
enhanced actin depolymerization at the mDia1-
bound barbed end. This inhibition occurs in the
submillimolar range of Pi, which is two orders of
magnitude lower than the dissociation constant of
Pi and G-actin (26). Thus, binding of Pi to F-actin
inhibits profilin-induced depolymerization (Fig. 4E).

ADP-G-actin (5 mM) elongated mDia1-bound
F-actin faster in the presence of 20 mM Pi than in
its absence (Fig. 3C). This effect of Pi was more
prominent in the presence of profilin than in its
absence (Fig. 3C). The decrease in the actin off-
rate (Fig. 4D) corresponds well with the increase
in the ADP-actin elongation rate by 3 to 20 mM
Pi (Fig. 4E). We thus suggest that Pi cancels the
inhibitory effect of profilin on ADP-actin elon-
gation (Fig. 3C) by abolishing the enhanced
barbed end off-rate. The discrepancy of the effect
of 1 mM Pi on depolymerization and assembly
(Fig. 4, D, and E) is because slow dissociation of
Pi prebound to a fraction of the ADP-F-actin
subunits [dissociation constant (Kd) ≈1.5 mM]
may limit terminal subunit dissociation during de-
polymerization (26), but not dissociation of as-
semblingADP-actin, which ismostly free fromPi.
Profilin thus allows processive elongation of the
FH1-FH2–bound barbed end regardless of the
actin-bound nucleotide, but attenuates ADP-actin
elongation by increasing the barbed end off-rate.
Our results urge reconsideration of theATP-specific
acceleration mechanism for formin-associated
actin elongation.

Helical rotation of mDia1 was observed dur-
ing processive ADP-actin elongation in the pres-
ence of Pi (Fig. 4F and movie S7). The distance
per half-rotation was 35.8 nm (Fig. 4G).

Our data demonstrate continuous rotation of
mDia1-bound filaments during both elongation
and depolymerization. The distance per half-
rotation of F-actin is in the range of 34.6 to 36.8
nm regardless of the actin-bound nucleotide and
presence of Pi and profilin (Figs. 2 to 4). These

findings indicate that helical rotation of FH2 is an
intrinsic property derived from the helical struc-
ture of F-actin. Cellular actin filaments are highly
cross-linked as evidenced by single-molecule ob-
servations showing movement of actin subunits
with no change in their relative positions (29).
Therefore, formins must rotate in the cell. The
rotation speed of for3p at the cell tip and proces-
sivelymovingmDia1 can reach 250 and 1700 rpm,
respectively. If anchoring the growing end of
F-actin is the function of formins, the link be-
tween formins and cellular structures must be flex-
ible. Alternatively, formin-mediated actin elongation
may be regulated by torsional stress in F-actin.

Conversely, formins might modulate the sta-
bility of F-actin by helical rotation. Torsional stress
induces destabilization of the filament (30).
Cofilin, the major actin depolymerizing factor,
twists the strand of F-actin, which is thought to
contribute to actin disassembly (28). Our data
have opened up the possibility that actin elon-
gation and remodeling could be regulated by
axial torsion in the filament. Our findings should
help elucidate the actin turnover mechanism reg-
ulated by formins in the cell.
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Spontaneous Cortical Activity Reveals
Hallmarks of an Optimal Internal
Model of the Environment
Pietro Berkes,1† Gergő Orbán,1,2,3 Máté Lengyel,3* József Fiser1,4,5*

The brain maintains internal models of its environment to interpret sensory inputs and to prepare
actions. Although behavioral studies have demonstrated that these internal models are optimally
adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown.
Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous
neural activities to inferences and prior expectations in an internal model and predicted that they
should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical
activity of awake ferrets during development. Similarity between spontaneous and evoked activities
increased with age and was specific to responses evoked by natural scenes. This demonstrates the
progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

Our percepts rely on an internal model of
the environment, relating physical pro-
cesses of the world to inputs received by

our senses, and thus their veracity critically hinges
upon how well this internal model is adapted to
the statistical properties of the environment. For

example, internal models in vision are used to
extract the features, such as low-level oriented
edges or high-level objects, that gave rise to the
retinal image (1). This requires that the internal
model is adapted to the cooccurrence statistics of
visual features in the environment and the way
they jointly determine natural images. Several aspects
of perception (2, 3), motor control (4), decision
making (5, 6), and higher cognitive reasoning (7, 8)
are governed by such statistically optimal internal
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Fig. 1. Assessing the statistical optimality of the
internal model in the visual cortex. (A) The pos-
terior distribution represented by EA (bottom, red-
filled contours show pairwise activity distributions)
in response to a visual stimulus (top) is increasingly
dominated by the prior distribution (bottom, gray
contours) as brightness or contrast is decreased
from maximum (left) to lower levels (center). In the
absence of stimulation (right), the posterior con-
verges to the prior, and thus, SA recorded in dark-
ness represents this prior. (B) Multiunit activity
recorded in V1 of awake, freely viewing ferrets
either receiving no stimulus (middle) or viewing
natural (top) or artificial stimuli (bottom) is used to
construct neural activity distributions in young and
adult animals. Under natural and artificial stimuli
conditions, EA distributions represent distributions
of visual features (red and green panels) inferred
from particular stimuli. Average EA distributions
(aEA) evoked by different stimuli ensembles are
compared with the distribution of SA recorded in
darkness (black panels), representing the prior ex-
pectations about visual features. Quantifying the
dissimilarity between the SA distribution and the
aEA distribution reveals the level of statistical ad-
aptation of the internal model to the stimulus en-
semble. The internal model of young animals (left)
is expected to show little adaptation to the natural
environment and thus aEA for natural (and also for
artificial) scenes should be different from SA. Adult
animals (right) are expected to be adapted to natural
scenes and thus to exhibit a high degree of similarity
between SA and natural stimuli–aEA, but not
between SA and artificial stimuli–aEA.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ� ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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(n = 16 animals in total, table S1). The divergence
between aEA and SA decreased with age (Fig. 2,
B and C, Spearman’s r = –0.70, P < 0.004), and
the two distributionswere not significantly different
in mature animals (fig. S1, P83 to P90:m = 5.74,
P = 0.11; P129 to P151: m = 2.03, P = 0.25).

What aspects of aEA and SA are responsible
for their improvingmatch with age? Redundancy
reduction, one prominent assumption regarding
neural coding (19), would predict that neurons

behave as sparse (20, 21) and uncorrelated in-
formation channels (22). To assess the importance
of correlations between the activities of different
neurons, we constructed surrogate distributions for
aEA and SA that preserved single-neuron firing
rates but otherwise assumed that neurons fired
independently (17). Thus, any divergence between
a real and a surrogate distribution must be due to
correlated neural activities of second (23) or higher
order. By computing this divergence, we found

that the activity of neurons in both aEA and SA
became increasingly correlated (Fig. 3A, Spearman’s
r = 0.73, P < 0.002 for both curves) and in-
creasingly nonsparse with age (fig. S2), which ar-
gues against redundancy reduction.Moreover, these
increasing correlations were important for thematch
between aEA and SA because the surrogate SA did
not converge to the true aEA (Fig. 3B, Spearman’s
r = 0.34, P = 0.22), excluding the possibility that
the decreasing divergence between aEA and SA

Fig. 3. Contribution of spatial and temporal cor-
relations to the match between aEA and SA. (A and
B) The role of spatial correlations was quantified by
the divergence between the measured distributions
of neural activity patterns, movie-aEA (M) and SA
(S), and the surrogate versions of the same distribu-
tions (M̃ and S̃), in which correlations between chan-
nels were removed, while the firing rates were kept
intact (17). (A) The divergence between the measured
and surrogate distributions increased significantly
over age for both movie-aEA (orange) and SA (gray).
(B) Enhanced match between movie-aEA and SA over
development (red, compare Fig. 2B) disappeared
when spatial correlations were removed from SA (pink).
(C and D) Divergence of transition probability distribu-
tions between measured neural activity patterns and
their surrogate versions, in which temporal correlations
were removed, while firing rates and spatial correla-
tions were kept intact (17). (C) Temporal correlations in
adult animals (P129 to P151) as a function of the time
interval, t. Within-condition divergences (top) show
that temporal correlations decreased with time lag in
both movie-aEA (orange) and SA (gray). Across-
condition comparison (bottom) of the divergence of
aEA from themeasured SA (red) and from the surrogate
SA (pink) shows that temporal correlations in the two
conditions were matched up to time intervals when
they decayed to zero. (D) Temporal correlations at the
shortest time interval (t = 2 ms) as a function of age.
The match of transition probabilities between movie-
aEA and SA improved (red). Removing temporal
correlations from SA eliminated this match (pink). In
all figures, *P < 0.05, **P < 0.01, ***P < 0.001, m test (17).
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could be accounted for by changes in the firing rates
of neurons alone.

An appropriate model of the visual environ-
ment should also capture its temporal dynamics.
Therefore, we extended our analysis beyond the
purely spatial domain to the temporal domain. We
measured the probability of transitioning between
any two patterns in a wide range of temporal
delays for all conditions and tested the strength and
match of temporal correlations by using surrogate
distributions as was done in the spatial domain
(17). The activity of neurons showed strong tem-
poral correlations up to ~20 ms in both aEA and
SA in adult animals (Fig. 3C). A strong prediction
of the hypothesis that V1 neural activity reflects a
statistically optimal internal model is that these
transition probabilities should also be matched be-
tween aEA, when V1 processes temporally strong-
ly structured visual input, and SA, when no visual
stimulus is provided. Indeed, we found that the
match between transition probabilities in aEA and
SA significantly improved with age (Fig. 3D,
Spearman’s r = –0.72, P < 0.003), such that in
adult animals the temporal correlationswerematched
up to delays when they decayed to zero (Fig. 3C).

If the internal model reflected in V1 activity is
tuned specifically to the natural visual environ-
ment, then thematch between aEA and SA should
also be specific to using a natural image ensemble
for eliciting aEA, and other, “artificial” stimulus
ensembles should yield higher divergences be-
tween aEA and SA for mature animals. To test this
prediction, aEAwas collectedwith two other types
of stimulus classes: drifting sinusoid gratings at
different orientations and frequencies, as well as
dynamic binary block noise that was updated at
frame rate (17). Indeed, although in young ani-
mals there was no significant difference between
the degree of match of SA and aEA, in the oldest
age group SAwas significantly better matched to
neural activity evoked by natural images than that

evoked by the two artificial stimulus ensembles
(Fig. 4, A and B, movie versus noise: m = 16.47,
P < 0.05; movie versus grating: m = 943.07, P <
0.002). Furthermore, the divergence between
different aEA distributions did not decrease sig-
nificantly with age (Fig. 4, B andC,movie versus
noise: r = 0.19, P = 0.49, movie versus grating:
r = 0.5, P = 0.21, noise versus grating: r = 0.67,
P= 0.07), which ruled out the possibility that the
decreasing divergence between aEA and SAwas
due to a general decoupling of V1 from sensory
input (see also fig. S3).

Our results suggest that V1 implements an
internal model that is adapted gradually during
development to the statistical structure of the natural
visual environment and that SA reflects prior expec-
tations of this internal model. Although these
findings do not address the degree to which sta-
tistical adaptation in the cortex is driven by visual
experience or by developmental programs, they
set useful constraints for both dynamical (24) and
functional models (12) of sensory processing.We
expect our approach to extend to other brain areas
and to provide a general, quantitative way to test
future proposals for computational strategies
used by the cortex.
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Electrical Synapses Control
Hippocampal Contributions to
Fear Learning and Memory
Stephanie Bissiere, Moriel Zelikowsky, Ravikumar Ponnusamy, Nathan S. Jacobs,
Hugh T. Blair, Michael S. Fanselow*

The role of electrical synapses in synchronizing neuronal assemblies in the adult mammalian
brain is well documented. However, their role in learning and memory processes remains unclear.
By combining Pavlovian fear conditioning, activity-dependent immediate early gene expression,
and in vivo electrophysiology, we discovered that blocking neuronal gap junctions within the
dorsal hippocampus impaired context-dependent fear learning, memory, and extinction. Theta
rhythms in freely moving rats were also disrupted. Our results show that gap junction–mediated
neuronal transmission is a prominent feature underlying emotional memories.

Unlike chemical synapses, the role of elec-
trical synapses in fear learning and mem-
ory remains largely unknown (1–3). In the

adult mammalian brain, gap junctions formed by
connexin 36 (Cx36) couple g-aminobutyric acid–
releasing (GABAergic) interneurons that partici-

pate in the generation of synchronized oscilla-
tions (2–4). Cx36 expression has been localized
within the amygdala-hippocampus-cortical axis
(4, 5), and disrupted hippocampal and cortical
oscillations have been reported in Cx36 knockout
mice (6, 7). Electrical synapses undergo posttrans-
lational modifications and activity-dependent plas-
ticity similar to chemical synapses (8, 9). Thus, we
hypothesized that electrical synapses may be im-
portant for the formation and maintenance of fear
behaviors and memories.

Rats received intraperitoneal injections of the
general gap junction blocker carbenoxolone (Cbx)
(10, 11) or the selective Cx36 blocker mefloquine
(Meflo) (12) and were fear-conditioned using
three pairings of a neutral tone (conditional stim-
ulus, CS) with an aversive footshock (uncon-
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