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Abstract

This paper develops a theory for learning compositional

models of objects. It gives a theoretical basis for explaining

the effectiveness of recent learning algorithms which exploit

compositionality in order to perform structure induction of

graphical models. It describes how compositional learning

can be considered as learning either probability models or

efficient codes for objects.

1. Introduction

The advantages of compositional models of objects have

been eloquently argued by S. Geman in papers like [3].

Such ideas have helped to motivate some successful learn-

ing algorithms [5], [2],[13],[12],[9],[11]. In particular,

works by L. Zhu and his collaborators have shown that com-

positionality can be used to perform challenging structure

induction tasks, such as learning hierarchical object models

with limited supervision [13] and learning models of multi-

ple objects with part-sharing [11].

Despite these successes the underlying theory has been

less clear. What are the properties of compositional mod-

els that enable them to be learnt by the procedures in

[13],[11]? How do these learning approaches differ from

existing methods such as feature pursuit [6],[14] or the Ex-

pectation Maximization (EM) algorithm, see citations in

[12]? From the perspective of this workshop, how do these

approaches relate to learning efficient codes for objects in

the sense of Minimal Description Length (MDL) [7] or rate

distortion theory [4]?

This paper addresses these issues. It develops a the-

ory for structure induction exploiting properties of compo-

sitional models. It describes how compositional learning

can be considered as learning either probability models or

efficient codes for objects. It sketches how theoretical re-

sults may be obtained to determine situations where com-

positional learning may provably converge to the optimal

solution, following the analysis performed in [10].

The structure of the paper is as follows. In section (2)

we describe the motivations for compositional models. Sec-

tion (3) discusses the feature pursuit methods which are ca-

pable of learning graphical models if the graph structure is

known and the data is aligned. In section (4) we discuss the

limitations of the feature pursuit approach and how it is hard

to adapt to the more challenging problems of learning ob-

ject models. Section (5) introduces a simple compositional

model and its basic properties which enable compositional

learning to be possible. In section (6) we describe how com-

positional learning performs a breadth first search through

the space of models. Section (7) discusses the clustering

algorithm used in model search and how it relates to the en-

coding the data. In section (8) we discuss the limitations of

compositional learning. Section (9) distinguishes composi-

tional learning from other approaches.

2. Motivation: Why Learn Compositional

Models for Vision?

How do we learn probability models of image or objects

if the models are unknown and the correspondence between

models and images are unknown (i.e. we do not know what

object, or objects, appear in the images and where different

parts of the objects appear)?

This is a very challenging problem. In its most ambi-

tious form it is the task faced by an infant exploring the

visual world – how to model all the image patterns that oc-

cur in images? How to discover automatically the objects

that generate them?

More concrete examples include the learning of object

models where the image features are interest points (i.e. the

rest of the image is ignored). Work by L. Zhu et al speci-

fied an algorithm which performed greedy search in model

space to achieve this [12]. Another example is the learning

of a hierarchical probabilistic model of an object from a set

of training images which include examples of the object in

the presence of variable background noise [13]. Yet another

example, is to learn the models for multiple objects simul-

taneously using the silhouettes of object examples as inputs

[11].

The advantages of compositional models include the



ability to share parts between different objects which has

big advantages for representation, inference, and learning.

In terms of representation, this means that we can encode

many objects in terms of the same dictionary of parts. Infer-

ence is also more efficient because we only need to search

for a part once even though it can occur in multiple objects,

or multiple times in the same object. Learning is also more

efficient because sharing parts between objects requires less

training data (than if we had to learn each object separately).

3. Feature Pursuit

Feature pursuit [6],[14] is a procedure to learn proba-

bilistic models when there are no hidden variables and the

data is perfectly aligned with the model. It is assumed that

the probability distribution can be expressed as an expo-

nential model in terms of statistics φ(.) with parameterized

weights λ. There is a pre-specified dictionary of statistics

which are selected, and assigned weights, during learning.

The learning can be expressed as a convex optimization

problem because there are no hidden variables. In graph-

ical terms, the set of graph nodes are fixed, because they

are determined by the form of the data, but the edges in the

graph are unknown because they will depend on the statis-

tics which are selected. So this is not a challenging structure

induction problem.

More precisely, we assume an exponential model:

P (x|λ) =
1

Z[λ]
exp{

M∑

i=1

λi · φi(x)}, (1)

where there is a dictionary of statistics {φi(x) : i =
1, ..., M} and parameters λ = {λi : i = 1, ..., M}. There

is a set of training data D = {xµ : µ = 1, ..., N}. The

task is to estimate the parameters {λi : i = 1, ..., M} by

Maximum Likelihood (ML) from the data while restricting

the number of non-zero λi. ML can be expressed as:

{λ∗
i } = argmax

N∏

µ=1

P (xµ|λ). (2)

For exponential models, ML reduces to matching the statis-

tics of the model to the statistics of the data:

∑

x

φi(x)P (x|λ∗) =
1

N

N∑

µ=1

φi(x
µ). (3)

Feature pursuit searches through the space of possible mod-

els – i.e. the choice of feature statistics – in a greedy man-

ner as follows. We initialize with a default model which

contains no statistics (i.e. λi = 0, ∀i). After t steps, we

have chosen t statistics {φi(.) : i = 1, .., t} and their as-

sociated parameters λt = {λi : i = 1, ..., t} to have a

distribution Pt(x|λ
t) = 1

Z[λt] exp{
∑t

i=1 λiφi(x)}. The

probability of the data using this model is expressed as

P (D|λt) =
∏

µ Pt(x
µ|λt) which, as we describe below,

is directly related to the entropy of Pt(x|λ
t). At step

t + 1, we augment this model by adding an additional

feature φt+1(.) to the exponent and perform ML estima-

tion to estimate its parameter λt+1. The feature is cho-

sen to maximize the probability of the data P (D|λt+1) =
1

Z(λt+1) exp{
∑t+1

i=1 λiφi(x)}. We accept the new features,

provided P (D|λt+1) > P (D|λt) × exp{T } where T is a

threshold, otherwise we stop and output Pt(x|λ
t).

This is a greedy method for searching through model

space. At any time t we maintain a single model Pt(x|λ
t).

At time t+1 we consider M possible expansion correspond-

ing to augmenting Pt(x|λ
t) by adding any of the M possi-

ble statistics from the dictionary {φi(.) : i = 1, ..., M}.

Model selection is used to select which new feature to add

– i.e. we compare P (D|...) for the M possible models and

select the model Pt+1(x|λ
t+1) for which it is largest.

A classic example of selecting features based on this type

of criterion comes from the work of Shannon on modeling

the statistics of the English language [8]. In this case, the

statistics are the frequencies of letters, of pairs of letters, of

triples of letters, and so on.

Shannon clarified that the probability of the data

P (D|λ∗) (with λ∗ estimated by ML) is directly related to

the entropy of the distribution −
∑

x P (x|λ∗) log P (x|λ∗).
Hence model selection corresponds to picking the distribu-

tion which has lowest entropy and hence is best at predicting

the data.

Shannon’s results follow directly from the following

identity which holds for all exponential distributions:

1

N

∑

µ

log P (xµ|λ
∗)

=
1

N
λ∗ ·

N∑

µ=1

φ(xµ) − log Z[λ∗]

= λ∗ ·
∑

x

φ(x)P (x|λ∗) − log Z[λ∗], (4)

which is the negative entropy of P (x|λ∗). Here λ · φ(x) =∑M
i=1 λiφi(xi).
Hence the search through model space can be considered

as searching for the best way to encode the data. Note that

Shannon’s theory does not specify the precise code – instead

it proposes that data x should be encoded by − logP (x|λ∗)
bits. Of course, it will be natural to encode x in terms of the

statistics φ(.).

4. Beyond Feature Pursuit

The type of learning we address in this paper is more

challenging than that addressed by feature pursuit. Firstly,



the probability model has unknown graph structure – i.e.

we do not know the nodes or the edges. Secondly, typically

only a subset of the data will correspond to the object that

we seek to learn while the remainder will be background

clutter. Thirdly, we do not know the correspondence be-

tween the object, or objects, and the data.

At a minimum, we must extend the probability models

to include the graph structure S (i.e. the nodes and edges)

and the assignment variables A between parts of the object

and the data. But we should also generalize the structure

to AND/OR graphs so that the assignment can allow us to

select different objects for different data.

Formally, we can express this in terms of searching

through models of form P (x|S, λ, A). The structure S and

the assignments A can be thought of as missing data which

need to be estimated, or summed/integrated out, while esti-

mating the model parameters λ.

The Expectation-Maximization (EM) algorithm can, in

theory, be used for such missing data problems as we will

describe in detail in the next section. But EM is only suited

to a limited class of problems because it relies on E- and

M-steps which can be extremely difficult to compute. Even

when this is practical – e.g., for probability models with

known graph structure without closed loops – it is not guar-

anteed to converge to the global solution. Moreover, EM is

very rarely applied to learning the graph structure, in addi-

tion to model parameters, and it seems impractical for the

class of problems we are considering.

This motivates us to consider an alternative approach

which restricts ourselves to compositional models. We will

first describe their properties which explain why learning

them is practical even for challenging situations.

5. A Simple Compositional Model

Now we introduce a simple compositional model, see

figure (1). This is much simpler than the models learnt

in [13],[11] but it illustrates the key ideas. The composi-

tional model has only four leaf nodes which, in this sec-

tion, are assumed to have known correspondence to the data

xµ = (xµ
1 , xµ

2 , xµ
3 , xµ

4 ). The model contains hidden vari-

ables x12, x34, x1234 which are related, deterministically, to

the states of the leaf nodes x1, x2, x3, x4 [13],[11]. In the

terminology which we will use later, the full model with

all the nodes is a level-2 part-model while the subtrees with

nodes x1, x2, x12 and x3, x4, x34 are level-1 part-models.

We express the compositional model

in terms of the conditional distributions

P (x1, x2|x12), P (x3, x4|x34), P (x12, x34|x1234). The

intuition is that x12 represents the position of a part which

x1234

X12 X34

x1 x2 x3 x4

++

Figure 1. A simple compositional model. This is a level-2 part-

model, in the terminology of section (6), and is the composition

of two level-1 part-models with parent nodes x12 and x34 respec-

tively.

is a composite of two subparts with positions x1 and x2.

P (x1, x2|x12) = f(x1 − x2 λ12)δ(x12 −
x1 + x2

2
),

P (x3, x4|x34) = f(x3 − x4|λ34)δ(x34 −
x3 + x4

2
),

P (x12, x34|x1234) = f(x12 − x34|λ1234)δ(x1234 −
x12 + x34

2
) (5)

Here the f(., .) are probability distributions on the rela-

tive positions of parts/subparts. These distribution have un-

known parameters λ. The distribution of the root node x1234

is specified as a uniform distribution U(x1234).

Equation (5) specifies a very simple compositional

model. Its key properties, described in the next section, is

that the parameters λ12, λ34, λ1234 can be learnt indepen-

dently. Other definitions of compositional models can be

given (S. Geman – personal communication) which include

this model as a special case.

5.1. Learning compositional models with known as­
signment

This special form of compositional models implies that

the parameters of the probability distributions can be learnt

separately if we know the correspondence to the data:

λ∗
12 = arg max

∏

µ

f(xµ
1 − xµ

2 |λ12),

λ∗
34 = argmax

∏

µ

f(xµ
3 − xµ

4 |λ34)

λ∗
1234 = argmax

∏

µ

f(
xµ

1 + xµ
2

2
−

xµ
3 + xµ

4

2
|λ1234). (6)

To verify this, observe that after summing out the hidden

variables x12, x34, x1224, we can express the compositional



model in exponential form:

P (x1, x2, x3, x4|λ) =
1

Z[λ12]Z[λ34]Z[λ1234]
exp{λ·φ(x)},

(7)

where λ = (λ12, λ34, λ1234) and φ(x) = (φ(x1 −
x2), φ(x3 − x4), φ(x1+x2

2 − x3+x4

2 )).
The result follows by doing ML to estimate λ from the

data D = {xµ}.

5.2. Learning without assignment or structure

The simplest extension is to learn the compositional

model when the assignment is unknown. We introduce an

assignment variable A which specifies the assignments a(i)
of nodes i of the model.

P ({xa}|A, λ) = f(xa(1) − xa(2)|λ12)f(xa(3) − xa(4)|λ34)

f(
xa(1) + xa(2)

2
−

xa(3) + xa(4)

2
|λ1234)

U(
xa(1) + xa(2) + xa(3) + xa(4)

4
). (8)

The standard procedure to learn this type of model is to

treat the assignment A as missing variables, to assign a prior

distribution P (A) over them (e.g., the uniform distribution

U(A)), and to estimate λ by ML:

λ∗ = argmax
∏

µ

∑

Aµ

P ({xµ
a}|A

µ, λ)P (Aµ). (9)

This estimation can, in theory, be done by the

Expectation-Maximization (EM) algorithm. This requires

iterating two steps – the E-step which estimates distribu-

tions Qt
µ(Aµ) over the hidden variables where the parame-

ters λt are fixed, and the M-step which estimates λt+1 as-

suming Qt
µ(Aµ). But there are two limitations to this al-

gorithm. Firstly, the E- and M-steps can be computed by

dynamic programming provided we impose the correspon-

dence condition that each model point (i.e. leaf node) has

a single correspondence in the image, but not if we impose

one-to-one matching between the model points and the im-

age. Secondly, and more seriously, the EM algorithm is not

guaranteed to converge to the global optimum.

How can compositionality help? The key insight is

that the compositional form of the probability distribution

means that we can learn the parameters separately provided

the correspondence is known. But if this is not known, then

we can still learn the parameters for different parts sepa-

rately which greatly simplifies the assignments. For exam-

ple, to learn the distribution f(xa(1) − xa(2)|λ12) we only

need deal with the possible assignments of x1 and x2. We

do not need to consider the assignments of all the leaf nodes

of the model, which we would have to do if we are using the

EM algorithm.

X1…32

X1…16

X1…8

x1 x2

X12

1 k2 k 1

+ +
1 k

X12

X1

X1…4

X31,22

X32
X31

1 k1

Figure 2. The compositional structure makes it practical to search

over all assignments between the model and the data. For the level-

1 part-models, e.g., like the one with variables x1, x2, x12 (top

left), we need to search over O(k2) possible assignments, where k

is the number of datapoints in the image represented here by stars

(bottom left). But for a level-2 part-model, constructed by com-

bining two level-1 part-models, we need only search over O(k2

1)
assignments where k1 is the number of level-1 parts detected in the

image (bottom left) – and often k1 << k. If, by contrast, we tried

to search for all assignments with exploiting compositionality we

would be faced with exorbitant cost of O(k32) for a model with 32
leaf nodes. Instead of O(16×k2 +8×k2

1 +4×k2

2 +2×k2

3 +k4).

This argument extends to the more challenging situations

when the structure of the model is unknown, when the data

may contain one of several different models, and if the data

also contains random data generated by a background pro-

cess. We do assume, however, that the probability models

can be expressed in compositional form, or in terms of a

mixture of distributions of hierarchical form.

To exploit this insight, we describe a breadth first search

through the space of probability models. This search de-

creases an overall fitness function although it is not guaran-

teed to converge to the optimal solution.

6. Breadth-First Model Search in Composi-

tional Learning

The compositional strategy is to search through the space

of all models that have compositional form – and hence

obey the property that we can learn different parts of the

model separately. In this section, for simplicity, we will

drop the assignment variable A with the convention that it

is always used (i.e. that we will have to search over all as-

signments).

We start with a default model which generates the data

by a uniform distribution U(x) =
∏

i U(xi). This gives a

default encoding for the image which we can evaluate by

computing P (D) =
∏N

µ=1

∏
i U(xµ

i ). We proceed by the

following strategy, see figure (3).

Next we search for compositions of pairs of points

that happen frequently together in the image by a cluster-

ing technique described in the next section (we use dis-

tributions defined over pairs of points for simplicity, but

note that L. Zhu et al [13],[11] built compositions out of

triples). This outputs a set of N1 level-1 part-models of



U

Level 1 P11 P1n1

Level 2 P21 P2n2

++

Figure 3. The breadth-first model selection strategy. We start

with a default model U . Then we generate a set of level-1

part-models P 1

1 , ..., P 1

N1
each of which are converted into level-

1 image-models and hence give N1 alternative ways to encode the

images. These level-1 part-models are expanded by composition

to give a set of N2 level-2 part models P 2

1 , ..., P 2

N2
which, in turn,

are converted into level-2 image-models. Each level-1 and level-2

image-models are required to encode the image better than their

parents. The procedure stops automatically when it fails to find

higher level part-models with better encodings of the data.

form P (x1, x2|x12) = f(x1 − x2|λ12)δ(x12 −
x1+x2

2 ). We

convert each level-1 part-model into a level-1 image-model

for the entire data as follows (see the next section for more

details). We assume that each image consists of a number

of examples of the part – i.e. generated by sampling from

P (x1, x2|x12) – while the remaining data points are gener-

ated by the uniform distribution U(x). It follows, from the

clustering technique, that each level-1 image-model gives a

better encoding of the data than the default model. Hence

the output of the first stage is a family of N1 level-1 image-

models each associated with a single level-1 part-model.

Note these level-1 part models correspond to the level-1 dic-

tionaries described in [13],[11].

Next we expand these level-1 image models to level-2

image models as follows. For each level-1 image model

we search for compositions of its level-1 part model with

other level-1 parts, using the same clustering technique

as before. I.e. to find compositions of level-1 models

P (x1, x2|x12) and P (x3, x4|x34) we perform clustering

over 1/2(x1 +x2)−1/2(x3 +x4), which will yield a level-

2 part-model P (x12, x34|x1234). As before, we supplement

these level-2 part-models with a uniform distribution to ob-

tain a level-2 image model. The total number of level-

2 image-models is bounded by N2
1 /2 but will be smaller

in practice because we fail to find compositions for some

part-models. Each level-2 image-model is associated to one

level-2 part-model and one, or two, level-1 part-models. As

before, the clustering technique will ensure that all these

level-2 image models give a better of encoding of the data

than the level-1 image-models that they are based on.

This procedure repeats until we fail to find any new clus-

ters. The output is a set of image-models and their associ-

ated part-models.

For some applications, for example learning models of

multiple objects [11], we simply output the part-models.

The part-models at the highest levels correspond to mod-

els of objects. The part-models at lower levels correspond

to parts which are typically shared between several objects.

For other applications, such as learning an object model

for a single object [13] we select the highest level part-

model and combine it with additional part-models provided

this improves the overall fit of the model to the data.

7. Clustering in Compositional Learning as

Encoding of Data

The compositional learning strategy is to detect part-

models starting with simple compositions, at level-1, and

proceeding to more complex compositions at higher lev-

els. These part-models are associated with image-models

as described in the previous section. These compositions

are obtained by a clustering process which will be described

in this section. New part-models are created provided that

their associated image-model gives a lower cost of encoding

the data.

The basic ideas can be illustrated by learning a

single level-1 part-model and its associated image-part

model. Recall that a level-1 image part-model is of

form f(x1, x2|λ12). Intuitively a good part-model is one

for which we can identify clusters of pairs of points

(xµ

a(1), x
µ

a(2)) and parameters λ such that f(xµ

a(1), x
µ

a(2)|λ)
is high for all µ. In other words, we can find instances of

this part-model in all images. Later we learn a probability

distribution P (α) for the number of instances αµ in image

µ.

We claim that identifying these clusters can be done by

standard clustering algorithms. Moreover, the criterion for

a good cluster is precisely the condition that the associated

image-model gives a lower cost for encoding the data than

the default background model.

To make this concrete, we restrict f(x1, x2|λ) to be a

Gaussian model in the relative position x1−x2. In this case

λ = (m, Σ), where m and Σ are the mean and covariance.

Standard clustering algorithms, will output sets of pixel

pairs (xµ

a(1), x
µ

a(2)) such that:

(xµ

a(1) − xµ

a(2))
T Σ−1(xµ

a(1) − xµ

a(2)) < T, (10)

where T is a threshold. This corresponds precisely to find-

ing sets of points such that f(xµ

a(1), x
µ

a(2)|λ) is large. In

other words to finding examples of the part-models.

The output is a set of clusters. Each cluster corresponds

to a part-model – i.e. a value λ – together with the set of data

points that are assigned to it. This set of data points speci-

fies the set of assignments of the part-model to the data. At



this stage, we make no restriction on the possible assign-

ments – for example, data points may be assigned to sev-

eral different part-models. This relates to our earlier claim

that finding assignments is easier for sub-parts of the object.

Consistency between these assignments will be imposed at

higher levels when we seek composite part-models which

combine more elementary parts. This is similar to dynamic

programming on trees for detecting objects after learning,

see [13], which starts by searching for positions of object

sub-parts at lower levels and then imposes consistency at

higher levels, similar to constraint satisfaction.

For the level-2 models – we cluster to obtain models

which have sets of points (xµ

a(1), x
µ

a(2), x
µ

a(3), x
µ

a(4)) and pa-

rameters λ1234 such that f(xµ

a(1), x
µ

a(2), x
µ

a(3), x
µ

a(4)|λ1234)

is high. The pairs of points (xµ

a(1), x
µ

a(2)) and (xµ

a(3), x
µ

a(4))
are those data points assigned to the level-1 part-models

P (x1, x2|λ12) and P (x3, x4|λ34) respectively. When com-

posing these points we check for consistency of assign-

ments.

Now we present an alternative perspective that shows the

connection between clustering and encoding. This starts by

relating part-models to image-models. It also helps illus-

trate the relationship to standard EM approaches.

We associate a part-model to an image-model as follows.

Recall that the default image model is a uniform distribution

U(x) =
∏

i U(xµ
i ). For each part model, we allow a prob-

ability P (α) for the number of occurrences of the part in

each image. This gives a generative model:

P (α)
α∏

j=1

U(xj)f(x′
j − xj |λ)

∏

i6={j:j=1,...,α}

U(xi). (11)

Intuitively, we select a number α of part instances in each

image. These correspond to pairs of points {(xj , x
′
j) : j =

1, ..., α}. We assume that the remaining points {xi} (and

the point x′
j for each pair (xj , x

′
j)) are generated by the uni-

form distribution.

Now imagine introducing the assignment variables. We

can use a probability model of form equation (11) to gen-

erate the data D = {xµ}. The task is to estimate λ, the

distribution P (α) of instances, and the assignments.

Applying the EM algorithm, however, will only give us

one solution and moreover will have multiple minima corre-

sponding to all the part-models that happen in the data. In-

stead we want to find a large set of possible solutions which

include all the minima, but which can have some ‘false pos-

itives’ (which can be removed later). Clustering enables us

to achieve this.

Moreover, we can compute the cost of encoding the data

by the default background model and by image-models of

the form given in equation (11). After some algebra, we

find that the condition that the image-model encodes the

data better than the default model is precisely the cluster-

ing threshold condition. This follows from the requirement

that the image-model predicts the data better than the de-

fault model – and hence has lower encoding cost – is given

by:

∏

µ

P (αµ)

αµ∏

j=1

f(xj − xj′ |λ)
∏

j 6={i=1,...,αµ}

U(xµ
i )

>
∏

µ

∏

i

U(xµ
i ), (12)

which reduces to the condition:

∑

µ

αµ∑

j=1

(xµ
j − xµ

j′ − m)2

2σ2
≤

∑

µ

log P (αµ)

+
∑

µ

αµ log K −
1

2

∑

µ

αµ log(2πσ2), (13)

where K is a normalization constant for the uniform distri-

bution. Note if we estimate P (α) from the data, then the

terms
∑

µ log P (αµ) will tend to −N times the entropy of

the distribution.

Observe that equation (13) reduces to the clustering con-

dition.

To summarize, clustering enables us to find image mod-

els which describe the data better than the default back-

ground model. We proceed by performing higher order

clustering to determine level-2 part models. At this stage

we check for consistency of assignments of the part mod-

els. As before, we augment these part-models with uniform

distributions to describe the rest of the data. These level-2

image-models are selected only if they give a better encod-

ing of the image than the level-1 image-model that they are

grown from.

8. Limitations of Compositional Learning

Compositional learning exploits the fact that different

parts of the object model can be learnt independently. It

proposes to learn these models by clustering so that we deal

with the assignment variables first for the simple low-level

parts and only later for the more complex high-level parts.

We do a breadth first search in the space of models so we

do not need to impose consistency between the assignments

of the low-level part models. Consistency is imposed later

when we construct new models by composing low-level

parts to make more complex parts.

The learning procedure assumes that we can use cluster-

ing to determine the part-models. These assumptions will

only hold in certain conditions and could be analyzed by

the same analysis used in [10] to determine the errors which

result from using an approximate model to perform infer-

ence. For example, it may be possible to prove that com-

positional learning will work for certain distributions of the



object structures and the background but will be impossi-

ble otherwise. This may be similar to the order parameter

results obtained in [10] which specified whether it was pos-

sible to detect a target in the presence of background clutter.

Here we list some of the problems which may arise and

discuss their potential severity. (I) The clusters may be con-

taminated. But limited contamination may not matter and

may only cause mild bias. (II) Fake clusters caused by ac-

cidental coincidences of random points in the background.

These should not cause any problem because they can be

removed later because they will not to be composed to form

higher level parts. (III) Clusters caused by higher-order reg-

ularities, such as correlations induced between x1 and x3,

which should also be removed at higher levels. (IV) Merged

clusters. These are more serious because we cannot easily

separate them into the correct clusters. (V) Superimposed

clusters – i.e. two parts which are very similar may over-

lap. This is probably okay because it means we reduce our

vocabulary of models by treating them as the same.

Observe that the approach in this paper has formulated

computational learning in terms of parameter estimation.

An alternative, but related approach, is to treat it as encod-

ing in the sense of rate-distortion theory [4].

9. Discussion

It is important to distinguish our compositional approach

from more standard methods such as Minimum Description

Length (MDL). Consider learning the level-1 part-models

as described in section (6). An MDL approach would at-

tempt to encode the data in terms of a mixture of Gaussians

and solve this task using one of the new generation of ef-

ficient algorithms for fitting mixtures of Gaussians to data

such as [1].

But we choose not to do this. Instead we follow Mao’s

exhortation to ”let one hundred flowers bloom”. To be more

specific, when we learn our level-1 part-models we do not

want to find all clusters simultaneously in order to optimize

a global criterion. We do not want to impose optimality at

this stage. Instead we seek evidence for object parts and are

willing to pay the price for redundancy and allow data to be

assigned to more than one cluster. Rather than finding a sin-

gle encoding of the data in terms of level-1 models we seek

instead to find a family of different ways to encode the data,

see figure (3). Recall that each level-1 model gives a way

to encode of the data – the corresponding level-1 image-

model – which represents the data in terms of the level-1

part-model and the background model.

There are several reasons why we wish to avoid opti-

mality at this stage. But, most importantly, recall that we

are clustering on relationships between data points rather

than on the data points themselves. Hence a specific data

point may be related to several different clusters or to none.

We want our algorithm to be able to explore several possi-

bilities without being constrained by premature optimality.

They can be resolved later as we proceed up the hierarchy

by searching for higher level part-models.

+

Level!1 parts ! frequent

Level!2 part !infrequent+

+ +

++

Level!1 parts !! infrequent

Level!0 parts !! infrequent

+ +

Figure 4. Why we need breadth-first model search. Consider a set

of images that contain instances of: (i) a level-2 part-model (first

row) containing level-1 submodels represented by a star-ellipse

and a cylinder-crescent (third row) which occurs infrequently, (ii)

two level-1 part models star-cylinder and ellipse-crescent (sec-

ond row) that occur frequently, and (iii) isolated data points star,

ellipse, cylinder and crescent which occur infrequently (or fre-

quently). If we select the level-1 part-models using an MDL prin-

ciple then we risk failing to detect the star-ellipse and cylinder-

crescent because they occur infrequently and their instances may

be better explained by the more frequent star-cylinder and ellipse-

crescent part-models supplemented by isolated examples of star,

ellipse, cylinder and crescent (i.e. from the default background

model used to fill-in the datapoints which are not generated by

the level-1 and level-2 part-models. It is only when we search for

the level-2 part-models that we realize the advantages of encoding

the star-ellipse and cylinder-crescent as part-models because they

can be composed to form a level-2 part-model which occurs in the

images.

We re-emphasize that an important advantage of our

compositional learning approach is that it avoids the need to

search over all matching assignments for large object mod-

els (e.g., ones with many nodes) which is not feasible for

large numbers of nodes. Instead we only have to search over

assignments for level-1 part models, then over the assign-

ments of these part models to level-2 part models, and so

on. This exploits the compositional structure and avoids the

combinatorial explosion in assignments which would occur

for more traditional models and learning algorithms.

10. Conclusion

This paper has sketched a theory of compositional learn-

ing which provides theoretical underpinnings for successful

experimental works such as [13],[11]. The theory clarifies

and exploits the basic property of compositional models –

that their different parts can be learnt independently pro-

vided the correspondence is known. Compositional learn-

ing exploits this property by proposing a breadth first search

through the space of models which starts by finding models



of sub-parts and proceeds by combining them together to

create more complex parts. This search is performed using

clustering techniques to identity part-models. The cluster-

ing conditions ensure that these part-models, together with

default models for the background, give good encoding of

the data.
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