Subjective contours capture stereopsis

V. S. Ramachandran* & P. Cavanagh†

* Department of Psychology, University of California, San Diego, La Jolla, California 92039, USA
† Département de psychologie, Université de Montréal, Montreal, Quebec, Canada H3C 3J7

Stereoscopic depth perception is based on measuring tiny differences between the two eyes' images which arise as a result of binocular parallax. Julesz used random-dot stereograms to demonstrate that stereopsis may be based on a simple point-to-point comparison of the two eyes' images and does not require the presence of monocularly visible forms or contours. Here we present a new class of stereograms which illustrate that monocular subjective contours can influence the matching of elements in a stereogram even though the elements themselves convey no disparity information. More specifically, the depth seen from such contours is automatically attributed to texture elements and lines that are enclosed by these contours—an illusion that we call 'stereoscopic capture'.

Figure 1a depicts a well-known illusion known as the 'wallpaper effect'. When patterns consisting of repeating stripes are viewed binocularly they can convey one of a number of different depth planes. However, at any given instant the entire pattern is seen to occupy only one plane, the exact plane seen seems to depend mainly on the angle of convergence. Figure 1b shows a square defined by subjective contours. Such contours can be produced by means of appropriately aligned black disks from which right-angled sectors have been removed. The brain interprets this figure parsimoniously as an opaque white square with its four corners occluding the four black disks (and not as four sectored disks which have been deceitfully aligned by the experimenter). One has the strange impression of a contour connecting these aligned edges even though no contour exists physically—hence the name subjective contours. Whether these contours are physical, physiological or truly 'subjective' is a much debated semantic issue that need not concern us here.

We constructed a stereogram using two subjective squares similar to that of Fig. 1b by introducing small horizontal disparities between the vertical edges of the cut-out sectors (Fig. 1c). Perception of depth in these stereograms is most vivid when the disparities convey a square standing out in front of the disks. If the two images are now interchanged, stereopsis disappears and, surprisingly, the subjective contours also become weak; perhaps because it is now difficult to make any sense out of the whole figure. These stimuli and all subsequent ones described here were generated on a CRT screen using a Macintosh microcomputer. The visual angle subtended by the black disks was 0.5° and the subjective square itself subtended 2°. The horizontal disparity between the vertical edges of the cut sectors was 20 arc min.

Our next step was to superimpose a template of Fig. 1c on several kinds of wallpaper to generate 'wallpaper stereograms' (Figs 2, 3, 4). In Fig. 2 we simply used repeating vertical rows of spots (see figure legends for additional details). This stereogram was then shown to eight subjects who were experienced psychophysical observers but were unaware of the purpose of the experiment. They were shown both crossed and uncrossed versions (that is, with a square depicted in front or behind the plane of fixation) and asked to report what they saw. With crossed stereograms (Fig. 2a) all eight subjects saw the square defined by the subjective contours as standing out clearly in front. Interestingly, the corresponding dot-rows on the wallpaper were also carried forward with the plane—an effect we call 'stereoscopic capture'. As the disparity of the squares equaled several multiples of the periodicity of the dot-rows, this finding implies that the subjective surface in depth created by the subjective contours was somehow pulling the dots with it even though the dots themselves do not convey any specific disparity information (in fact they convey zero disparity in relation to the background). When the subjects viewed uncrossed stereograms, no such effect was seen; neither the subjective surface nor the stereoscopic capture effect was observed (Fig. 2b; see legend for further details).

In Fig. 3 we used continuous vertical lines instead of rows of dots in the background. Subjects reported that the illusion was just as compelling here as in Fig. 2. Surprisingly, the capture effect was strong enough to overcome the physical continuity of the vertical lines and caused apparent breaks to appear on the lines at the upper and lower edges of the subjective square. Again, as in Fig. 2, the illusion disappeared completely when the pictures received by the two eyes were interchanged and subjects now reported seeing rivalry and diploria instead of capture.
Fig. 2 a. Produced by superimposing a template of Fig. 1c on a repeating wallpaper pattern. The inter-dot separation between the elements constituting the wallpaper is 5 arc min. A subjective square stands out in front of the background and carries the wallpaper with it even though the elements on the wallpaper are at zero disparity. This is an example of stereo capture (see text). b. Identical to a but with the two eyes' pictures interchanged to reverse retinal disparities. The illusion is destroyed and replaced by rivalry and diplopia. However, one of our subjects spontaneously reported that instead of stereo capture he now saw four portholes cut out of an opaque sheet of wallpaper. Through these portholes he could see the four corners of a smaller square piece of wallpaper and these corners pulled the corresponding rows of dots with them. This alternative and unusual percept of seeing four deeper corners is of considerable interest for it reinforces the view that it is indeed the subjective contours that drive the perceived depth. The observation was also confirmed by two other subjects on prompting but the remaining five subjects continued to experience rivalry and diplopia. The percept becomes more pronounced if the horizontal black lines are removed and if finer textures are used (e.g., a tried fusion Fig. 3b).

Next we superimposed Fig. 1c on horizontal lines (Fig. 4a). As expected, none of the eight subjects observed capture when uncrossed disparities were used (as in Fig. 3). With crossed disparities, subjects reported that only the lines actually adjoining the sectors themselves were pulled forward. All the other lines on the square remained flush with the background and it was very difficult to break the continuity of these lines in order to partition them into two surfaces. Perhaps the brain is reluctant to attribute depth to horizontal lines as such lines do not normally convey disparity signals in the real world.

One could argue that the anisotropy observed here is between vertical as opposed to horizontal gradients of disparity (that is, between the vertical and horizontal edges of the illusory square) and not between vertical and horizontal gratings. We tested this possibility by using oblique gratings (Fig. 4b) and found that the illusory breaks on the lines could now be seen along both vertical and horizontal borders of the square. Further, when they were asked to compare the vertical and horizontal depth edges, none of our subjects could see any difference. This result suggests that the anisotropy observed in Figs 3 and 4 occurs not at the cyclopean level but probably at an earlier stage of stereo-matching.

Figure 4c depicts another version of stereo capture: here we have used dissimilar wallpaper textures for the images received by the two eyes. As the elements comprising these textures are uncorrelated for the two eyes, one would expect to see either binocular rivalry or random depth planes based on chance correlations. Seven of our eight subjects, however, reported seeing stereo capture; the dots corresponding to the square were seen to stand out in front despite the rivalry. Thus, the stereo capture illusion is strong enough to overwhelm rivalry of finer image features (high spatial frequencies), although the effect is certainly less striking than that observed in Figs 2, 3. This observation is consistent with the conclusions of Ramachandran et al.
may turn out to be different from motion capture10,31

Our conclusions are also consistent with the elegant demonstrations of Mitchison and McKee12 and Julesz and Chang13, although neither of these studies specifically explored the role of image segmentation produced by illusory contours. Mitchison and McKee found that disparity signals derived from the endpoints of two horizontal dot-rows viewed binocularly could influence the matching of ambiguous repetitive elements in the middle. However, in certain conditions they could produce a dot-row that was tilted in stereoscopic space as a result of interpolation— an effect that we could not produce in our displays. When we superimposed a tilted illusory surface on closely spaced gratings (12 cycles deg-1) the gratings remained flush with the background and showed no tendency to tilt with the illusory surface.

Next, we wondered whether the stereo capture illusion depicted in Figs 2 and 3 was being produced by the illusory contours themselves or by the disparity conveyed by the cut sectors. Although there is no simple way of answering this question, we attempted to do so by using a 'control' stereogram of the kind shown in Fig. 4d. Here, we have replaced the cut sectors with corners made of tiny line segments so that no illusory contours are visible. When our eight subjects viewed this stereogram, they reported that the corners floated out in front of the paper but that the grating was not captured and pulled forward. This supports our contention that the creation of a subjective surface is an important prerequisite for producing stereo capture.

Thus, disparate subjective contours capture regions of zero disparity enclosed within these contours but not regions that lie outside the contours. When vertical stripes are used the effect is strong enough to overcome the physical continuity of the lines so that illusory breaks appear on them. The capture effect disappears in the sign of disparity is reversed, suggesting that factors such as overlay or occlusion are an integral part of the illusion. An anisotropy was observed between vertical and horizontal lines, the latter being more resistant to capture. Capture was also phase-sensitive, the effect being more pronounced when the disparity of the illusory contours was an exact multiple of the grating periodicity. Finally, completely uncorrelated (and rivalrous) regions can also be captured to a limited extent.

It would be interesting to determine whether computational models14 of stereopsis can be modified to account for these intriguing phenomena. We conclude that in many instances the brain may begin by segmenting the scene into contours and surfaces and that the information derived from such segmentation can have a profound influence on subsequent processing of retinal disparities15. Certain cells in area V115-17 are thought to respond to small disparities and those in V2 to large retinal disparities18-20 as well as illusory contours21. It is not inconceivable, therefore, that stereo capture results directly from synergistic interactions between these cells. For example, the wallpaper might excite cells corresponding to several depth planes in area V1 whereas the disparity of illusory contours would excite only a single plane in V2. The latter signal might then be fed back to V1 to select or 'highlight' the appropriate plane—a conjecture that is consistent with the observed anisotropy (Figs 3, 4a) and phase-sensitivity of stereo capture. Further experiments along these lines may help us to better understand the hierarchy of precedence rules and the brain that result in the construction of a three-dimensional visual world.

We thank D. MacLeod, F. H. C. Crick and G. Mitchison for stimulating discussions, E. Ebbesen for facilities, and one of the referees for suggesting some further experiments. V.S.R. was supported by academic senate and biomedical research grants from UCSD.

Note added in proof: If disparities were introduced between the disks themselves and not just between the cut sectors, no capture was seen. This suggests that a simple spread of disparity signals cannot explain the effect; the presence of an illusory stereoscopic surface is required.

Fig. 4 a, Capture is considerably weaker if horizontal lines are used. The lines adjoining the sectors themselves are pushed forward but not the lines in between (they remain flush with the background and it is impossible to see subjective breaks). b, A stereogram similar to a and Fig. 2, except that we have used oblique lines instead of horizontal or vertical lines. The apparent breaks on the lines are equally obvious on both vertical and horizontal borders of the illusory square. c, Here we have used dissimilar textures for the two eyes to produce rivalry. Stereo capture can be seen despite the rivalry (especially on eccentric fixation) but the illusion is less compelling than in Figs 2 and 3. Note that although the textures are dissimilar, they probably have some overlap of their Fourier power spectra: this overlap may produce some chance correlations that are necessary for generating the effect, but we did not specifically explore this possibility. d, This stereogram is identical to Fig. 3a in every respect except that we have replaced the cut sectors with corners made of small line segments so that no illusory contours are visible. Although the disparity between these corners is identical to the disparity between the cut sectors in Fig. 3a, stereoscopic capture cannot be observed in this display, suggesting that the presence of an illusory surface is an important prerequisite. Some of the lines may occasionally appear to come forward due to convergence but it is impossible to partition the image into two well-defined surfaces.
Received 11 April; accepted 18 July 1985.

Printed in Great Britain by Macmillan Production Ltd., Basingstoke, Hampshire