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Abstract

One of the key challenges to human parsing and pose re-
covery is handling the variability in geometry and appear-
ance of humans in natural scenes. This variability is due
to the large number of distinct articulated configurations,
clothing, and self-occlusion, as well as unknown lighting
and viewpoint. In this paper, we present a stochastic gram-
mar model that represents the body as an articulated assem-
bly of compositional and reconfigurable parts. The recon-
figurable aspect allows a compatible part to be substituted
with an alternative part with different attributes, such as
for clothing appearance or viewpoint foreshortening. Rela-
tions within the grammar enforce consistency between part
attributes as well as geometry, allowing a richer set of ap-
pearance and geometry constraints over conventional artic-
ulated models. Part appearances are modeled by a sparse
deformable image template that can still richly describe
salient part structures. We describe a dynamic program-
ming parsing algorithm for our model, and show competi-
tive pose recovery results against the state-of-art on a chal-
lenging dataset.

1. Introduction
Human parsing and pose recovery have broad and far-

reaching applications in surveillance, automotive safety,
and human-computer interaction. One of the key difficul-
ties is searching the very large configuration space of ar-
ticulated parts with very cluttered and varied appearance.
These variations are due to the contours of different cloth-
ing types, textures, colors, lighting, foreshortening due to
viewpoint, and self-occlusion. Our approach is motivated
from an image parsing and scene understanding perspec-
tive, which aims to explain the phenomenon that produces
this variability.

Each part in our model is described by its geometric
configuration as well as an attribute distinguishing the part
specialization among other compatible parts. Although the
space of all possible attributed bodies is combinatorially
large, it can be represented concisely using a relatively

small set of production rules. In conventional grammars
such as those used for text, the composite parts formed by
these production rules represent abstractions that have no
direct evidence in the data except through a composition of
the terminal symbols. In the case of image grammars, the
presence of scale precludes the notion of having any true
terminal parts, and a robust model must be able to detect
parts as a whole with and without the presence of subparts.
Composite parts are therefore represented by both their im-
age appearance as well as the appearance and geometries of
their constituent parts. For example, at the top-level of our
grammar we may have production rules for the full body in
standing and walking gaits, and each will have appearance
models to detect those gaits directly in the image. Each
of these gait productions will also contain relations to con-
strain the subpart geometries to favor those gaits. Each part
in the grammar, terminal or non-terminal, has the same pa-
rameterization, which allows a recursive formulation and
arbitrarily deep hierarchy.

Our stochastic grammar is comprised of a set of pro-
duction rules. Each production rule defines an appearance
model for the root part of the rule, a set of child parts, and a
set of pairwise constraints over the geometries and attributes
within the rule. The constraints between the child parts
makes the grammar context-sensitive, and allows consis-
tency to be enforced between both the pose and attributes of
neighboring parts. A probability model is defined on parses
of the grammar, and a dynamic programming algorithm is
used to compute exact inference for certain restrictions of
these constraints. We demonstrate results for human pose
recovery on a challenging dataset and show competitive per-
formance with the state-of-art.

2. Related Work and Comparison
We briefly review and contrast some relevant work in

terms of body representation and their corresponding ge-
ometry and appearance models.

Body representation. The full body is commonly rep-
resented with 10 parts, consisting of torso, head, and 2 seg-
ments for each limb. Our model adds additional parts for
the hands, feet, and pelvis, as well as composite parts for
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Figure 1. And-Or graph grammar model: (a) Pictorially represent the and-or graph, representing or-nodes as ovals containing a selection
from multiple forms for a given part type. For each of these forms there is a corresponding and-node, represented as black circles, that
specify the composition of that part from smaller subparts. (b) A parse graph is a derivation of the and-or graph, and contains instantiations
for each and-node corresponding to every or-node selected in the derivation. The edges of the parse graph represent local geometric and
type constraints between parts.

the arms, legs, upper body, lower body, and full body, for a
total of 22 parts.

Hierarchical models for complex deformable objects are
well motivated, and have been shown to produce promis-
ing detection performance [11, 17]. These representations
are predominantly used for general object detection, how-
ever, and not articulated pose recovery. A notable exception
is [19] that uses hierarchy to represent cardinal viewpoints
of the body. The grammar model in [2] focuses on sim-
ple star-structured parts, and differs from our own by being
context-free and handling appearance only through termi-
nal features. Our work can be viewed as a derivation of the
grammar frameworks described in [20, 5] by adding articu-
lated geometry constraints and stronger appearance models,
however, our model does not use a general MRF to keep
the computing complexity of inference tractable. The work
of [6] also uses an and-or graph grammar of similar con-
struction, but designed for the task of object detection and
segmentation.

Geometry models. The kinematic constraints for the
body require that all parts rigidly connect at their joints.
The simplest model to capture this property treats kinematic
constraints as conditionally independent, which produces a
tree-based graphical model. Pictorial structures [10] and
much of its related work such as [16, 8, 1] use a geometry
model of this form with Gaussian relations on the joints.

One criticism of the tree-based articulated model is that
the independence assumptions are too strong to accurately
capture realistic body poses. In particular, the position of
the arms and legs are typically highly correlated. Incor-
porating these constraints creates a class of loopy models

which are more expressive, but considerably more diffi-
cult to compute inference on. The work in [14] explores
pairwise geometric constraints between arbitrary parts us-
ing Gaussian relations. Similarly, [12] augments the kine-
matic tree with special exclusion relations to admit efficient
inference. Complete graphs under arbitrary scalar-valued
potentials were studied in [3] but only for small models at a
significant computational cost.

Appearance models. The quality of the appearance
model is of critical importance to any image parsing sys-
tem. Early work focused on finding parallel lines, which
poorly detects body parts with general clothing. The shape
context model used in [1] and histogram of oriented gradi-
ents (HOG) in [7, 4] have been shown to be quite robust,
and are used in many modern techniques. Part symme-
try is used in [14] and [8, 13] to favor color similarity be-
tween symmetric parts such as the arms and legs, but has
not been shown to be particularly reliable. Similar to our
own approach of learning models for each part specializa-
tion, geometry-specific HOG templates for parts are incor-
porated into a Hough framework in [4], and a mixture model
of geometry-specific HOG templates are used in [18]. Our
approach differs by incorporating compositional hierarchy,
and part specializations that represent varying compositions
and appearance, in addition to geometry.

3. And-Or Graph Grammar

Our body grammar is formulated as an and-or graph,
which encodes the hierarchical and reconfigurable compo-
sition of parts as well as the geometric and selection con-



straints between parts. Most conventional grammars define
a dictionary of terminal parts from which all non-terminal
parts are composed. In contrast, the dictionary for our gram-
mar consists of representations for both terminal and non-
terminal parts alike. This allows our grammar model to con-
nect to the data at all levels of the hierarchy, as opposed to
only through the terminal parts. We believe this is an im-
portant property due to the presence of scale, where the ev-
idence for a part may vanish below a certain resolution. In
such a case, the object may still be detected by using evi-
dence for parts defined at a coarser level of the hierarchy.

Each part in the dictionary is labeled with a part form
which uniquely identifies the part, and a part type which
indicates compatibility such that all forms of the same type
are interchangeable with each other. Part compositions are
specified by a production rule

Fi → ({T1, T2, ..., Tn} ,RFi
) (1)

where Fi is a part form, the T ’s are part types, and RFi

are the set of relation constraints on the constituent parts.
There are two types of constraints in this set: geometric and
co-occurrence. Unlike grammars used in text, there is no
natural ordering of parts in the image plane, and each pro-
duction rule must provide a set of geometric constrains to
define how the parts can be arranged in the image relative
to the root part of the production. The co-occurrence con-
straints encourage compatible part forms to occur together
within the composition.

Part forms are represented by the and-nodes in the and-or
graph, and part types are represented by the or-nodes. The
part composition for each and-node is defined by produc-
tion rules of the form shown above. The or-nodes indicate
a selection choice between multiple part form alternatives,
and are written as Ti → F1|F2|...|Fm to represent all the
part forms of a given part type. The part type at the root of
the and-or graph is designated as the start symbol TS .

The and-or graph can then be defined as the following
tuple

G = (VG , Eand, Eor,RG , TS) (2)

using the dictionary of parts VG , edges defining part form
compositions Eand, edges defining part form selections
Eor, geometric and co-occurrence relations RG , and the
root part TS .

A derivation is generated from the and-or graph by re-
cursively selecting a part form from each or-node, starting
from the root TS . For every and-node encountered during
the derivation, a parse node is instantiated and placed in a
parse graph. Parts are allowed to be shared in the grammar,
and as a result the same node may be visited multiple times
during a derivation. Each of these repeated visits will create
a unique parse node instantiation in the parse graph. Each

parse node specifies the following state

pn = (f, x, y, θ, w, `) (3)

containing its part form f , position in the image lattice
(x, y), orientation θ, widthw, and length `. The parse graph
is defined as

pg = (Vpg, Epg,Rpg) (4)

where Vpg is the set of parse node instantiations, Epg are
the corresponding composition edges from Eand, and Rpg

are the corresponding relations fromRG .
A pictorial illustration of our and-or graph is shown in

figure 1, which shows several examples of part form selec-
tions in the or-nodes. At the leaves of the graph, part forms
represent distinct appearance classes such as a type of cloth-
ing, viewpoint of the foot, or posture of the hand. At higher
levels, the part forms largely represent distinct geometric
configurations such as an upper body with arms crossed, or
lower body in a walking stride. Productions for these com-
posite forms will have constraints on their children that are
consistent with these geometric configurations.

The probability model on the and-or graph is a distribu-
tion on parse graphs, and is defined in a Bayesian frame-
work

p(pg|I) ∝ p(I|pg)p(pg) (5)

using an appearance model p(I|pg), and prior model p(pg).
These models are described in detail in the following sec-
tions.

4. Appearance Model
We assume the appearance of each parse node is condi-

tionally independent, and factor the likelihood of the parse
graph as follows

p(I|pg) = q(IΛpg
)
∏

vi∈Vpg

p(IΛvi
|vi) (6)

where q(IΛpg
) is a background distribution over the image

region not occupied by pg, and IΛvv
is the image patch oc-

cupied by part vi. Although the part appearances are treated
as independent given the location of some part form, cor-
relations between appearances are still captured in the re-
lations on part form selection, described in the derivation
model.

For each part form in the dictionary, an appearance
model is trained using an adaptation of the active basis hy-
brid image template (HiT) model [15]. Our model consti-
tutes a deformable template of sketch and flat elements po-
sitioned in the coordinate frame of the part. Each of these
elements are allowed to perturb locally in order to fit small
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Figure 3. Part score maps: Part types are shown horizontally, and the hierarchy depth is shown vertically. The optimal part score maps
computed during inference are 5-dimensional for position, orientation, scale, and part form, but visualized here by filling in the bounding
box of the corresponding part with the maximal score. These maps are computed by dynamic programming and represent the optimal
placement for a part and all its descendants in the hierarchy. As the algorithm proceeds up the grammar hierarchy, larger and larger
contexts are incorporated, which cause the maps for the non-terminal parts to be incrementally updated and shown by the vertical maps.

Figure 2. Learned appearance templates: shown are examples of
8 of the 119 learned part templates. Each template corresponds to
a part form, which are annotated in the training data to be roughly
consistent to the hand-drawn sketch on the left. Each template
consists of sketch and flat elements, that are allowed to perturb
slightly to match small deformations in the image.

variations in the data. Sketch elements are small filters de-
signed to respond to edges at a given orientation. Flat ele-
ments, conversely, are designed to respond to local regions
with little or no contrast. These features complement each
other, and a response from one implies the lack of response
from the other.

Each oriented sketch element, as well as the flat element,
are referred to as local image prototypes. All prototypes
are treated homogeneously, and each prototype need only
compute a 1D response given a local image patch, written
as r(IΛ). The active basis model assumes the following

log-linear form

p(IΛvi
|vi) = q(IΛvi

)

n∏
j=1

[
exp{λjrj(IΛj )− log zj}

]
(7)

where λj are the model parameters, and log zj are the nor-
malizing constants.

The template is trained by projection pursuit, where at
each iteration the best prototype element is added to the
model such that the revised model moves closest to the
target distribution f beginning with a background distri-
bution q. Elements continue to be pursued and added to
the model until the model is sufficiently close to f . In
other words, at each iteration we wish to maximally re-
duce the Kullback-Leibler divergence between the current
model pk and the target distribution f . Observing that
KL(f ||pk−1)−KL(f ||pk) = KL(pk||pk−1), this is equiv-
alent to maximizing KL(pk||pk−1) at each iteration. This
is referred to as maximizing the information gain, and can
be computed as:

IGk = KL(pk||pk−1) = λkEf [rk]− log zk (8)

The expectation Ef [rk] is approximated by using the sam-
ple mean of responses from the positive training images.
The normalization constant zk and parameters λk are esti-
mated using importance sampling. It is assumed that the
prototype responses at different locations in the image are
not correlated, and to enforce this a small neighborhood
around each selected prototype is suppressed to prevent po-
tentially correlated elements from being selected in future
iterations.

Parameter estimation for this model follows maximum-
likelihood, which does not use negative examples except
for pooling marginal background statistics. Detection per-
formance can be significantly improved when the parame-
ters are reestimated under a discriminative criteria. For this



we use a logistic regression model, which has the following
form

p(y|x) =
1

1 + exp{−y(λTx + b)}
(9)

where y is the positive or negative class ±1, l is the num-
ber of training examples, b is the bias, and C controls
the influence of the regularization term. The feature vec-
tor x consists of responses from all the prototype ele-
ments in the template (r0, r1, ..., rn). The parameters λ
are solved by minimizing the following regularized nega-
tive log-likelihood

1

2
λTλ+ C

l∑
i=1

log(1 + exp{−y(λTxi + b)}). (10)

Once λ and b are estimated using this criteria, the λ’s can be
substituted directly back into the HiT model, and the bias b
can replace all the individual log z’s. For our experiments,
we use the parameter C = .1 and the code from [9] to com-
pute this optimization.

Next, we describe how the responses are computed for
both the sketch and flat prototypes. Once responses are
computed for each of the prototypes, the are allowed to per-
turb locally and independently. Computing the template re-
sponse in this case simply involves taking a local max for
each element within this local neighborhood.

Sketch: The sketch prototype represents a short edgelet
at a specific orientation. The original active basis model
uses a dictionary of Gabor basis filters at multiple orienta-
tions to compute sketch responses. Gabor filters, however,
respond poorly to orientations at small scales. Instead, we
use a gradient-based feature that achieves a similar result
but is faster to compute and allows much smaller templates
to be learned.

The image gradient is first computed and the gradient
orientation for each pixel is discretized. For each orienta-
tion, an aggregate gradient responses in the local neighbor-
hood of each pixel is computed by convolving responses
only for that orientation with an elongated Gaussian filter
oriented orthogonal to the gradient direction. This will pro-
duce large responses for edge segments in the same orien-
tation of the filter.

At each location, a normalization is computed by sum-
ming responses over all orientations. The final response
value for each location and orientation is then computed by
dividing by the average normalization value within a local
neighborhood.

The resulting feature is very similar to the popular HOG
feature [7], except that the response is computed at every
location, and the gradients are pooled along oriented ellip-
tical regions instead of the square histogram cells used in
HOG. It is also important for us that the features be rotat-
able for computing responses of an appearance template at

arm or-space ua or-space

arm
articulation
composition

handlaua

co-occurrence matrix

Figure 4. Or-node co-occurrence: the arm is composed from an
upper arm (ua), lower arm (la), and hand. Local compatibility
between the forms (or-node selections) of these parts are enforced
by pairwise co-occurrence matrices measured between the forms
of articulated pairs.

multiple orientations, which is difficult to do with HOG. In
our experiments we use 16 orientations over π and a 7 × 7
Gaussian filter to pool the gradient responses.

Flat: The flat prototype represents regions where there
is little or no contrast. This is computed by averaging the
magnitude of the image gradient over a small neighborhood
around each image location using an integral image. The re-
sulting average magnitude is then transformed using a neg-
ative sigmoid to favor regions with very small gradients.

5. Prior Model
The prior model is the product of a derivation model and

geometry model

p(pg) = pd(pg) · pg(pg). (11)

The state variables of the parse nodes within pg contain the
forms for all the parts, as well as their geometric states. The
derivation model defines a probability on the part forms,
whereas the geometry model defines a probability on their
geometric states.

The set of relationsRpg contains pairwise edges that in-
dicate constraints on the part forms and geometries of the
corresponding parse nodes. We restrict these relations to
not allow cycles in order to admit efficient inference. The
parts of the human body naturally forms an articulated tree
structure, and this is the topology we use for the relation set.
One difference in our model from most articulated models
is that it is also hierarchical, and therefore each parent node
in pg must have a relation defined with at least one of its
children. For example, an arm may decompose to an upper-
arm and lower-arm, with an articulation relation between
upper-arm and lower-arm, but also between upper-arm and
arm.

5.1. Derivation Model

Our grammar model extends the stochastic context-free
grammar (SCFG) case by allowing the selection of part



forms to depend on the forms of neighboring siblings. In
general, this can be represented as a product of joint proba-
bilities of sibling forms given their parent

pd(pg) =
∏

(ij)∈Epg

p(f(C(vi))|fi) (12)

where C(vi) is the set of children and f(C(vi)) is the cor-
responding child forms of parent node vi. This allows cor-
relations between parts forms to be modeled, for example,
a short-sleeve upper arm occurs frequently with a bare skin
lower arm, but never with a long-sleeve lower arm. In this
case, the bare-skin lower arm template has a distinct taper
not present in the sleeved template, and a strong appear-
ance response from one will influence the upper-arm form
selection. In the SCFG case, these two forms would occur
independently.

We further factorize this model according to the tree
model defined in Rpg . Let Rpg(vi) be the set of edges in
Rpg between node vi and any of its children C(vi). This
factorization can now be expressed as

p(f(C(vi))|fi) =

∏
(j,k)∈Rpg(vi)

p(fj , fk|fi)∏
vj∈C(vi)

p(fj |fi)d(vj)−1
(13)

where d(vj) represents the edge degree of node vj accord-
ing to the edges in Rpg(vi). The marginal probabilities
p(fj , fk|fi) and p(fj |fi) are recorded as co-occurrence his-
tograms from the training data, and illustrated in figure 4.

5.2. Geometry Model

The geometry model defines a probability distribution on
the geometric state variables for all parse nodes in the parse
graph. This model uses the same tree factorization defined
by the relation setRpg , and is written as follows

pg(pg) =
∏

(ij)∈Rpg

p(vi, vj). (14)

We use a geometry model very similar to the pictorial struc-
tures model described in [10], which defines Gaussian re-
lations for each pair of articulated parts. In the coordinate
frame of the image, the Gaussian model is a fairly poor fit as
articulated parts tend to lie in arc-like regions around their
neighbors. By transforming the part coordinates to the ref-
erence frame of their common joint, however, this model
becomes quite reasonable. Using x = (x, y, `, θ) as short-
hand for the geometric state of some parse node, these trans-
formations are defined as

Tij(xi) = (x′i, y
′
i, `i, cos(θi + θij), sin(θi + θij))

Tji(xj) = (x′j , y
′
j , `j , cos(θj), sin(θj))

Σij = diag(σ2
x, σ

2
y, σ

2
` , 1/k, 1/k).

where k is the parameter of the Von Mises distribution over
angles, and x′ and y′ are discrete locations in the trans-
formed space. Tij(xi) is the transformation of part vi to
the reference frame of the joint connecting it to part vj . The
joint probability between part pairs is then a zero-mean nor-
mal distribution in the transformed coordinates

p(vi, vj) ∝ N (Tji(xj)− Tij(xi), 0,Σij). (15)

6. Parsing as Bayesian Inference
Parsing is the process of finding the parse graph with

maximal posterior probability

pg∗ = arg max
pg

p(pg|I) (16)

= arg max
pg

p(I|pg)pd(pg)pg(pg). (17)

Given the hierarchical structure of the model, the log-
posterior can be formulated as a recursive scoring function
given a parse node v

s(v|I) =

appearance︷ ︸︸ ︷
sa(v|I) +

geometry︷ ︸︸ ︷
sg(v) +

derivation︷ ︸︸ ︷
sd(v) +

children︷ ︸︸ ︷∑
vi∈C(v)

s(vi|I)

sa(v|I) = log p(IΛv |v) =

n∑
i=1

[λiri(IΛi)− log zi]

sg(v) =
∑

vi∈Rpg(v)

log p(v, vi)

sd(v) = log p(f(C(v))|f(v)). (18)

For an image I, parsing is now defined as finding the parse
graph pg with root part v0 of type TS that maximizes the
score function pg∗ = arg maxpg s(v0).

6.1. Inference Algorithm

Dynamic programming is used to take advantage of this
recursion by tabulating the maximal scores for each part
type, which can be used as a lookup in the maximization of
their parent compositions. For each part form in the gram-
mar, two tables are allocated to store their appearance scores
and optimal composition scores. The size of these tables
represent the discretization of all possible part geometries,
i.e. locations, orientations, and scales. Let SA(Fi) and
SC(Fi) be the appearance and optimal composition score
tables corresponding to part form Fi.

The base case is at the leaves of the and-or graph,
which have no children, leaving only the appearance term
s∗(v|I) = maxv sa(v|I). Computing this simply involves
populating the appearance tables SA for all forms of v. In
the case where v is non-terminal part, there are now child
parts and relations between them. The maximization needs
to find the optimal geometries and part forms for the part v



and its subparts C(v). The relations within this set of parts
Rpg(v) is used to incrementally compute the optimal com-
position scores. These relations form a tree rooted at v. Let
CR(v) be the set of children of v according to this tree. For
a given relation edge (i, j), let m and n be the number of
forms that parts vi and vj can take respectively.

The optimal location for the child part vj given the parent
vi can then be expressed as

Bvj (vi) = max
fj=1,...,n

(
max
xj

S(vi, vj)

)
S(vi, vj) = s∗(vj) + log

p(fi, fj)

p(fj)|CR(vj)|+

log p(vi, vj) +
∑

vk∈CR(vj)

Bvk(vj). (19)

The outer maximization is over all the different forms for
the distal part ρj . The inner maximization is over all the ge-
ometries of ρj . The terms inside are the appearance scores,
an incremental derivation score, and an incremental geome-
try score from equation 18. Because the incremental deriva-
tion score is constant within the inner maximization, a gen-
eralized distance transform [10] can compute the maximiza-
tion in time linear in the number of grid locations. The outer
maximization over part forms must be done explicitly with
quadratic complexity in the number of forms, and the result-
ing output of Bvj is a set of m tables for each form of vi.
Once B is computed for the root part ofR(v), the resulting
scores are stored in the corresponding table SC .

The algorithm computes bottom-up starting from the ter-
minals and working toward the root by computing tables SC

of optimal scores for each part form encountered. An addi-
tional backtrack table S′C is also computed to store the table
indices of the child parts to produce the optimal score and
production for each location of the root part. This is done
by simply replacing the max with an arg max. Once the al-
gorithm reaches the start node, the location in the root table
with maximal score will be the globally optimal solution.
The full parse can be recovered by backtracking all the part
forms and geometries using their corresponding backtrack
tables. A visualization of the intermediate score maps com-
puted during the inference process is shown in figure 3.

7. Experiments

We collected our own dataset of roughly 400 outdoor
pedestrians in natural poses, which are annotated with full
parse graphs. This was motivated by the lack of a high-
resolution full body dataset to learn detailed part models
from. Fortunately, the authors of the current state-of-art
method [18] has made their code available, allowing us to
train their model on the same data for a direct comparison.
For this experiment, we trained a full-body grammar model
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Figure 6. Parsing evaluation: a part is considered detected if both
endpoints lie within a proportion of the ground truth part length.
The percentage of correctly estimated parts (PCP) [8] is shown as
a function of this threshold for each of the terminal parts.

Method of Yang et al. [18]
head torso u.leg l.leg u.arm l.arm avg
1.000 1.000 .975 .839 .951 .577 .869
Our model
head torso u.leg l.leg u.arm l.arm avg
1.000 1.000 .933 .857 .915 .719 .884
hand foot
.420 .339

Table 1. Pose recovery results on our outdoor pedestrian
dataset: shown are part detection rates of our method compared
with the current state-of-art using a PCP threshold of 0.5. Results
are computed using the same 10-part full body parameterization,
although our model also produces detections for hand and foot.

using 109 part forms, consisting of 69 terminal and 40 non-
terminal parts. The large number of terminals correspond
to different clothing of the arms, poses of the hands and
feet, orientations of the head, etc, as shown in 1. The detec-
tion performance of our method is very competitive with the
state-of-art, and surpasses their performance on the lower
arms and legs, which are typically the most difficult parts
to localize. This is largely due to the localization of non-
terminal parts such as the upper-body or arm, which help
inform the location of its subparts such as lower-arm even
when evidence for that part is very weak or occluded.

8. Conclusions
We describe a stochastic image grammar for human pars-

ing that incorporates compositional and reconfigurable parts
and context-sensitive constraints to explicitly capture the
vast variabilities of both articulated pose geometry and ap-
pearance of the human body. We demonstrate the viabil-



correct parses common failures

Figure 5. Parse results: shown here are 24 parse results from a test set of 150 images, trained on 250 examples. The detection curve for
these results are shown in figure 7. The top row is the original image, the center row shows bounding boxes around the detected terminal
part geometries, and the bottom row shows the matched appearance template for all parts in the parse graph. The 8 rightmost parses show
some failures, which most commonly include matching a lower arm or leg to the background, or double-counting a limb.

ity of our technique by showing pose recovery performance
that is competitive with the state-of-art. This representation
can be easily adapted to a wide variety of deformable object
classes. Furthermore, the attributes inferred from the parser
can potentially be used to infer higher-level state such as
gender or activity. Our dataset and the source code of our
parser will be released with the publication of this paper.
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