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Sparse coding of sensory inputs
Bruno A Olshausen1� and David J Field2
Several theoretical, computational, and experimental studies

suggest that neurons encode sensory information using a small

number of active neurons at any given point in time. This

strategy, referred to as ‘sparse coding’, could possibly confer

several advantages. First, it allows for increased storage

capacity in associative memories; second, it makes the

structure in natural signals explicit; third, it represents complex

data in a way that is easier to read out at subsequent levels of

processing; and fourth, it saves energy. Recent physiological

recordings from sensory neurons have indicated that sparse

coding could be a ubiquitous strategy employed in several

different modalities across different organisms.
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Introduction
At any given moment, our senses are receiving vast

amounts of information about the environment in the

form of light intensities, changes in sound pressure,

deformations of the skin, stimulation of taste and olfac-

tory receptors and more. How the brain makes sense of

this flood of time-varying information and forms useful

internal representations for mediating behavior remains

one of the outstanding mysteries in neuroscience. In

recent years, a combination of experimental, computa-

tional, and theoretical studies have pointed to the exis-

tence of a common underlying principle involved in

sensory information processing, namely that information

is represented by a relatively small number of simulta-

neously active neurons out of a large population, com-

monly referred to as ‘sparse coding’.

In this review we discuss the theory of sparse coding,

methods for measuring sparsity, and the evidence to date
ww.sciencedirect.com
that sparseness constitutes a general principle of sensory

coding in the nervous system. We focus here primarily on

neural representations in the cortex of mammals, or

relatively high levels of processing in other species, but

it should be noted that there is substantial evidence for

sparse coding occurring at earlier stages of processing

across a variety of organisms [1,2].

Theory of sparse coding
The principle of sparse coding has been advanced and

elaborated on by several different authors, for different

reasons. Early work on associative memory models, for

example, showed that sparse representations are most

effective for storing patterns, as they maximize memory

capacity because of the fact that there are fewer collisions

(less cross-talk) between patterns [3]. Later work has

similarly showed that sparse representations would be

advantageous for learning associations in neural networks,

as they enable associations to be formed effectively using

local (neurobiologically plausible) learning rules, such as

Hebbian learning [4–9].

A different line of reasoning was taken by Barlow [10],

who observed that in many sensory nervous systems

neurons at later stages of processing are generally less

active than those at earlier stages. Barlow reasoned that

the nervous system was attempting to form neural repre-

sentations with higher degrees of specificity. For exam-

ple, a neuron in the retina responds simply to whatever

contrast is present at that point in space, whereas a neuron

in the cortex would respond only to a specific spatial

configuration of light intensities (e.g. an edge of a parti-

cular orientation) [11].

Several computational studies conducted since Barlow

made this proposal have demonstrated more concretely

the relationship between sparsity and the statistics of

natural scenes. In the visual system, for example, the

images that fall upon the retina when viewing the natural

world have a relatively regular statistical structure, which

arises from the contiguous structure of objects and sur-

faces in the environment [12–17,18�]. Field [12] has

shown that the receptive field properties of simple-cells

in primary visual cortex (V1) are well suited to this

structure, in that they produce sparse representations.

Our work, and that of others [19–23], has subsequently

shown that when the receptive fields of an entire popula-

tion of neurons are optimized to produce sparse repre-

sentations, that the set of receptive fields that emerge

resemble those of simple-cells (Figure 1). A similar anal-

ysis has shown that the spectro-temporal receptive field

properties of auditory nerve cells can be accounted for in
Current Opinion in Neurobiology 2004, 14:481–487
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Figure 1
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Sparse coding of natural images. On the left is a set of receptive fields that are learnt by maximizing sparseness in the output of a neural

network. Each patch shows the receptive field of a model neuron within a 12 � 12 pixel image patch. The network was trained on approximately

half a million image patches (of the same size) extracted from whole images of natural scenes. The receptive fields that emerge from training are

spatially localized, oriented, and bandpass (i.e., selective to spatial structure at a particular scale), similar to cortical simple cells. On the right is

an example image patch and its encoding by the sparse coding network. The bar chart directly above the image patch shows the 144 pixel

values contained in the patch. These input activities are transformed into a much sparser representation in the output of the network, shown in

the bar chart at the top. The value of an output unit corresponds (roughly) to the degree of similarity between its receptive field and the input

image. As the receptive fields are matched to the structures that typically occur in natural scenes, an image can usually be fully represented

using a small number of active units.
terms of a strategy to represent natural sounds as sparse

independent events [24��,25].

Several theorists have proposed that natural images (as

well as other sensory data) lie along a continuous curved

surface or ‘manifold’ embedded in the high-dimensional

state space of images (i.e., where pixel magnitudes form

the axes of the space — see figure 2) [26�,27,28�,29]. The

surface represents the smooth changes that follow from

the transformations that are likely to occur in natural

scenes (e.g., translation, scale, rotation, etc.). For exam-

ple, an object that moves across the pixel array of an image

gives rise to a series of different spatial patterns. Each of

these spatial patterns corresponds to a point in the state

space, and the set of all points resulting from this motion

would form a smooth, curved trajectory in the state space

(Figure 2). So how can the visual system represent this

curved surface of probable images? One possibility is that

this is achieved through an overcomplete representation

of the state space, in which the number of neurons used to

represent the image is potentially much greater than the

dimensionality of the input (number of pixels) [30–32]. In

this coding scheme, each neuron would have a preferred

pattern in the input space (represented by the vectors in

figure 2), and a neuron would become active only when

the input pattern is sufficiently close to its preferred

pattern. We suggest that the advantage of such a coding

scheme is that the manifold then becomes flattened out

(less curvature) in the higher-dimensional space defined

by the neural responses, thus making it easier for higher
Current Opinion in Neurobiology 2004, 14:481–487
areas to learn structure in the data (i.e., the shape of the

manifold).

Interestingly, a ubiquitous property of primary sensory

cortical areas is that they over-represent their sensory

inputs (as relayed from the thalamus) many times over.

For example, in cat V1 there is an approximate 25:1

expansion ratio in terms of the number of axons project-

ing from layers 2/3 on to higher areas relative to the

number of inputs from the lateral geniculate nucleus

[11]. One possibility, then, is that this over-representation

is utilized to produce an even higher degree of sparsity

among neurons by making them more selective to specific

patterns of input, hence making it possible for higher

areas to learn structure in the data. If the idea of sparse

overcomplete codes is carried to an extreme, however, it

inevitably leads to a ‘grandmother cell’ type representa-

tion, in which a single unique neuron is active for each

and every event occurring in the environment [33]. Thus,

there is a tradeoff between the gains achieved from

overcompleteness and the cost incurred from having to

utilize more neurons, and it is possible that the 25:1

expansion in cat V1 is the result of striking the proper

balance between these two factors.

Another reason for favoring sparse codes is that they are

energy efficient [34]. Attwell and Laughlin [35] have

recently produced an estimate of the energy required

for signaling in cortical neurons, and they conclude that

average firing rates must be rather low, that is, less than
www.sciencedirect.com
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Figure 2
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State-space of natural scenes and overcomplete codes. The sphere represents the N-dimensional state-space of natural scenes — that is,

the space of all possible images composed of N pixels. The axes of this space (not shown) are simply the pixel values of the image. Natural

images are thought to lie along a low-dimensional manifold embedded in this space. The red curve represents the hypothetical trajectory of an

image feature (such as an edge) as it would appear in this space as a result of translating over the pixel array. Each black arrow corresponds

to the preferred feature of a neuron. The blue ellipses denote the response zone of the neuron — that is, an image falling within this zone would

cause the neuron to fire. The representation is ‘overcomplete’ when there are more pattern vectors than input dimensions (image pixels).

N pattern vectors would be sufficient to represent the manifold, but a sufficiently dense (highly overcomplete) tiling allows for a piecewise

representation of a highly curved manifold, thus simplifying its representation for higher stages of analysis.
1 Hz. On the basis of their findings, Lennie [36�] esti-

mates that at any given moment only 1/50th of the

population of cortical neurons could afford to be signif-

icantly active. Thus, given the actual energy constraints

of the mammalian cortex, sparse coding would seem to be

a necessity.

To summarize, there are at least four reasons for favoring

sparse representations as a model of sensory signaling.

First, they are useful for forming associations or storing

patterns in memory using local learning rules, second,

they make the structure occurring in natural sensory input

explicit, third, they produce a more simple flattened

representation of the curved manifold structure of data

(when combined with overcompleteness), and fourth,

they are energy efficient.

How to measure sparseness?
To assess whether or not neurons are utilizing a sparse

code, there must be a method for measuring sparseness.

Many of the coding models described above employ

analog-valued units that could take on both positive

and negative values, with responses symmetrically dis-
www.sciencedirect.com
tributed around zero (Figure 3). A standard measure of

sparseness for such artificial units is the kurtosis, which

measures the 4th moment relative to the variance squared:

k ¼ 1

n

Xn

i¼1

ðri � rÞ4

s4
� 3

where r is the response of the neuron, r is the mean

response and s is its standard deviation. For a Gaussian

(non-sparse) distribution k=0, whereas for a heavy-tailed

(sparse) distribution k>0. However, in reality a neuron

cannot produce a response that is symmetric about zero,

or even symmetric about the mean firing rate. Thus, its

firing rate distribution will necessarily be one-sided. In

addition, measures such as kurtosis are extremely sen-

sitive to outliers — that is, a small number of data points

far from the mean can have a significant impact on

kurtosis.

Baddeley and co-workers [37] have shown that when an

animal views movies of natural scenes, the response

distributions of many visual cortical neurons display a
Current Opinion in Neurobiology 2004, 14:481–487
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Figure 3
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Response distributions and sparseness. (a) Examples of two-sided response distributions for a unit that takes on both positive and negative

values. A sparse representation would be consistent with a response distribution that is highly peaked at zero and with heavy tails (blue)

compared to a Gaussian of the same variance (red). The former has positive kurtosis (k). (b) Examples of one-sided response distributions

for a unit that takes on positive values only (e.g., firing rate). All distributions shown have the same mean firing rate. When plotted in this

manner, a response distribution that is peaked at zero with heavy tails (blue) would be considered sparse, whereas a uniform response

distribution (green) would not. The former has a low activity ratio (a) whereas the latter has a high activity ratio. The exponential distribution

(red) lies somewhere in between. Note that measures of kurtosis (k) and activity ratio (a) are dimensionless.
heavy-tailed distribution that can be described by an

exponential function, P(r)/ e�ar . Although such a dis-

tribution would be consistent with the sparse coding

hypothesis, they argue instead that such distributions

support the notion that neurons are trying to maximize

entropy, subject to a constraint on mean firing rate

(energy consumption).

Rolls and Tovee [38] developed a sparseness measure for

one-sided distributions, and their approach has been

applied to a number of neuronal populations and stimulus

sets [39,40�]. Their method provides a means of describ-

ing a distribution with heavy tails by computing the

activity ratio:

a ¼

1

n

X
i
ri

� �2

1

n

X
i
r2

i

where ri is the response to the ith stimulus averaged across

trials (e.g. the ith frame of a movie) and n is the number of

stimuli. This ratio has a maximum value of 1.0 when each

stimulus or frame receives equal numbers of spikes, and is

near zero when one stimulus from the set of stimuli, or

one frame, contains all the spikes (maximum sparsity).

Vinje and Gallant [39] have transformed this ratio to

obtain a convenient sparseness scale, ‘S’, that ranges from

0 to 1: S ¼ ð1 � aÞ=ð1 � aminÞ. Thus, S measures how

selective the neuron is to the population of stimuli pre-

sented to it. The result can be dependent on the size of

the temporal window used to compute the firing rate, but
Current Opinion in Neurobiology 2004, 14:481–487
provides a good measure of the relative sparseness of

responses under different conditions.

However, measuring the response of a neuron over time

does not provide a complete account of how the popula-

tion behaves with regards to sparsity. A population of

neurons could appear sparse according to the above

measures even though all of them are firing together.

For example, neurons involved in driving eye movements

or responding to a stimulus after a saccade would

show significant correlations to each other. Willmore

and Tolhurst [41] use the term ‘lifetime sparseness’ to

describe the activity of a single neuron over time, and

‘population sparseness’ to describe the activity of a pop-

ulation of neurons for a given time window. One form of

sparsity does not necessarily imply the other. Most inves-

tigators have measured lifetime sparseness using single-

unit recording, but there have been recent attempts at

measuring population sparseness by using multiple elec-

trode arrays to monitor activity at several recording sites

simultaneously [40].

Experimental evidence
Experimental evidence for sparse coding has been found

in several different sensory modalities in a variety of

animals. In the visual system of primates, Vinje and

Gallant [39,42��] have demonstrated that neurons in V1

produce sparse punctate responses when stimulated with

image sequences resembling those that occur during

natural vision (Figure 4). Interestingly, when the same

neurons are stimulated only within their classical recep-

tive fields (the region of space within which a stimulus
www.sciencedirect.com
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Figure 4
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Responses to natural scenes. Context in natural scenes sparsifies responses of V1 neurons. Shown is the average response of a neuron to multiple

repetitions of a natural vision movie played just within the receptive field of the neuron (top) or the same movie but with additional spatial context

extending into the receptive field surround (bottom). Context appears to make the neuron more selective to certain episodes within the movie

sequence. Taken from [42��], with permission. Copyright 2002 by the Society for Neuroscience.
presented in isolation can evoke a response from the

neuron), the responses are much more dense or evenly

distributed over time. Thus, it would appear that context

sparsifies the responses of V1 neurons. These effects

could possibly be mediated either by recurrent horizontal

connections within V1 or by top-down feedback from

higher areas. In higher visual areas (inferotemporal cor-

tex), it has been suggested that the population code

response to faces is sparse [43], but others claim that

the activity ratio favors more of a dense code [38].

In the auditory system of rats, DeWeese and co-workers

[44��] have demonstrated that neurons in primary audi-

tory cortex can produce a single spike in response to a

sound, and that this response is highly reliable across

trials. They refer to this behavior as ‘binary coding’, as the

neuron appears to produce either a 0 or a 1 in response to a

stimulus. The probability of spiking overall appears to be

very low, consistent with the sparse coding hypothesis,

although it remains to be seen whether or not this effect

can be attributed to anesthesia. Very low firing rates have

also been reported for neurons in layer 4 of somatosensory

(barrel) cortex in the rat, where it is hypothesized that

relatively few (in the order of tens) unitary inputs locked

precisely to whisker deflection are sufficient to produce a

response in a neuron [45�]. Sparse coding has also been

observed in the olfactory system of insects, where neu-

rons in the mushroom body typically issue on the order of

two spikes in response to an odor stimulus [46�,47��,48��].

It has been known for some time that neurons in the

hippocampus can exhibit extremely sparse responses.
www.sciencedirect.com
One experiment showed that nearly two-thirds of all

hippocampal neurons that exhibited activity under

anesthesia became silent in the awake behaving rat

[49], which suggests that these neurons are so rarely

active that it can be difficult to observe them firing during

natural behavior. This overall pattern appears to be

upheld in the macaque hippocampus, where overall firing

rates below 0.1 Hz are routinely observed [50].

Although this review is focused on sensory coding, it

should be mentioned that the principle of sparse coding

extends to motor systems as well. For example, certain

classes of neuron in layer 6 in the motor cortex of rabbits

issue one spike or less during certain phases of locomotion

[51], and in rats, single neuron stimulation can be suffi-

cient to elicit whisker movement [52�]. In the zebra finch,

neurons in nucleus HVC (higher vocal center) can issue

one spike with high reliability at a precise moment in time

within the production of a song sequence [53], and it has

been demonstrated that this scheme makes it easier to

learn song production [54].

Extreme sparseness appears to present a quandary for

attempting to characterize the response properties of

neurons. Traditional methods using single acute electro-

des rely on the ability of the investigator to elicit a

response from a neuron. But if some neurons fire so rarely

that they do not spike within the time the investigator is

searching for a neuron, they are likely to be missed.

Reports routinely appear in the literature of neurons in

both sensory cortex and hippocampus with spontaneous

rates of 5 Hz and above, whereas Attwell and Laughlin’s
Current Opinion in Neurobiology 2004, 14:481–487
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analysis states that the average should be much lower

[35], which suggests that there has been a routine sam-

pling bias in many studies. By contrast, recording tech-

niques that utilize chronic implants, which yield a less

biased sample (B Skaggs, pers comm), or antidromic

stimulation to identify neurons [51,53��], report much

lower firing rates on average.

Conclusions
Although the principle of sparse coding has been dis-

cussed and elaborated for nearly three decades now,

serious empirical investigation of its use in the nervous

system has begun only recently. Investigating whether

sparse coding is employed in a certain region, however,

will require using ecologically valid stimuli (i.e. natural

scenes). The studies reviewed here suggest that sparse

coding provides an efficient means of representing data

found in the natural world. Moreover, it provides a means

of efficiently forming associations and storing memories,

and it achieves all of this using relatively small amounts of

energy. Future work might point to new explanations for

these sparse patterns of activity. In any case, it appears

that sparse representations constitute an important pro-

cessing strategy of the nervous system.
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