from a model of the form 2.20. Tables 2 and 3
present results from applying our method to these data sets. Likelihood ra-
tio statistics (G2), posterior probabilities of nonzero effects, point estimates
of effect magnitudes, and standard deviations are shown for all interactions
with posterior probability at least 20%.

There was a high-probability second-order interaction in each data set:
(4, 6) in the preready data and (3, 4) in the postready data. In the preready
data, a fourth-order interaction (2, 3, 4, 5) had posterior probability near
50% (this represents nearly �ve times the prior probability of 0.1).

Several data sets from this type of experiment were analyzed by means of
the methods presented in this article under the guidance of the sixth author,
who conducted the experiments. In certain cases we compared our results
on pairwise correlations with results that the experimenter and coworkers
obtained by traditional methods, and, as we expected, our detected inter-
actions coincided with theirs. With rare exceptions interactions of order 2
or more were all characterized by positive effects.

Table 3: Results for Postready Signal Data: Effects with Posterior
Probability > 0.20.

Cluster A G2 Posterior Probability MAP Estimate Standard Deviation
of A of QhA of hA

3,4 0.03 0.95 1.00 0.27
2,5 0.091 0.44 1.06 0.36
1,4,6 0.752 0.26 0.38 0.15
2,4,5,6 1.454 0.22 ¡1.53 1.33
1,4,5,6 0.945 0.35 1.12 0.46
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Comparison of Tables 2 and 3 reveals some similarities and some im-
portant differences. The preready data show strong evidence for the (4,6)
interaction. Although the posterior probability of a pair interaction between
neurons 4 and 6 in the postready data was very small (the value was 0.03),
there are several higher-order terms with moderately high posterior prob-
ability that involve these two neurons. Overall, we estimate a 99.9% proba-
bility that neurons 4 and 6 are involved in some interaction in the preready
data and a 62.0% probability in the postready data. The postready data show
strong evidence for the (3,4) interaction; this two-way interaction has prob-
ability only 18% in the preready data. Again, there are several moderately
probable interactions in the preready data involving these two neurons. We
estimate a 91.2% chance that neurons 3 and 4 are involved in some interac-
tion in the preready data and a 99.0% chance in the postready data.

It thus appears plausible that the pairs (4,6) and (3,4) are involved in
interactions, possibly involving other neurons in the set, in both pre- and
postready segments. We might speculate that a model involving pair inter-
actions (4,6) and (3,4) is a plausible structure for both pre- and postready
data. We might then ask whether thedifferences between the estimates in Ta-
bles 2 and 3 are merely artifacts or whether there are statistically detectable
differences between pre- and postready data. To answer this question, we
applied the test described in sections 5.2 and A.1.2. We �t a modelcontaining
all pair interactions to both pre- and postready data and t o the combined
data sets. We computed a posterior probability of only 1.7 £ 10¡7 that both
pre- and postready segments come from the same distribution, using a 50%
prior probability that they came from the same distribution. Thus, there is
extremely strong evidence that there are detectable differences between the
pre- and postready segments.

Both of the second-order interactions we detected are positive. Results
of this type—that is, of varying second-order structure across the phases
of the experiment—have been obtained previously by several groups of re-
searchers (Grün, 1996; Abeles et al., 1993; Riehle et al., 1997) who have used
a frequentist method based on rejecting the null hypothesis that the distri-
bution of the joint process is binomial. Both this method and that of Palm
et al., (1988) are essentially consistent with the method presented here for
the second-order case. A difference between the frequentist approach intro-
duced by Palm et al. and ours is the test used for determining signi�cance.
We use G2, while Palm et al. use a Fisher signi�cance test comparing the
data with the binomial distribution determined by the success probabilities
�xed by the �rst-order model.

7.2 Higher -Order Synchronization in the Visual Cortex of the Behav-
ing Macaque. Precise patterns of neural activity of groups of neurons in the
visual cortex of behaving macaques were detected by means of the analy-
sis of data on multiunit recordings obtained by Freiwald. The experiment
consisted of a simple �xation task: the monkey was supposed to learn to
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detect a change in the intensity of a �xated light point on a screen and react
with a motoric answer. The �xation task paradigm is the following: A �xa-
tion point appears on the screen and stays on the screen for 3 seconds. The
monkey �xates this point and then presses a bar. After the bar is pressed,
an interval of approximately 5 seconds begins, during which the monkey
�xates the point and continues to press the bar. After 5 seconds, the point
darkens and disappears from the screen, while the monkey releases the bar.
During the described interval, a short visual stimulus is presented on the
screen, which is not relevant for behavior. Its function is that the monkey
learns that the disappearance of the �xation point can occur only after the
stimulus presentation. Thus, the monkey is not forced to total concentration
on the �xation point. The data presented here were obtained by recordings
of the activity of four neurons in the inferotemporal cortex (IT) on repeated
trials of 5.975 ms each. We decomposed each trial into a �rst chunk of 1,000
ms, considered stationary, a nonstationary interval of 800 ms, and then four
segments of 1,000 ms each, followed by a short last segment of 175 ms. We
chose a bin width of 10 ms. We present a comparison between the activ-
ity during the �rst �xation segment and the activity of the segments after
stimulus. We performed tests of synchronization with both the frequentist
and the Bayesian methods and obtained consistent results. The results of
the Bayesian method are displayed in Tables 4 and 5. We �rst performed
pairwise comparisons of fully saturated models for the four poststimulus
segments as described in sections 5.2 and A.1.2 and determined that none
of these four segments was statistically distinguishable from the others. We
therefore combined these segments into a single data set. We then compared
the �xation phase with the four poststimulus segments and found that it
differed from them. We therefore show the results from the �xation phase
in Table 4 and the combined poststimulus phase in Table 5.

We found that Table 4 exhibits extremely strong excitatory couples for
all pairs of neurons and a few triplets. The comparison of these interactions
with those of the poststimulus segments (see Table 5) is quite interesting.
All pairs of neurons exhibit positive pair interactions in both data sets. The
magnitudes of most of the interaction strengths are similar. However, the
(1, 4) interaction is nearly twice as strong in the �xation phase as in the
poststimulus phase. The (1, 2) interaction is also larger in the �xation phase
by a factor of about 1.5. The threeway interaction found in the �xation phase
also appears in the poststimulus phase. The poststimulus data show two
additional three-way interactions that are improbable in the �xation phase.

7.3 Neuronal Interactions in Anesthetized Rat Somatosensory Cortex.
We also applied the models to data collected from the vibrissal region of
the rat cortex. The vibrissae are arranged in �ve rows on the snout (named
A, B, C, D, and E) with four to seven vibrissae in each row. Neurons in the
vibrissal area of the somatosensory cortex are organized into columns; layer
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Table 4: Synchronies with Probability Larger Than 0.1 in the First
1000 ms in the Fixation Task.

Cluster A Posterior Probability MAP Estimate Standard Deviation
of A Qhj of hA

3,4 0.99 0.69 0.15
2,4 1.00 0.56 0.11
2,3 1.00 1.54 0.15
1,4 1.00 0.70 0.09
1,3 0.99 1.72 0.12
1,2 0.99 1.45 0.09
2,3,4 0.22 0.66 0.28
1,3,4 0.03 ¡0.34 0.25
1,2,3 0.99 ¡1.26 0.23

IV of the column is composed of a tightly packed cluster of neurons called a
barrel (Woolsey & Van der Loos, 1970). Each barrel column is topologically
related to a single mystacial vibrissa on the contralateral snout; thus vibrissa
D2 (second whisker in row D) is linked to column D2 (Welker, 1971). Our
wish was to �nd out whether interacting neurons are distributed across
cortical columns or restricted to single columns. Furthermore we examined
whether the spatial distribution of interacting neurons varies as a function
of the stimulus site.

The data analyzed here were recorded from the cortex of a rat lightly
anesthetized with urethane (1.5 g/kg) and held in a stereotaxic apparatus.
Cortical neuronal activity was recorded through an array of six tungsten
microelectrodes inserted in cortical columns D1, D2, D3,and C3, as well
as in the septum located between columns D1 and D2 (see Figure 5). Using
spike sorting methods, events from 15 separate neurons were discriminated.

Table 5: Synchronies with Probability Larger Than 0.1 in the 4000 ms
After the Visual Stimulus.

Cluster A Posterior Probability MAP Estimate Standard Deviation
of A Qhj of hA

(Frequency)

3,4 1.00 0.70 0.10
2,4 1.00 0.53 0.05
2,3 1.00 1.51 0.06
1,4 1.00 0.39 0.06
1,3 1.00 1.45 0.06
1,2 1.00 0.94 0.04
2,3,4 0.99 ¡0.59 0.12
1,3,4 0.85 ¡0.43 0.12
1,2,3 1.00 ¡0.68 0.09
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Figure 5: Seven neurons located between and in four barrels corresponding to
four vibrissae.

We analyzed data for 7 of these 15 neurons. Locations of these 7 neurons are
shown in Figure 5. During the recording session, individual whiskers were
de�ected across 50 to 55 trials by a computer-controlled piezoelectric wafer
that delivered an up-down movement lasting 100 ms; the stimulus was
repeated once per second (Diamond, Armstrong-Jones, & Ebner, 1993). We
have restricted the analysis to data collected during stimulation of vibrissae
D1, D2, and D3 and only during the 200 ms peristimulus period (100 ms
after the up movement and 100 ms after the down movement). For each
stimulus site, then, there were 10,000 to 11,000 ms of data. As in the previous
section, the spiking events (in the 1 ms range) of each neuron were encoded
as a sequence of zeros and ones, and the activity of the whole group was
described as a sequence of con�gurations or vectors of these binary states.

The interactions illustrated in Table 6 are those for which the likelihood
test statistic is signi�cant at the 0.0001 level. We report the probabilities
of these interactions obtained by means of the Bayesian approach and the
estimated Hs . Table 6 shows the interactions occurring during stimulation
of whiskers D1, D2, and D3.

From analysis of this limited data set, several interesting observations
can be made: (1) only positive interactions were detected; (2) interactions
occurred both within a cortical columnar unit and across columns; (3) inter-
actions were stimulus dependent (neurons werenot continuously correlated
with one another but became grouped together as a function of the stimulus
parameter); and (4) during different stimulus conditions, a single neuron
may take part in different groups.

8 Discussion

This article proposes a parameterization of synchronization and, in general,
of temporal correlation of neural activation of more than two neurons. This
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Table 6: Interactions Signi�cant at the 0.0001 Level and High Probability
of Occurring.

Cluster D 1 D 2 D 3

P(hA 6D 0) Est. hA P(hA 6D 0) Est. hA P(hA 6D 0) Est. hA

4,5,6 0.63 3.52 — — — —
4,7 — — 0.68 2.19 — —
3,4,6 — — 0.75 3.50 — —
2,7 — — 0.76 2.22 — —
2,5 — — 0.52 1.55 — —
1,4,5 — — 0.54 3.01 — —
3,7 — — — — 0.58 1.55

Note: Blanks correspond to low probabilities and high signi�cance levels.

parameterization has a sound information-theoretical justi�cation. Recent
work by Amari (1999) on information geometry on hierarchical decomposi-
tion of stochastic interactions provides mathematical support of our thesis
that the effects of log-linear models are the adequate parameterization of
pure higher-order interactions. If the problem is to analyze a group of neu-
rons and establish whether they �re in synchrony, the statistical problems of
estimating the signi�cance of the corresponding effect being nonzero have
a straightforward, reliable treatment. If the problem is to detect the whole
interaction structure in a group of neurons (i.e., which subsets have inter-
actions and how strong), complexity becomes an inevitable feature of any
candidate treatment. We present both a frequentist and a Bayesian approach
to the problem and argue that the Bayesian approach has major advantages
over the frequentist approach. The approach is naturally suited to simulta-
neous estimation of many parameters and simultaneous testing of multiple
hypotheses. Yet the Bayesian approach is of great complexity when the tem-
poral interaction structure of, say, eight neurons is to be assessed. Even the
heuristic shift method brie�y discussed in section 5.3 becomes very com-
plex for the Bayesian approach in the form described here. New techniques
for speeding up Bayesian search across structures are presented in a forth-
coming article.

An important underlying assumption in our investigations has been that
the data are basically stationary. This is seldom the case. As we know from
the important work by Abeles et al. (1995), cortical activity �ips from one
quasistationary state to the next. These authors developed a hidden Markov
model technique to determine these �ips. A combination of their methods
with the ones presented here would allow the analysis of structure changes
through quasistationary segments.

Another advancement in global structure analysis of spike activity has
been obtained by de Sa’, de Charms, and Merzenich (1997) by means of a
Helmholtz machine that determines highly probable patterns of activation
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based on spike train data. Here again a combination of methods would
allow analysis of the correlation structure in probable patterns.

The reason for our presentation of both the frequentist and the Bayesian
approach to detecting correlation structure is twofold. Our wish is, on the
one hand, to reinforce the use of the frequentist method, in spite of all its
shortcomings, because it is quick and can be used for large numbers of neu-
rons and long time delays. Our experience with the systematic comparison
of the two methods has enhanced the con�dence that a careful frequentist
strategy is reliable. On the other hand, we promote the Bayesian approach,
which, from the point of view of experimenters, may seem cumbersome or
too complex, but which, in the long run, will probably become an accepted
tool.

As a �nal remark let us observe that higher-order interactions in the
empirical data analyzed in this article did not seem to be frequent.

Appendix

A.1 The Constrained Perturbation Procedure. In this appendix we con-
struct the null hypotheses for the tests proposed in section X. Assume that
p is a probability distribution de�ned on the con�gurations of a set of neu-
rons. Consider the following problem: Find a distribution p* such that the
marginals of p¤ coincide with those of p and p¤ maximizes entropy among
all distributions whose marginals of order less than |A| coincide with those
of p.

It can be proved (Whittaker, 1989) that there isa uniquedistribution p¤¤ on
the con�gurations of A whose marginals of order less than |A | coincide with
those of p and such thath¤¤

A D 0, whereh¤¤
A is the coef�cient corresponding

to A in the log expansion of p¤¤. Let us combine this fact with Good’s (1963)
famous theorem, which states that the distribution p¤ maximizing entropy
in the manifold of distributions with the same marginals of order less than
|A | of p necessarily satis�es h¤

A D 0. We conclude that the distribution p¤¤

has to coincide with p¤. We sketch the construction of such a distribution p*
for the simple case of three neurons. Suppose that A D f1, 2, 3g and that p is
a strictly positive distribution on A. We want to construct the distribution
p¤ that maximizes entropy among all those consistent with the marginals of
order 2, denoted by Marg.(ff1, 2g, f1, 3g, f1, 3gg). De�ne

p ¤ (1, 1, 1) D p(1, 1, 1) ¡ D

p ¤ (1, 1, 0) D p(1, 1, 0) C D

p ¤ (1, 0, 1) D p(1, 0, 1) C D

p ¤ (1, 0, 0) D p(1, 0, 0) ¡ D

p ¤ (0, 1, 1) D p(0, 1, 1) C D
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p ¤ (0, 1, 0) D p(0, 1, 0) ¡ D

p ¤ (0, 0, 1) D p(0, 0, 1) ¡ D

p ¤ (0, 0, 0) D 1 ¡
X

B½f1,2,3g
p(ÂB).

Let us compute the marginal p¤(x1 D 1, x2 D 1). We have p¤(x1 D 1, x2 D
1) D p(1, 1, 1)¡D C p(1, 1, 0) C D D p(1, 1, 1) C p(1, 1, 0) D p(x1 D 1, x2 D 1).

Now we have to solve for D in the equations h¤
A D 0. Observe that

our construction contains only one step where a numerical approximation
becomes necessary: solving for h¤

A D 0 in terms of D . This can be done
by using any one-dimensional optimization procedure such as Newton’s
approximation method. Here Newton’s approximation method has to be
used in combination with the condition that the perturbation D is such that
all candidate solutions are probability distributions, and thus their values
are between 0 and 1. Let us now sketch the construction in the general case
of N neurons. If B is a nonempty subset of A, denote by ÂB the con�guration
that has a component 1 for every index in B and 0 elsewhere. For each
nonempty subset B, de�ne p¤(ÂB) D [(ÂB) C (¡1)] |B |D , where, again, D is to
be determined by solving for h¤

A ´ 0. Every marginal of order N ¡ 1 is the
sum of the probabilities of two con�gurations that coincide on N ¡1 entries
and differ on the remaining one. Thus, the sign of D will be different in the
two summands, and D will cancel out. Therefore, the marginal of p¤ will
coincide with the correspondent marginal of p, as condition 1 requires.

A.2 Bayesian Estimation and Hypothesis Testing Methods.

A.2.1 Inferring Structure and Parameters from Observations. We are con-
cerned with the problem of inferring the interaction structure J and interac-
tion strengths h J from a sample x1, . . . , xN of N independent observations
from the distribution p(x | h J , J ) given by equation 3.3. Initial information
about h J prior to obtaining the data is expressed as a prior probability dis-
tribution over structures and interaction strengths. We use a mixed discrete-
continuous prior distribution denoted by g(h J

| J )p J , where p J is the prior
probability of structure J and g(h J

| J ) is a continuous density function
for h J .

We chose a prior distribution that encodes the assumptions that all single-
ton effects are nonzero, most effects of order 2 or greater are nonzero, and
most nonzero effects are not too large. Speci�cally, the prior distribution
assumes all singleton effects are included with certainty, and each interac-
tion A of order 2 or greater is included with probability 0.1 independent
of the other interactions.7 Thus, an interaction structure J that includes all

7 We varied the prior probability between 0.025 and 0.40. As expected, extreme poste-
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singleton sets and k interactions of order 2 or higher has prior probability
p J D 10¡k.

Conditional on an interaction structure J , the interaction strength hA
corresponding to any absent interaction A /2 J is assumed to be identically
zero. We assume that the nonzero hA are independent of each other and are
normally distributed with zero mean and standard deviation s D 2. This
prior distribution encodes a prior assumption that thehA are symmetrically
distributed about zero, that is, excitatory and inhibitory interactions are
equally likely. The standard deviation s D 2 (that is, mosthA lie between ¡4
and 4) is based on previous experience applying this class of models (Mar-
tignon et al., 1995) to other data, as well as discussions with neuroscientists.
We initially regarded the symmetry of the normal distribution as unrealistic
because we expected most interaction parameters to be positive. However,
we felt that the convenience of the normal distribution outweighed this
disadvantage. We found in our data analyses that many estimated interac-
tions, especially those of order higher than 2, were negative (we attribute
these negative higher-order interactions to overlapping pair interactions
with external neurons).

The joint probability of the observed set of con�gurations for a �xed in-
teraction structure, viewed as a function ofh J , is called the likelihood function
for h J given J . From equation 3.3, it follows that the likelihood function
can be written

L(h J
) D p(x1 | h J , J ) ¢ ¢ ¢ p(xN | h J , J ) D exp

(
N S

A2J

hAtA

)
, (A.1)

where tA D 1
N S tA is the frequency of simultaneous activation of the

nodes in the set A and is referred to as the marginal frequency for A. The
random vector8 T of marginal frequencies is called a suf�cient statistic forh J

because the likelihood function, and therefore the posterior distribution of
h J , depends on the data only through T.9 The expected value of TA is the
probability that TA D 1 and is simply the marginal function for the set A.

The posterior distribution is also a mixed discrete-continuous distribu-
tion g¤(h J

| J )p ¤
J . The posterior density for hJ conditional on structure J

is given by

g(h J
| J , x1, . . . , xN) D Kp(x1 | h J , J ) ¢ ¢ ¢ p(xN | h J , J )g(h J

| J ), (A.2)

rior probabilities remained extreme. Manipulation of the prior probabilities had the most
effect when the evidence for or against the presence of an interaction was not overwhelm-
ing (i.e., posterior probabilities roughly in the range between 0.1 and 0.9).

8 We use the standard convention of denoting random variables by uppercase letters
and their observed values by lowercase letters. We denote vectors by underscores.

9 The suf�cient statistic T contains TA only for those clusters A 2 J . For notational
simplicity, the dependence of T on the structure J is suppressed.
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where the constant of proportionality K is chosen so that equation A.2 inte-
grates to 1:

K D

0

B@
Z

h
J

p(x1 | h J , J ) ¢ ¢ ¢ p(xN | h J , J )g(h J
| J ) dh J

1

CA

¡1

. (A.3)

In this expression, the range of integration is over h J where J
0 D fA: A 2

J , A 6D Æ g. That is, the joint density is integrated only over those parameters
that vary independently. Because the probabilities are constrained to sum
to 1, h Æ is a function of the other hA:

h Æ D ¡ log

0

BB@Sx
exp

8
>><
>>:S

A2J
A /2 Æ

hAtA(x)

9
>>=
>>;

1

CCA . (A.4)

A.2.2 Approximating the Posterior Distribution. Using data to infer the
distribution involves two subproblems: (1) given an interaction structure
J , infer the parameters hA for A 2 J , and (2) determine the posterior prob-
ability of an interaction structure J . Neither of these subproblems has a
tractable closed-form solution. We discuss approximation methods for each
in turn.

Options for approximating the structure-speci�c posterior density func-
tion g¤(h J

| J ) D g(h J
| J , x1, . . . , xN) include analytical or sampling-based

methods. Because we must estimate posterior distributions for a large num-
ber of structures, we expected Monte Carlo methods to be infeasibly slow.
We therefore chose to use the standard large-sample normal approximation.

The approximate posterior mean is given by the mode Qh J of the posterior
distribution. We found the posterior mode by using Newton’s method to
maximize the logarithm of the joint mass density function:

Qh J
¡ argmaxh

J

©
log

¡
p(x1 | h J , J ) ¢ ¢ ¢ p(xN | h J , J )g(h J

| J )
¢ª

. (A.5)

When we used arbitrary starting values, we encountered occasional insta-
bilities. This problem was alleviated by running an iterative proportional
�tting algorithm on a “pseudosample” consisting of a small, positive con-
stant added to the sample counts (the positive constant bounded the starting
probabilities away from zero for con�gurations with no observations). We
then iterated using Newton’s method to �nd the maximum a posteriori
estimate.

The posterior covariance is approximated by the inverse of the Hessian
matrix of second partial derivatives evaluated at the maximum a posteriori
estimate. This matrix can be obtained in closed form:

QSJ D
h
D2

h log
¡
p(x1 | h J , J ) ¢ ¢ ¢ p(xN | h J , J )g(h J

| J )
¢i¡1

. (A.6)
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The posterior probability of a structure J is given by

p ¤
J D p(J | x) / p(x | J )p J , (A.7)

where the �rst term on the right is obtained by integrating h J out of the
joint parameter /data density function:

p(x | J ) D
Z

h
J

p(x1 | h J , J ) ¢ ¢ ¢ p(xN | h J , J )g(h J
| J ) dh J . (A.8)

There is no closed-form solution for this integral. We use Laplace’s method
(Tierney& Kadane, 1986;Kass & Raftery, 1995),which again relies on the nor-
mal approximation to the posterior distribution. Assuming that p(x | h J , J )
is approximately normal with mean A.5 and covariance A.6, and integrating
the resulting normal density as in A.8, we obtain:

p(x | J )¼ (2p )d /2
­­­QSJ

­­­
1 /2

p(x1 | Qh J , J ) ¢ ¢ ¢ p(xN | Qh J , J )g( Qh J
| J ). (A.9)

The normal approximation is accurate for large sample sizes (De Groot,
1970}). The posterior density function is always unimodal, and we have
observed that the conditional density for hA given the other h ’s is not too
asymmetric even when the corresponding marginal TA is small. We have
also found that very small frequencies typically give rise to very small pos-
terior probabilities of the associated effects, in which case the accuracy of
the approximation is not crucial. Nevertheless, the quality of the Laplace
approximation is a question worthy of further investigation.

Equation A.7 gives the posterior probability of a structure only up to a
proportionality constant. The posterior probability is obtained by comput-
ing equation A.7 for all structures and then normalizing. The total num-
ber of structures grows as , where k is the number of neurons. For more
than four neurons, this number is much too large to enumerate explicitly.
For data sets with more than four neurons, we used an MC3 algorithm to
search over structures (Madigan & York, 1993). The algorithm works as
follows:

1. Begin at initial structure J . Compute p(x | J )p J .10

2. Nominate a candidate structure A to add to or delete from J to ob-
tain a new structure J 0. The candidate structure is nominated with
probability r (A | J ).11

10 To avoid numeric under�ow, we compute the logarithm of the required probability.
However, for clarity of exposition, we present the algorithm in terms of probabilities.

11 To improve acceptance probabilities, we modi�ed the distribution r (A0 | J ) as
sampling progressed. The sampling probabilities were bounded away from zero to ensure
ergodicity.
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3. Compute p(x | J )p J .

4. Accept the candidate structure J 0 with probability

pAccept D min
»

1,
p(x | J

0 )p J 0r (A | J
0 )

p(x | J 0)p J 0r (A | J )

¼
. (A.10)

5. Unless the stopping criterion is met, return to step 2; else stop.

We discarded a burn-in run of 500 samples (quite suf�cient to move the
sampler into a range of high-probability models on the data sets we tried)
and based our estimates on a run of 5000 samples. We implemented our
algorithm in Lisp-Stat running on a 133 MHz Macintosh PowerBook. For the
six-neuron data sets described in section 7, a run of 5000 samples took about
8 hours. This was reduced to about 2 hours on a 266 MHz PowerBook G3.

We computed posterior probabilities for each effect as the frequency of
occurrence of that effect in the sample run. We estimate the conditional
expected value,

QhA ¡
q

#[A 2 J ] SA2J

QhA |J , (A.11)

where the structure-speci�c estimate is QhA |J obtained from equation A.5.
Similarly, we compute a variance estimate as the sum of within- and
between-structure components. The within-structure variance component,

Qs2
A,w D

1
#[A 2 J ] S

A2J

Qs2
A |J , (A.12)

where the summands of equation A.12 are the appropriate diagonal ele-
ments from equation A.6. The between-structure component is given by

Qs2
A,b D

1
#[A 2 J ] SA2J

±
QhA |J ¡ QhA

²2
. (A.13)

A.2.3 Detecting Changes Between Different Time Segments. Suppose we
are concerned with detecting whether an environmental stimulus produces
detectable changes in neuronal activity. We might examine this question by
comparing models of the form 3.3 for segments recorded before and after
occurrence of the stimulus. Of course, estimates for the two segments will
differ. The question of interest is whether these differences can be explained
by random noise or whether they represent real differences in activation
patterns that can be associated with the stimulus.

One way to address this question would be to construct a super model
encompassing both pre- and postready segments and extend the methods
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described to include hypothesis tests for which interactions were the same
as or different for the two data sets. We took a simpler approach, which
could be performed using the models we have described.

Suppose we have two segments of data, labeled x1 and x2, of the same
neurons recorded at different times. We begin by �tting models of the form
3.3 for each data set individually and for the combined data set. We then
selected a model structure J that included effects for any set A that had
high probability in either an individual model or the combined model. We
�t this single structure for the individual and combined data sets. We then
computed predictive probabilities as in equation A.9 for each of the three
data sets. We denote these by pC(x1, x2 | J ) for the combined model, p1(x1 |
J ) for the �rst segment, and p2(x2 | J ), for the second segment. Assuming
that the individual and combined models are equally likely a priori, the
posterior probabilities were computed using the formula:

pCombined

pSeparate
D

pC(x1, x2 | J )
p1(x1 | J ) C p2(x2 | J )

. (A.14)
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