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A PDE Formalization of Retinex Theory
Jean Michel Morel, Ana Belen Petro, and Catalina Sbert

Abstract—In 1964 Edwin H. Land formulated the Retinex
theory, the first attempt to simulate and explain how the human
visual system perceives color. His theory and an extension,the
“reset Retinex” were further formalized by Land and McCann
[1]. Several Retinex algorithms have been developed ever since.
These color constancy algorithms modify the RGB values at
each pixel to give an estimate of the color sensation withouta
priori information on the illumination. Unfortunately, the Retin ex
Land-McCann original algorithm is both complex and not full y
specified. Indeed, this algorithm computes at each pixel an
average of a very large set of paths on the image. For this reason,
Retinex has received several interpretations and implementations
which, among other aims, attempt to tune down its excessive
complexity. In this paper, it is proved that if the paths are
assumed to be symmetric random walks, the Retinex solutions
satisfy a discrete Poisson equation. This formalization yields an
exact and fastimplementation using only two FFT’s. Several
experiments on color images illustrate the effectiveness of the
Retinex original theory.

Index Terms—Retinex theory, color perception, stochastic in-
tegral, PDE, FFT

I. I NTRODUCTION

One of the main enigmas of perception is the discrepancy
between the physical reflectance of objects and the colors
perceived by the human visual system (HVS). This system,
made up of eye, retina and visual cortex, processes the photons
reaching the eyes. Color processing is completed in the cortex
V4 area. The result of this process is color sensation, which
cannot be measured directly: it can be only experienced by
the HVS. Color sensation is not directly linked to the spectral
characteristics of the perceived signal ([2]).

One of the puzzling HVS features iscolor constancy,
namely the ability to determine the colors of objects irrespec-
tive of the illumination conditions ([3]). Human and machine
color constancy are different concepts. As impressively de-
scribed in [2], the human color perception depends on several
factors such as overall illumination changes or the amount of
detail in the scene ([4]). From the deep study of this HVS
property one can deduce that the human color sensation is
hardly influenced by the context. The reflectance, which is the
amount of incident light reflected by an object for a given
wavelength, defines the physical color of an object ([3]). The
goal of machine color constancy is to determine reflectance
regardless of illumination. This objective is quite different
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from the HVS modeling objectives. However, as we shall see,
some striking similarities arise when these divergent theories
are formalized as PDE’s.

The Land and McCann Retinex theory ([1], [5]) is the first
attempt to simulate and explain how the HVS perceives color,
based on experiments using Mondrian patterns. In early results
([6]), Land assumed that three independent sets of receptors
exist and that the comparison of these three receptor outputs
gives the sense of color. He named Retinex this system and
Retinex theory aims at reproducing the sensory response to
color stimuly by the HVS ([7]). This name is a neologism
made of retina and cortex. Indeed, Land postulates that the
Retinex involves the structure and function of both retina and
cortex ([1]). Land’s Retinex theory is the first computational
model to explain and simulate color constancy. In [8], Land
proposed the three Retinex Theory statements:

I The composition of the light from an area in an image
does not specify the color of that area.

II The color of a unit area is determined by a trio of
numbers each computed on a single waveband to give
the relationship for that waveband between the unit area
and the rest of the unit areas in the scene.

III The Retinex algorithm (described in Section II)

In the past forty years, the Retinex model has inspired a
wide range of implementations, improvements and discussions
([9], [10], [11], [12]). The Retinex algorithms have also been
used by several authors as color constancy algorithms. As
Provenzi et al. mention in [13], “there is a big interest in
the comparison among spatial properties of all the differ-
ent Retinex implementation available in literature”. But this
comparison is a challenging task because of the computa-
tional complexity of existing implementations and of their
strong dependence on their own parameters ([13]). Hurlbert
in [14] tried to “clarify and formalize the lightness problem
by proposing a new formulation of the intensity equation
on which lightness algorithms are based”, but she did not
substantiate a unique mathematical formula from which the
different lightness problems would be derived.

In this paper, the original Retinex algorithm will be formal-
ized as a (discrete) partial differential equation. More precisely,
it will be shown that if the Retinex paths are interpreted
as symmetric random walks, then Retinex is equivalent to a
Neumann problem for a linear Poisson equation. This result
gives a fast algorithm involving just one parameter, also
present in the original theory. The obtained Poisson equation
turns out to be very similar to Horn’s and Blake’s equations,
which were proposed as alternatives to Retinex. To the best of
our knowledge, this striking similarity of the three modelshad
not yet been pointed out. The obtained Retinex PDE also turns
out to be one of the “Poisson editing” equations proposed in
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Perez et al. [15]. We can directly quote from these authors:
First, it is well known to psychologists [Land

and McCann 1971] that slow gradients of intensity,
which are suppressed by the Laplacian operator, can
be superimposed on an image with barely notice-
able effect. Conversely, the second-order variations
extracted by the Laplacian operator are the most
significant perceptually. Secondly, a scalar function
on a bounded domain is uniquely defined by its
values on the boundary and its Laplacian in the
interior. The Poisson equation therefore has a unique
solution and this leads to a sound algorithm.

The paper is organized as follows. In the next section we
present the original Retinex algorithm and its modified version
called reset Retinex. Section III gives a brief overview of
several types of Retinex implementations in the literature.
The equivalence of Retinex and the Retinex PDE is detailed
in Section IV. An “Extrema Retinex” variant where the
paths start from image extrema is also considered. A FFT
fast implementation is described in Section IV-C. Section
V displays results of the proposed algorithm illustrating the
perception effects of the original Land method, depending
on the threshold parameter. These experiments seem to agree
with the original scopes of Retinex, and confirm several color
illusions.

II. ORIGINAL RETINEX ALGORITHM

The basic Retinex model is based on the assumption that
the HVS operates with three retinal-cortical systems, eachone
processing independently the low, middle and high frequencies
of the visible electromagnetic spectrum. Each system produces
one lightness value which determines, by superposition, the
perception of color in the HVS. On digital RGB images,
the lightness is represented by the triplet (LR, LG, LB) of
lightness values in the three chromatic channels.

A. Resetless Retinex

Inspired by several experiments, Land and McCann ob-
served that edges are the main image feature invariant to
illumination, and therefore the main source of informationto
achieve color constancy ([1]). They also realized that a lumi-
nance ratio threshold between two adjacent points maintains
the edge if there is one between those points, but eliminates
the gentle slopes caused by nonuniform illumination. Thus,
obtaining the lightness values boils down to processing the
entire image in terms of luminance ratios. In the case of two
widely separated areas in the image, they therefore consider
the sequential product of ratios across edges on a path joining
both areas (see Fig. 1). Since this generalized lightness ratio
would then depend upon the chosen path, the Retinex algo-
rithm considers all possible paths starting at random points and
ending at the pixel at which the lightness value is computed.
This lightness is then defined as the average of the products of
ratios between the intensity values of subsequent edge points
in the path. In order to remove the effects of nonuniform
illumination over the scene, the ratio is considered unitary if
it does not differ from 1 by more than a fixed threshold value.

Fig. 1. The original Land-McCann scheme without the reset mechanism:
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along the path.”

The formula giving the lightness valueL of a pixel x =
(i, j) computed by Retinex in a given chromatic channel was
proposed in [16], but the process itself is described in [1].
The image dataI(x) is the intensity value for each chromatic
channel atx. Land and McCann consider a collection of
N pathsγ1, . . . , γk, . . . , γN starting atx and ending at an
arbitrary image pixelyk. Let nk be the number of pixels of
the pathγk, and denote byxtk

= γk(tk) for tk = 1, . . . , nk

and byxtk+1 = γk(tk + 1) the subsequent pixel of the path
so thatγk(1) = x andγk(nk) = yk.

Definition 1: The lightness L(x) of a pixel x in a given
chromatic channel is the average of the relative lightness at x
over all paths, that is

L(x) =

∑N
k=1 L(x; yk)

N
, (1)

where L(x; yk) denotes therelative lightness of a pixel x
with respect toyk on the pathγk defined by

L(x; yk) =

nk∑

tk=1

δ

[
log

I(xtk
)

I(xtk+1)

]
, (2)

and, for a fixed contrast thresholdt,

δ(s) =






s if |s| > t

0 if |s| < t .
(3)

B. Reset mechanism

The reset mechanism proposes an adaptation of the above
definition to ensure that all paths start from regions where the
maximal luminance value is attained. We quote from [1]:

One that seems simple, but is not, is to scan
the entire scene to find the area or areas with the
highest reflectance. (...) Although this technique is
mathematically valid we feel that it is not readily
transposed into biological mechanisms. We therefore
sought a technique that can automatically estab-
lish the highest reflectance without a separate first
scanning step. We adopted the convention that the
initial ratio is the ratio of the signal of the second
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receptor to that of the first (followed by the third
to the second, etc.). Then, regardless of the true
reflectance of an area, our technique supposes that
the first receptor in any path is reporting from an
area that reflects 100% of the light. (...) Attainment
of a sequential product greater than 1.0 indicates that
the sequence should be started afresh and that this
new, higher reflectance should be next supposed to
be 100%. (...) As the path proceeds, the sequential
product always starts over at unity when the path
encounters an area with a reflectance higher than
the highest previously encountered.

Notice that the above quotation uses products of ratios (see
Fig. 1). Taking the logarithm of this product yields a sum
of logarithms of ratios. In the reset formulation of Retinex,
the average givingL(x) is taken over paths on which all
partial sums leading to the complete sumL(x; yk) must be
non-positive:

∀j = 1, . . . , nk − 1,

nk∑

tk=j

δ

[
log

I(xtk
)

I(xtk+1)

]
≤ 0. (4)

The value of the reset Retinex solution at a pixel depends on
the memory of each single path. To the best of our knowledge,
this fact rules out any PDE formalization for reset Retinex.
As shown by the above Land and McCann quotation, the
main goal of the reset mechanism was to ensure that all paths
starting fromx end at pointsyk that are image extrema. This
goal is not achieved by reset Retinex. The reset mechanism
only selects paths along whichthere is no value larger than the
initial value. This observation justifies defining an“Extrema
Retinex”, namely a variant where all paths only start from
image extrema. Extrema Retinex is an easy adaptation of Def.
1:

Definition 2: (Extrema Retinex)The lightness L(x) of a
pixel x in a given chromatic channel is the average of the
relative lightness atx over all paths linkingx to an arbitrary
image extremumyk, the path meeting no other extremum

before reachingyk. We therefore haveL(x) =

∑
N

k=1
L(x;yk)

N

whereL(x; yk) is given by (2).
In all that follows we shall analyze and compare both def-
initions, namely the original Retinex (Def. 1) and Extrema
Retinex of Def. 2. Somehow, the result of reset Retinex should
be intermediate between the result of Resetless Retinex and
Extrema Retinex. As the above quotation shows, Extrema
Retinex was considered by Land and McCann, but only to
be rejected as biologically not plausible. In recent papers,
such as [7], McCann clearly refers this area or areas with the
highest reflectance as “local maximum” zones. All the same,
we consider it interesting and legitimate to compare it withthe
original Retinex, to see whether it makes a serious difference
or not.

III. STATE OF THE ART

Many interpretations, implementations and improvements
of the Retinex algorithm can be found in the literature. The
interpretations are usually categorized [17], [11] as path-based

algorithms, recursive algorithms, center/surround algorithms
and physically-motivated variants (introduced by Horn [18]).
We shall now review briefly these categories.

A. Path-based algorithms

In these algorithms the lightness of each pixel depends on
the multiplication of ratios along random walks. The original
works of Land, [1], [8], belong to this category, jointly with
recent implementations such as [19] and [12].

The main drawbacks of path-based algorithms are the de-
pendency of the path geometry, the computational complexity,
and the large amount of free implementation parameters, such
as the number of paths and their lengths.

In [19], the authors implemented the original Retinex using
Brownian motion to approximate each path in the Retinex
algorithm. This application greatly improves the effectiveness
of the algorithm and its speed, but the new implementation still
presents the two mentioned drawbacks. However, we follow
these authors and adopt the Brownian motion as the likeliest
interpretation of the set of paths that was left unspecified by
Land and McCann.

In [12], Provenzi et al. presented a detailed mathematical
analysis of the original Retinex algorithm proposing an an-
alytic formula that describes the algorithm behavior. They
postulate that the qualitative behavior of Retinex in relation
to the variation of the different parameters can be predicted
by using a direct mathematical formula. Unfortunately, their
proof is reduced to a Retinex without threshold. Provenzi et
al. in their last work [13] replace paths by 2-D pixel sprays.
The spray approach is faster than the path-based one.

B. Recursive algorithms

Recursive algorithms were developed by Frankle and Mc-
Cann. They replace the path computation by a recursive matrix
comparison ([20], [21], [22]). These algorithms compute long-
distance iterations between pixels first and then progressively
move to short-distance interactions. The spacing between
pixels being compared decreases at each step in clockwise
order. The comparison is implemented with ratio-product-
reset-average operation at each space.

This algorithm is computationally more efficient than the
previous ones. The main drawback is that it depends on
a crucial parameter, namely the number of times a pixel’s
neighbors are to be visited. This parameter is named number of
iterations. The optimal value for this parameter is not clear and
can strongly influence the final result (see [23] for a discussion
of this point).

C. Center/surround algorithms

Through the years, Land’s views on Retinex evolved to its
last form as a center/surround spatially opponent operation
([24]). This new technique introduces a weight in the recip-
rocal influence of two pixels, inversely proportional to their
square distance.

These new implementations suggested to some authors the
idea that the lightness values could be computed by subtracting
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a blurred version of the input image from the original image.
Thus, Rahman et al. use a Gaussian to compute the blurred im-
age and perform color correction at a single scale ([25]). They
made later this algorithm multi-scale ([26]). The algorithms in
the center/surround class are faster than the path-based ones,
and the amount of parameters is notably reduced. However,
they still present a large amount of parameters which are
difficult to formalize. Moreover, the Rahman et al. algorithms
are based on the “gray world” assumption, i.e. the assumption
that, on average, the world is gray, and the results over color
images with gray-world violations are unnatural.

There is growing interest in Retinex variants permitting
local contrast enhancement and therefore an improved vi-
sual quality. Bertalmio et al. [27] have recently proposed
a novel interpretation of Land’s Retinex theory, the Kernel-
Based Retinex (KBR), which relies on the computation of
the expectation of a suitable random variable weighted with
a kernel function. The authors prove that Retinex and KBR
share the same intrinsic properties. The method has a low
computational cost but “the set of parameters that correspond
to the best visual performance varies with the input image”.
This work is based and compared with two previous works:
[28] and [4], in which color correction algorithms are devised
in the framework of variational techniques and are inspiredin
the basic phenomenology of human color vision. Very recently,
Bertalmio and Cowan ([29]) have implemented the KBR as
Wilson-Cowan equations.

D. Physics-based Algorithms

The algorithms in this category propose to translate the
Retinex principles into a more physical form, leading to set
of equations or to an optimization problem. Horn’s work
[18] is the first of a group of articles ([30], [31], [32]) in
which the authors propose to decompose the image intensity
I as a product of the reflectanceR and of the incident
illumination intensityL, so thatI = R · L. Horn separates
reflectance and illumination by taking the logarithm of the
image intensity,log I = log R + log L. Like in Retinex,
the main assumption is that the illumination varies smoothly
over the image, while sharp discontinuities are present only
where the reflectance changes. Applying the Laplacian yields
∆log I = ∆ log R + ∆ log L. Then the first component
∆log R is zero almost everywhere, and is large only at the
reflectance edges. The second component∆log L is bounded
and small becauseL varies smoothly. Thus, Horn proposes to
apply a threshold operatorT to remove the second component.
This yieldsT (∆ log I) ≃ ∆log R. This relation can be viewed
as a Poisson equation to findlog R from I, namely

∆(log R) = T (∆ log I). (5)

The solution of the Poisson equation is finally exponentiated
to yield an estimate of the reflectance. Horn normalizes the
result by assuming that there is at least one point in the image
that reflects all the light, which is therefore assumed to be
white.

The Poisson equation (5) in Horn’s model is usually solved
by an iterative scheme, certainly not an optimal method for this

equation when the domain is a rectangle. The very same equa-
tion is actually called Poisson-equation-type Retinex algorithm
in [33], which refers to Kimmel et al. [17] variational model
for Retinex. This last model is similar to the Horn model. It
also assumes that the illumination field is smooth, and inserts
in the variational model a knowledge of the limited reflectance
dynamic range as a constraint. These authors also presenteda
fast multi-resolution solution to the variational problem.

IV. A PDE MODEL OF RETINEX THEORY

Our limited aim is to propose a possible formalization of
the original Retinex theory of lightness perception described
by Land [16] and Land-McCann [1], and, to some extent, its
reset formulation. The main outcome of this formalization will
be a Poisson equation.

A. The random path model

The first thing to do is to give a formal definition for the
paths used by Land et al. These authors did not give any
definite indication on the set of paths to be used. Thus, most
implementations tend to reduce the number of admissible paths
for obvious computational reasons. However, in absence of
any specification, it seems sound to do exactly the contrary,
namely to consider the most general class of random paths
compatible with image geometry. Such are the paths obtained
by standard symmetric discrete random walks on the image
grid [34]. These paths start from the reference pixelx and their
stopping pixely is an arbitrary pixel on the image grid. Such
random paths can of course have loops. In particular nothing
excludes their passing more than once byx before reaching
y. Notice that when the grid mesh tends to zero these random
paths tend to Brownian paths that are isotropic. This Brownian
path interpretation was already proposed in its asymptoticform
in [19]. Thanks to this isotropic limit, the anisotropy of the
random symmetric walk is no serious objection to adopting a
discrete random walk. In coherence with this remark, we shall
see that the underlying PDE also tends to be isotropic when
the image mesh tends to zero.

To define easily how the random walk bounces back when it
meets the image boundary, the random walk is first considered
as a random walk on the whole plane. To this aim, the rectan-
gular image defined on the rectangular gridR := {0, . . . , M−
1}×{0, . . . , N −1} is first reflected through its boundaries to
a rectangular image{0, . . . , 2M − 1}× {0, . . . , 2N − 1}. For
instance the reflection through the right vertical image side
satisfies setu(M − 1 + i, j) := u(M − i, j) for 1 ≤ i ≤ M ,
which impliesu(2M − 1, j) = u(0, j), so that the right hand
side and the left hand side of the new image are equal (see
Fig. 2 left). This symmetric image is then extended to the
whole integer planeZ2 by making it 2M × 2N periodic.
When a function is obtained by this symmetrization and
periodization, we shall say that it is(M, N) symmetric and
periodic. (This setting is the standard image representation
used for the Discrete Cosinus Transform.) Two pixels in the
plane are saidcongruent if they are obtained from the same
original pixel in the initial image domain by reflection and
periodization.
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Fig. 2. Left: Domain symmetrization. Center: A random walk in the plane. Right: The congruent random walk in the image domain.

Consider a standard symmetric random walkxt in Z2. By
taking the unique congruent pointx̃t of xt belonging to the
original image domain, we can associate with the random walk
in the plane a random walk in the original image domain (see
Fig. 2 right). In that way, the random walk̃xt is reflected when
it hits the initial image boundary. More precisely, consider a
generic boundary pixel(i, j) belonging (e.g.) to the right hand
vertical image side. Then if the random walk̃xt is at (i, j),
its next positionx̃t+1 can be up, down, right and left with
probability 1

4 . When the next position implies crossing the
image boundary toward(i + 1, j), then x̃t hits the boundary
half-pixel (i+ 1

2 , j), bounces back, and therefore stays for one
more step at̃xt+1 = (i, j). We could have defined directly the
reflected random walk̃xt but, both settings being equivalent,
advantage can be taken of both. Indeed, standard theory on
random walks in the plane [34] applies toxt, while x̃t is a
Markov chain with a finite number of states. The effect on the
image is identical becauseI(xt) = I(x̃t).

In agreement with the first Retinex theory, the stopping
pixel y is a uniformly distributed random pixel in the image
rectangle. (Here and in all that follows, random variables are
written with bold characters.) We say that the random path in
the planext hits y if x̃t does. This amounts to say thatxt

hits any pixel congruent toy.
Lemma 1:For every specified stopping pixely the random

walk stops almost surely in finite time, and the expectation of
the stopping time is finite and uniformly bounded.

Proof: Indeed, since we can reach any pixel from any
pixel, x̃t is an irreducible Markov chain on a finite set of
states (the original image domainR). Thus, the announced
properties are standard [34].

We can therefore consider the stopping time of the random
walk aty, n(y) and the stopped random walk at a pixely or at
a set of pixelsY. The associated stopped symmetric random
walk is defined by

x
y
t =:

{
xt, for t ≤ n(y);
y, for t ≥ n(y).

We denote the length of this random walk byn(xy
t ) (and

similar notations for a stopping setY: n(Y), xY
t ). The

Retinex “average over paths” is nothing but an expectation
E in the random walk model. The next definition is therefore
the straightforward translation of Land’s original definition in
more formal probabilistic terms.

Definition 3: Assume1 ≤ I(x) ≤ C is a bounded symmet-
ric image. Given a stopped symmetric random walkx

y
t on the

image grid starting atx and stopping at a pixely, the relative
lightnessL(x, y) is

L(x, y) = E

n(y)∑

t=1

δ

[
log

I(xy
t )

I(xy
t+1)

]
=: E L(xy

t ) . (6)

The lightnessL(x) of a pixel x in a given chromatic channel
is the expectation of the relative lightness (2) atx of a stopped
symmetric random walkxy

t on the image grid starting atx and
stopping at a random uniform image pixely. In other terms,

L(x) =
1

NM

∑

y∈R

L(x, y). (7)

In the case ofExtrema Retinex, denoting byY the set of image
maxima, we call lightness the function

L(x) = E

n(Y)∑

t=1

δ

[
log

I(xY
t )

I(xY
t+1)

]
=: E L(xY

t ) . (8)

The only difference with the original Land definition is that
the Retinex walk is specified to be a standard random walk.
The above defined values are finite. Indeed, the function
δ
[
log

I(xy

t
)

I(xy

t+1
)

]
is uniformly bounded, and by Lemma 1 the

expectation of the stopping timeEn(y) is finite.
The discrete Laplace operator on a grid is defined by

∆f(i, j) =: f(i + 1, j) + f(i − 1, j) + f(i, j + 1) + f(i, j −
1) − 4f(i, j). The discrete normal boundary operator on the
boundary of the rectangular domain is defined, for example on
the right vertical boundary, by∂df

∂n
(M − 1

2 , j) =: f(M, j) −
f(M − 1, j).

Lemma 2:The relative lightnessL(x, y) in a chromatic
channel as defined in Def. 3 is a(M, N) symmetric and
periodic solution of the discrete Poisson equation

{
−∆xL(x, y) = F (x), x 6= y,
L(x, y) = 0, x = y

(9)

where∆xL denotes the discrete Laplace operator with respect
to x,

F (x) = f

(
I(x)

I(x−0)

)
+ f

(
I(x)

I(x+0)

)
+

+f

(
I(x)

I(x0−)

)
+ f

(
I(x)

I(x0+)

)
, (10)
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andf(x) = δ(log(x)), δ has been defined in (3),x−0 = (i −
1, j), x0− = (i, j−1), x+0 = (i+1, j), andx0+ = (i, j +1).

Proof: Consider the stopped random walkx
y
t starting atx

and ending aty. If x = y, thenL(x, y) = 0, sinceL(xy
t ) = 0.

If x 6= y, this path hits first, with probability1/4, one of the
four x-neighbors,x−0, x0−, x+0, andx0+. Let us denote this
neighborhood byV (x). By removing the first step ofxy

t , the
shortened pathxy

t =: x
y
t+1 becomes the symmetric random

walk starting atx′ ∈ V (x) and ending aty. Indeed, there is
a bijection between: a) the set of random paths starting atx
and stopping aty whose first step is[x, x′], and b) the set of
random paths starting fromx′ and stopping aty. Thus,

L(x, y) = E L(xy
t ) =

1

4

∑

x′∈V (x)

(
f

(
I(x)

I(x′)

)
+ E L(xy

t )

)

=
1

4

∑

x′∈V (x)

(
f

(
I(x)

I(x′)

)
+ L(x′, y)

)
,

which yields (9).

Remark 1:The result of lemma 2 can be reformulated as
a discrete equation on the initial discrete image modelR :
L(x, y) is the unique solution of the Poisson equation with
Neumann boundary condition,






−∆xL(x, y) = F (x) x 6= y, x ∈ R
L(x, y) = 0 x = y, x ∈ R
∂dL(x,y)

∂n
= 0 x ∈ ∂R

. (11)

Theorem 1:The lightness valueL(x) in a chromatic chan-
nel defined in Def. 3 is the unique solution of

{
−∆L(x) = F (x) x ∈ R
∂dL(x)

∂n
= 0 x ∈ ∂R

(12)

whereF is defined in (10).
Proof: By (7),

−∆L(x) =
1

MN

∑

y∈R

−∆xL(x, y)

=
1

MN




∑

y∈R,y 6=x

−∆xL(x, y) − ∆xL(x, x)



 . (13)

By Lemma 2, we know the value of the first term but it remains
to compute the second term. Using the discrete Green Formula
we have

∑

x∈R

∆xL(x, y) =
∑

x∈∂R

∂dL(x, y)

∂n
= 0.

By equation (11) we have

−
∑

x∈R

∆xL(x, y) = −
∑

x∈R,x 6=y

∆xL(x, y) − ∆xL(y, y)

=
∑

x∈R,x 6=y

F (x) − ∆xL(y, y).

Thus,
∆xL(y, y) =

∑

x∈R,x 6=y

F (x).

Finally, substituting these values in formula (13) we obtain

−∆L(x) =
1

MN




∑

y∈R,y 6=x

F (x) −
∑

y∈R,y 6=x

F (y)





=
1

MN



(MN − 1)F (x) −
∑

y∈R,y 6=x

F (y)





= F (x) −
1

MN

∑

y∈R

F (y).

By symmetry, it is an easy check that
∑

y∈R F (y) = 0,
and we get (12). The existence and uniqueness of the(N, M)
symmetric and periodic solution of this discrete equation
follows from the explicit calculation of the solution by DCT
in Section IV-C.

A straightforward adaptation of the proof of Lemma 2 gives,
with the same notation, the Retinex equation in theExtrema
case:

Corollary 1: Let Y be the set of image maxima. The
Extrema Retinex lightness value in a chromatic channelL
defined in Def. 3 is the unique(M, N) symmetric and periodic
solution of the discrete Poisson equation

{
−∆L(x) = F (x) x /∈ Y

L(x) = 0 x ∈ Y
. (14)

Remark 2: If we considerδ(s) ≡ s, that is, Retinex without
threshold, then the equation (12) becomes

−∆L(x) = −∆ log(I(x)) . (15)

An asymptotic of the above equation is easily derived. Assume
for simplicity thatM = N and that the discrete domainR is a
sampling of a continuous domain[0, 1]2 on whichI is assumed
to be defined with arbitrarily sharp resolution. Assume also
that v(x) := log(I(x)) is a C2 function. Under these ideal
circumstances, we can letN → ∞ and look for an asymptotic
state for the solutionL = LN of (15), which now depends on
N . Seth = 1

N
, the pixel mesh. Then by second order Taylor

expansion,

−∆v(i, j) = h2∆v(i, j) + o(h2),

where ∆ is the usual Laplacian. By a classic asymptotic
argument using distribution theory, the solutionLN of (15)
tends in the sense of distributions to the unique solutionL of
the continuous Neumann problem

{
−∆L = −∆log(I(x)) x ∈ [0, 1]2
∂L
∂n

= 0 x ∈ ∂([0, 1]2)
. (16)

This equation is similar to Horn’s equation [18] (see Section
III-D) and is isotropic, thus confirming the isotropy of the
Retinex model.

Remark 3:The equation obtained in Theorem 1 is identical
to thePoisson editing equationvery recently proposed in Perez
et al. [15]. However, the arguments presented in this paper
need be presented even if briefly. The authors remark that a
vector fieldV defined on the image domain is not necessarily
a gradient field, namely there is not necessarily a functionu
such that∇u = V . But a natural variational formulation leads
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Fig. 3. The central section of the Poisson kernel.

to compute a functionu whose gradient is closest toV as a
solution of the Poisson equation

∆u = divV. (17)

These authors also propose atexture flatteningapplication,
whose goal it is to wash out the texture and keep only the
edges. This is obtained by solving

∆u = div(δ(DI)), (18)

where δ is a lower threshold on the gradient killing small
gradients but maintaining the edges. This equation is actually
identical to Blake’s equation [30].

B. Locality of Retinex

As suggested by one of our referees, the locality of the
Retinex PDE could be evaluated by computing the average
length of the paths. However, this average length with stopped
brownian motion is already of orderO(N2) in one dimension,
and much higher in dimension 2. Thus this length does not
really evaluate the locality of the Poisson equation. The reason
is that random walks are twisted. The Retinex PDE locality can
be measured more realistically by the standard deviation ofthe
Poisson kernel underlying the equation. Actually, the Retinex
equation is non-linear and has no kernel unless we put the
thresholdt in (3) to zero. In that case the equation becomes
linear. Thus its solution is equivalent to the convolution of
the second member with a kernelK. Anticipating on the next
section and using (23), the equation kernelK is defined on
the Fourier domain by

K̂(k, l) =
1

4 − 2 cos 2πk
N

− 2 cos 2πl
M

. (19)

Convolving with this kernel a dataf is equivalent to solving
the Poisson equation withf as a second member. The standard
deviation ofK for N = M = 1024 is σ = 342, 66 and the
kernel shape and locality can be appreciated in Fig. 3. The
effect of this kernel Retinex spreads as far as one third of the
image. We refer to Fig. 7 to illustrate how Retinex gets less
local when the threshold increases.

C. FFT implementation

The discrete equation (12) is easily solved using the discrete
Fourier transform. The discrete Fourier transform of a two-
dimensional functionf(n, m) defined on aN × M grid is
defined for(k, l) ∈ {0, . . . , M − 1} × {0, . . . , N − 1} by

f̂(k, l) =
1

NM

N−1∑

n=0

M−1∑

m=0

f(n, m)e−i 2πkn
N e−i 2πlm

M

and the discrete inverse Fourier transform for(m, n) ∈
{0, . . . , M − 1} × {0, . . . , N − 1} by

f(n, m) =

N−1∑

k=0

M−1∑

l=0

f̂(k, l)ei 2πkn
N ei 2πlm

M . (20)

The discrete Fourier transform has the following property

f(n − n0, m − m0) =

N−1∑

k=0

M−1∑

l=0

ĝ(k, l)ei 2πkn
N ei 2πlm

M ,

where
ĝ(k, l) = f̂(k, l)e−i

2πkn0
N e−i

2πlm0
M . (21)

Substituting the discrete Fourier transform in (12) and using
the property (21) yields

L̂(k, l)

(
4 − 2 cos

2πk

N
− 2 cos

2πl

M

)
= F̂ (k, l) , (22)

which entails (fork, l 6= 0)

L̂(k, l) =
F̂ (k, l)

4 − 2 cos 2πk
N

− 2 cos 2πl
M

. (23)

Using (20) we obtain the value ofL at each point of the grid,
and finally normalizeL to the interval[0, 255]. All of the
above computations are performed on the extended symmetric
imageF defined on the2N×2M grid. F being symmetric, its
Fourier coefficientŝF are real. Since the coefficients ofL̂(k, l)
in Equation (22) are also real, this property is transferredby
the equation toL, andL is also symmetric. In addition, the
use of the discrete(2N, 2M) Fourier transform ofL and F
implicitly assumesF andL to be(2N, 2M)-periodic. Notice
that we have found a unique solution in the class of the(N, M)
symmetric and periodic discrete functions, as announced in
Theorem 1.

Notice that in the case of Extrema Retinex we cannot use
this fast implementation. In this case we use an slower iterative
method (Gauss-Seidel) for solving the corresponding linear
system. The existence and uniqueness proof for a solution of
the equation in Corollary 1 is also classic: It is the minimum
of a strictly convex quadratic functional.

D. Advantages of the PDE model

The new implementation of original Retinex has three
advantages compared to previous implementations: Under the
random walk assumption on the paths, it is completely faithful
to the original idea of Land-McCann. It is fast in the original
setting, and uses a unique parameter, the original Retinex
threshold.

Table I compares its computational cost with the previous
implementations mentioned in Section III. In this tableH =
MN is the number of pixels in the image. All previous path-
based implementation have obviously a higher computational
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cost, in spite of the fact that they consider considerably less
paths and less seed pointsy. Some of the given values for the
computational costs depend on parameters that have anyway
high values. For example, in [13], the authors deduce that the
ideal values of parameters aren = 20, N = 400.

Table I compares the number of parameters involved in
the various implementations. Only two implementations, [21],
[20], restrict themselves to a unique parameter. But, as we
mentioned before, this unique parameter in McCann and in
Frankle et al. has a strong influence on the result: “this
parameter can vary the output from radical to no dynamic
range compression” ([22]). Variations of the Retinex parameter
instead change only marginally the final result, as we shall
observe in next section.

Since the Retinex PDE implementation proposed here is
similar to the Horn and Blake models, Table II compares
the computational costs of these models. Clearly the FFT
implementation is much faster than any iterative scheme, and
actually works for all of these Poisson equations.

V. EXPERIMENTAL RESULTS

In this section, we present several results of the PDE
implementation, with a discussion about the threshold values.
The proposed PDE implementation of Retinex can be tested
on line by users on their own images at http://mw.cmla.
ens-cachan.fr/megawave/demo/retinexpde/. The choice of the
threshold value is left to the user. We shall also discuss here
the Extrema Retinex implementation.

A. The gamma-corrected model

The experiments implement the Retinex theory using the
new-introduced Poisson equation and the FFT (Section IV-C).
In principle, Retinex should be applied to raw images and we
will do so on several of our own. However, most classic test
images are gamma-corrected images in JPEG format. Thus, we
have to state how to deal with them. The gamma-correction
consists of applying a concave function to the raw image, in
practice a logarithm or asγ power with0 < γ < 1. Assuming
that the gamma-correction is logarithmic is not restrictive: sγ

andlog have a very similar shape over the usual image range.
As a rewarding consequence of this assumption, instead of
working with differences between logarithms of intensities
like in Retinex, we can deal directly with intensity differences
when working with gamma-corrected images. Thus we can
write directlyf(x) = δ(x), instead off(x) = δ(log(x)), with
δ defined by (3). Then the functionF defined in (10) simply
becomes

F (x) = f(I(x)−I(x−0)) + f(I(x) − I(x+0)) +

f(I(x) − I(x0−)) + f(I(x) − I(x0+)). (24)

Then, the pseudo-code applied to the different images for
obtaining the results showed in this section is:

for each color channelI do
ComputeF defined in (24), using the selected threshold

t

Apply FFT to F → F̂
ComputeL̂ with equation (23)
Apply inverse FFT toL̂ → L
ConvertL to [0, 255]

end for

B. Visual illusions: experiments

Land’s Retinex theory was postulated as a perception model
and attempted to explain the HVS and in particular classic
color perception illusions. In optical illusions the information
gathered by the eye is processed in the brain to give a
perception that does not tally with a physical measurement
of the stimulus source. Applying the Retinex algorithm to an
illusory image, it is expected that the result will be an image
showing the same tendencies in the alteration of colors as the
HVS.

As a first classic example, Fig. 4 shows Adelson’s checker
shadow illusion. In the left image a green cylinder standing
on a black and white checker-board casts a diagonal shadow
across the board. The image has been so constructed that
the white squares in the shadow, one of which is labeled
”B,” have actually the very same gray value as the black
squares outside the shadow, one of which is labeled ”A.” The
classic illusion is that the squares A and B appear respectively
black and white, despite the fact that they share the same
gray value, (88). If Retinex is faithful to human perception,
it should make B much brighter than A. The image on the
right shows the result of applying the PDE Retinex algorithm.
The gray value in square A is now 75 and in square B it is
100, making the square A effectively darker than the square
B, in agreement with our perception. The Retinex primary
goal was to simulate our perceptual color illusions. Thus
the criterion here is whether the perceptual tendencies are
adequately simulated and not by any image improvement.

Our next illusion is about simultaneous contrast, namely
the fact that the appearance of a color depends on the colors
surrounding it. Fig. 5 shows a background with a smooth
variation and two circles with the same gray value (170). One
of them is placed in the darker part of the image, and the
other one in the brighter part. The usual perception is that the
circle in the darker part looks conspicuously brighter thanthe
other. Again, this illusion is so strong that it needs masking
the whole image by a white sheet, excepting only both disks,
to check that they indeed share the same luminance. If we use
a thresholdt larger than the background variation, in this case
we taket = 3, the result is an image with constant background
(45). The left circle gets a 13 gray value and the right circle
a 245 gray value, which is coherent with our perception.

Finally, Fig. 6 shows the successful simulation of a color
illusion. On the left image, two X’s with exactly the same color
are put on different backgrounds, one yellow and the other
purple. The striking illusion is that the X on the left seems
to have a color similar to the purple background color on the
right, while the X on the right has an apparent color similar
to the yellow background color on the left. By applying the
Retinex algorithm witht = 3 the X’s really get these illusory
colors.
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TABLE I
COMPARISON BETWEEN PATH BASEDRETINEX ALGORITHMS

Algorithm Parameters Computational Cost

Land [16] N=number of paths,nk = number of pixels of each path, O(N · nk · H)

t = threshold

McCann [21] nIterations = number of times a pixel’s O(H2
· nLayers)

neighbors are to be visited

Frankle et al. [20] nIterations = number of times a pixel’s O(H · nIterations · log2(H))

neighbors are to be visited

Provenzi et al. [12] N=number of paths,nk = number of pixels of each path, O(N · nk · H)

ε = threshold

Provenzi et al. [13] R=radius of the sprays,f = radial density function, O(N · n · H)

N = number of sprays,n = number of pixels per spray

PDE Implementation t = threshold O(H · log2(H))

TABLE II
COMPARISON BETWEENPDE IMPLEMENTATIONS

Algorithm Parameters Computational Cost

Rahman et al. [26] N = number of gaussians,cn = scale of the Gaussian O(H ·

∑
N

n=1
c2n)

wn =weight associated with each scale Using FFT:

O(3 · (N + 1) · H · log(H))

Horn [18] e = threshold O(H2)

Blake [30] λ = threshold O(H2)

Kimmel et al. [17] α, β = weights in the penalty functional, O(99 · H)

Tk = iterations in each resolution layer,γ = gamma correction

Bertalmio [27] w(x) = kernel,f(x) = scaling function O(H · log(H))

FFT Implementation t = threshold O(6 · H · log2(H))

Fig. 4. The Adelson’s checker shadow illusion and the same image applying the Retinex algorithm witht = 3.

C. The Retinex threshold

With the functionF defined in (24), the second member
of the Poisson equation (12) behaves as an edge detector and
produces a positive impulse located on the brighter side of
the edge and a negative impulse located on the darker side.
The good point of expressing Land’s model on the gamma-
corrected image is that we can gain an intuitive meaning
for the Retinex thresholdt used in the definition ofδ. This
threshold allows to eliminate the small impulses. Now, in
gamma-corrected images, edges and image details are usually
perceived when their gradient exceeds a value around 10 (for
classic 0-255 ranges). Thus, to avoid squeezing contrast inthe
image the thresholdt must be significantly smaller than10. It
is surprisingly harder to fix a threshold on the raw image. The
gamma-correction performed in Section V.A was made with

γ = 0.85 and the color balance was a simple stretching of all
channels with minimal value at 0 and maximal value at 255.
For a deeper discussion of Retinex thresholds, see [22]

To understand the effect of this threshold Fig. 7 shows
a noisy original and the result of Retinex with increasing
threshold valuest = 0, 10, and 15. The background clutter
and the shades are progressively filtered out whent increases,
but the main edges are kept. Att = 15, however, edges start
loosing contrast and low contrasted details could disappear.

D. Raw images

In agreement with the original theory, several experiments
have been performed directly on raw images. The procedure
starts by applying the logarithmic function to the images,
then solving the Retinex PDE, using the expression in (10),



10

Fig. 5. Simultaneous contrast illusion. Left: the originalimage. Right: Retinex result witht = 3. By Retinex the background slope is eliminated and therefore
the shape-background contrast enhanced. In the left image the two disks have exactly the same grey level. Retinex is an attempt to formalize the process by
which the right disk appears conspicuously brighter than the left one. After applying Retinex, this disk indeedbecomesbrighter.

Fig. 6. On the left, the original image, the two X’s have exactly the same color. In the right image, Retinex simulates the illusion by which the left X gets
an apparent color similar to the right purple background, and the right X gets an apparent color similar to the left yellowbackground.

Fig. 7. Left: Original image. Center left: Retinex witht = 0. Center right: Retinex witht = 10. Right: Retinex witht = 15. Observe how colors are
slightly enhanced and the background clutter progressively eliminated when the thresholdt grows.

and finally exponentiating and quantifying the result. This
last quantification step, necessary for the visualization of the
image, makes the results on raw images and on JPEG images
quite similar. Fig. 8 shows an example of this procedure, with
thresholdst = 0 andt = 0.05 applied to the raw image. In the
bottom right image we show the result of the direct application
of Retinex to the JPEG image (obviously without the logarithm
and exponentiation steps). The results are quite similar. The
reason was explained above: the gamma-correction applied to
create JPEG images is very similar to a logarithm.

E. Extrema Retinex

In this section we present some results with Extrema
Retinex. As we shall see, the results are similar to the results
of the original Retinex. However, with Dirichlet conditions
inside the image domain, the PDE can no more be solved
by a fast Fourier implementation. A classic Gauss-Seidel
iterative scheme was instead used. The algorithm searches
first the image extrema and puts these points to zero. Then
the lightness at the other points is the solution of the linear
system associated with the discrete PDE.

In Fig. 9 we show the Extrema Retinex results on the images
in Fig. 4 and Fig. 5 respectively, with the usual conservative
value threshold parametert = 3. The results are very similar
to the corresponding Retinex results.

Fig. 10 compares the results on a real image of Retinex and
Extrema Retinex. The results are again quite similar.

F. Comparison

The comparison between PDE Retinex and other Retinex
implementations is a hard work, due to the fact that most
codes are not available. Luckily, the web page http://www.
cs.sfu.ca/∼colour/publications/IST-2000/ gives the results of
McCann99 and Frankle-McCann Retinex ([22]) over two
images. Figure 11 and Figure 12 show a comparison between
these results and the PDE Retinex result. The first image is a
synthetic image, where the PDE Retinex implementation does
not produce any change, and McCann99 and Frankle-McCann
lighten the black square. Figure 12 is a bluish image. The
three implementations successfully remove the blue tone in
the image. Probably because of its lack of locality (see the
section on locality), the PDE Retinex result is darker. Yet the
locality in McCann99 and Frankle-McCann results lead to the
creation of local halos, such as those around the letters in the
blue book. This artefact is typical of center-surround methods
and, in general, of methods where the paths are made more
local.

VI. D ISCUSSION, AND CONCLUSION

The main contribution of this paper is the proof of a math-
ematical equivalence between an interpretation of the original
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Fig. 8. Top Left: Original image. Top Right: Retinex result applied to the raw image witht = 0. Bottom Left: Retinex result witht = 0.05. Bottom Right:
Retinex result applied to the gamma corrected image witht = 2. Notice how similar are the results. Both maintain an image that is close to the original, but
the low contrasted texture on the wall has been wiped out.

Fig. 9. Left: The result of Extrema Retinex witht = 3 on the image in Fig. 4. The gray level of square A becomes 80 andthe gray level of square B
becomes 120. Right: The result of Extrema Retinex witht = 3 on the image in Fig. 5. The background becomes constant and the left circle becomes darker
than the right one. Thus Extrema Retinex shows the same properties as Retinex simulating color perception.

Land-McCann Retinex theory, where the paths, unspecified
in the theory, are assumed Brownian, and a simple Poisson
equation. The FFT solver of this equation permitted to install
an on line demo where it can be tested with all values of
the Retinex threshold parameter. But this analysis has also
revealed that the underlying equation was already known for
other scopes such as image editing, and that it was very similar
to two physical models, namely the Horn and Blake equations.

While the equivalence in itself is true and proven, its
interpretation is questionable. We thank one of the referees
for making the following three comments, which we decided
to reproduce textually because they reflect the main aspectsof
the discussion on Retinex.

The first comment roughly recalls that the basic assumptions
of the original Retinex theory have been proven wrong. “The
idea that HVS and consequently Retinex aims at separating
illuminance from reflectance was an initial hypothesis thathas
been proven to be false in recent works ([35], [36]). This idea
is at the base of the major part of the center-surround and
physics based Retinex”.

The second comment situates the Brownian path Retinex
implementation proposed here in the rich literature of variants
stemming from Retinex: “The proposed approach performs

like an implementation of the physical Retinex family”; “The
authors claim to be faithful to the original Retinex version,
however this is not confirmed by the presented results. In
fact the method presented in the paper and easily testable
on internet performs quite differently from path based and
iterative Retinex”. This comment actually confirms the math-
ematical result: under the Brownian path assumption the
original Retinex becomes a Poisson equation, very similar to
Horn’s physical model and almost identical to Blake’s model.

The third valuable referee comment is that several recent
and successful variants stemming from Retinex use a more
restricted set of paths than the ones considered in the present
paper: “The evidence from the mathematical analysis of lo-
cality should be related to the fact that in the original Retinex
(and in HVS) locality depends on image content. The limited
path random sampling, together with the reset operator, change
Retinex local effect, according to the image content. This is
a key feature not always considered in the center-surround
and physics based Retinex implementation. For an example
of center-surround anisotropic implementation see [37]. A
lack of anisotropy can lead to a contrast decrement that in
fact I have experienced using their web application and is
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Fig. 10. Left: Original image. Center: The result of Retinexwith thresholdt = 3. Right: The result of Extrema Retinex witht = 3. They are not identical,
but extremely similar.

Fig. 11. Left: Original image, Left Center: Result of McCann99 with 4 iterations, Right Center: Result of Frankle-McCann with 4 iterations, Right: Result
of PDE Retinex.

Fig. 12. Top Left: Original image, Top Right: Result of McCann99 with 4 iterations, Bottom Left: Result of Frankle-McCann with 4 iterations, Bottom
Right: Result of PDE Retinex.

often compensated with additional arbitrary color restoration
methods. Thus the random walk assumption is not enough
to be completely faithful to the original Retinex idea. The
comparison between proposed Retinex and Extrema Retinex
can be seen as a different trade-off between global and local
effect”.

The random path assumption taken in this paper can and
will indeed be the object of discussion, because it seems to
be too isotropic and too nonlocal. The last experiment in the
experimental section actually illustrates better this discussion
by comparing the results of the Poisson PDE with more
local methods. There is indeed an interaction in the literature

between two different scopes in Retinex theory: color balance,
and local contrast adjustment. The relation between those
two scopes should be further investigated. The experiments
herewith actually confirmed that the simplest original Retinex
interpreted with Brownian paths provides a local contrast
adjustment, in the spirit of [38] and [15].
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