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Abstract. This work contains a theoretical study and 
computer simulations of a new self-organizing process. 
The principal discovery is that in a simple network of 
adaptive physical elements which receives signals from 
a primary event space, the signal representations are 
automatically mapped onto a set of output responses 
in such a way that the responses acquire the same 
topological order as that of the primary events. In 
other words, a principle has been discovered which 
facilitates the automatic formation of topologically 
correct maps of features of observable events. The 
basic self-organizing system is a one- or two- 
dimensional array of processing units resembling a 
network of threshold-logic units, and characterized by 
short-range lateral feedback between neighbouring 
units. Several types of computer simulations are used 
to demonstrate the ordering process as well as the 
conditions under which it fails. 

1. ln~oducfion 

The present work has evolved from a recent discovery 
by the author (Kohonen, 1981), i.e. that topologically 
correct maps of structured distributions of signals can 
be formed in, say, a one- or two-dimensional array of 
processing units which did not have this structure 
initially. This principle is a generalization of the for- 
mation of direct topographic projections between two 
laminar structures known as retinotectal mapping 
(Willshaw and Malsburg, 1976, 1979; Malsburg and 
Willshaw, 1977; Amari, 1980). It will be introduced 
here in a general form in which signals of any modality 
may be used. There are no restrictions on the auto- 
matic formation of maps of completely abstract or 
conceptual items provided their signal representations 
or feature values are expressible in a metric or to- 
pological space which allows their ordering. In other 

words, we shall not restrict ourselves to topographical 
maps but consider maps of patterns relating to an 
arbitrary feature or attribute space, and at any level of 
abstraction. 

The processing units by which these mappings are 
implemented can be identified with concrete physical 
adaptive components of a type similar to the 
Perceptrons (Rosenblatt, 1961). There is a characteris- 
tic feature in these new models, namely, a local feed- 
back which makes map formation possible. The main 
objective of this work has been to demonstrate that 
external signal activity alone, assuming a proper struc- 
tural and functional description of system behavior, is 
sufficient for enforcing mappings of the above kind into 
the system. 

The present work is related to an idealized neural 
structure. However, the intention is by no means to 
assert that self-organization is mainly of neural origin; 
on the contrary, there are good reasons to assume that 
the basic state of readiness is often determined geneti- 
cally. This does not exclude the possibility, however, 
that self-organization may significantly be affected and 
sometimes even completely determined by sensory 
experiences. On the other hand, the logic underlying 
this model is readily generalizable to mechanisms 
other than neural. 

There are indeed many kinds of maps or images of 
sensory experiences in the brain; the most familiar 
ones are the retinotopic, somatotopic, and tonotopic 
projections in the primary sensory areas, as well as the 
somatotopic order of cells in the motor cortex. There is 
some evidence (Lynch et al., 1978) that topographic 
maps of the exterior environment are formed in the 
hippocampus. These observations suggest that the 
brains of different species would also more generally be 
able to produce maps of occurrences that are only 
indirectly related to the sensory inputs ; notice that the 
signals received by the sensory areas have also been 
transformed by sensory organs, ganglia, and relay 
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nuclei. If the ability to form maps were ubiquitous in 
the brain, then one could easily explain its power to 
operate on semantic items: some areas of the brain 
could simply create and order specialized cells or cell 
groups in conformity with high-level features and their 
combinations. 

The possibility of constructing spatial maps for 
attributes and features in fact revives the old question 
of how symbolic representations for concepts could.be 
formed automatically; most of the models of automatic 
problem solving and representation of knowledge have 
simply skipped this question. 

2. Preliminary Simulations 

In order to elucidate the self-organizing processes 
discussed in this paper, their operation is first demon- 
strated by means of ultimately simplified system mo- 
dels. The essential constituents of these systems are: 
1. An array of processing units which receive coherent 
inputs from an event space and form simple discri- 
minant functions of their input signals. 2. A mecha- 
nism which compares the discriminant functions and 
selects the unit with the greatest function value. 
3. Some kind of local interaction which simultaneously 
activates the selected unit and its nearest neighbours. 
4. An adaptive process which makes the parameters of 
the activated units increase their discriminant function 
values relating to the present input. 

2.1. Definition of Ordered Mappings 

Consider Fig. 1 which delineates a simple one-level 
self-organizing system. Information about the events 
A1,A2,A3,... taking place in the exterior world is 
mediated in the form of sensory signals to a set of 

I n p u t  e v e n t  A k 
I I I I 
I I I I 
I I I I 

Relaying network J Interactive 

SI[II- [ I Sill[ 111 ~ / n e t w o r k  

~.._. ~._. ~ ~.,,_. ~....~ ~... Processing "J [ units Output 
T/1 r/i r/n responses 

Fig. 1. Illustration of a system which implements an ordered 
mapping 

processing units (shown here as a one-dimensional 
array for simplicity) via a relaying network. The sets of 
sensory signals S i distributed to each processing unit i 
may be nonidentical and the number of signals in each 
Si may be different; however, these signals are assumed 
to be coherent in the sense that they are uniquely 
determined by the same events A k. Assume that the 
events A k can be ordered in some metric or topological 
way such that A1RAzRA3... where R stands for a 
general ordering relation which is transitive (the above 
implies, e.g., that A1RA3). Assume further that the 
processing units produce output responses to the 
events with scalar values th(A0, t/i(A2) . . . . .  

Definition. The system of Fig. 1 is said to implement a 
one-dimensional ordered mapping if for i t > i z > i 3 > . . . ,  

t/q(A1) : max {~/j(A a)Ij = 1, 2,..., n} 
J 

qi2(A2) = max {tlj(Az)[j = 1, 2,..., n} 
J 

qi3(A3) = max {t/j(A3)lJ = 1, 2,..., n} 
J 

etc. 
The above definition is readily generalizable to 

two- and higher-dimensional arrays of processing 
units; in this case some topological order must be defin- 
able for the events Ak, induced by more than one 
ordering relation with respect to different attributes. 
On the other hand, the topology of the array is simply 
defined by the definition of neighbours to each unit. If 
the unit with the maximum response to a particular 
event is regarded as the image of the latter, then the 
mapping is said to be ordered if the topological relations 
of the images and the events are similar. 

2.2. Formation of Topological Maps 
in a Two-Dimensional Array 
with Identical Inputs to all Units 

Consider Fig. 2 which delineates a rectangular array of 
processing units. In the first experiment, the relaying 
network was neglected, and the same set of input 

qi 
Fig, 2. Two-dimensional array of processing units 
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Fig. 3. a Distribution of training vectors (front view of the surface of a unit sphere in Ra). The distribution had edges, each of which contained as 
many vectors as the inside, b Test vectors which are mapped into the outputs of the processing unit array, e Images of the test vectors at the 
outputs 

signals {41, ~ 2 '  ' ' "  ~n} was connected to all units. In 
accordance with notations used in mathematical sys- 
tem theory, this set of signals is expressed as a column 
vector x=[~l ,~2, . . . ,~ ,]TeR" where T denotes the 
transpose. Unit i shall have input weights or parame- 
ters #~l,#iz,-..,#~, which are expressible as another 

�9 1 T  E R n column v e c t o r  mi=Fflil,#i2,...,i.~in d . The unit 
shall form the discriminant function 

~= ~ ~u~j=mrx. (1) 
j = l  

A discrimination mechanism (Sect. 3) shall further 
operate by which the maximum of the q~ is singled out: 

ilk = max {th}. (2) 

For unit k and all the eight of its nearest neighbours 
(except at the edges of the array where the number of 
neighbours was different) the following adaptive pro- 
cess is then assumed to be active" 

mi(t+ 1)= mi(t)+c~x(t) 
I I mi(t) + c~x(t) llE' (3) 

where the variables have been labelled by a discrete- 
time index t (an integer), ~ is a "gain parameter" in 
adaptation, and the denominator is the Euclidean 
norm of the numerator. Equation (3) otherwise re- 
sembles the well-known teaching rule of the 
Perceptron, except that the direction of the corrections 
is always the same as that of x (no decision process or 
supervision is involved), and the weight vectors are 
normalized. Normalization improves selectivity in dis- 
crimination, and it is also beneficial in maintaining the 
"memory resources" at a certain level. Notice that the 
process of Eq. (3) does not change the length of m i but 
only rotates m i towards x. Nonetheless it is not always 

necessary that the norm be Euclidean as in Eq. (3) 
(Sect. 3.3). 

Simulation 1. A sequence of training vectors {x(t)} was 
derived from the structured distribution shown in 
Fig. 3a. Without much loss of generality, the lengths of 
the x(t) were normalized to unity whereby their distri- 
bution lies on the surface of the unit sphere in R 3. The 
"training vectors" were picked up noncyclically, in a 
completely random fashion from this distribution. The 
initial values for the parameters #u were also defined as 
random numbers. The gain parameter e was made a 
function of the iteration step, e.g., proportional to lit. 
(A decreasing sequence was necessary for stabilization, 
and this choice complies with that frequently used in 
mathematical models of learning systems.) 

To test the final state of the system after many 
iterations, a set of test vectors from the distribution of 
Fig. 3 a, as shown in Fig. 3 b, was defined. The images of 
these vectors (i.e. those units which gave the largest 
responses to particular input vectors) are shown in 
Fig. 3 c. It may be clearly discernible that an ordered 
mapping has been formed in the process. The map has 
also formatted itself along the sides of the array. 

What actually caused the self-ordering ? Some fun- 
damental properties of this process can be determined 
by means of the following argumentation. The cor- 
rective process of Eq. (3) increases the parallelism of 
the activated (neighbouring) vectors. Thus the differen- 
tial order all over the array will be increased on the 
average. However, differential ordering steps of the 
above kind cannot take place independently of each 
other. As all units in the array have neighbours which 
they affect during adaptation, changes in individual 
units cannot be compatible unless they result in a global 
order. The boundary effects in the array delimit the 
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Fig. 4. Distribution of the weight vectors rn~(t) at different times. The 
number of training steps is shown above the distribution. Interaction 
between nearest neighbours only 

format of the map in a manner somewhat similar to the 
way boundary conditions determine the solution of a 
differential equation. 

Simulation 2. A clear conception of the ordering pro- 
cess is obtainable if the sequence of the weight vectors 
is illustrated using computer graphics. For  this pur- 
pose, the vectors were assumed to be three-dimensional. 
Obviously the distribution of the weight vectors tends 
to imitate that of the training vectors x(t). Since the 
vectors are normalized, they lie on the surface of a unit 
sphere in R 3. The order of the weight vectors in this 
distribution can be indicated simply by a lattice of lines 
which conforms with the topology of the processing 
unit array. A line connecting two weight vectors m~ and 
mj is used only to indicate that the two corresponding 
units i and j are adjacent in the array. Figure 4 now 
shows a typical development of the vectors mi(t) in 
time; the illustration may be self-explanatory. 

Simulation 3. This experiment was made in order to 
find out whether the ordering of the weight vectors 
would proceed faster if Eq. (3) were applied to more 
than the eight nearest neighbours of the selected unit. 
A number of experiments were made, and one of the 
best methods found was to apply Eq. (3) as such to the 
selected unit and its nearest eight neighbours while 
using an adaptation gain value of c</4 for those 16 units 
which surrounded the previous ones. A result relating 
to the previous training vectors is given in Fig. 5. In 
this case ordering seems to proceed more quickly and 
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Fig. 5. Same as Fig. 4 except that a longer interaction range was used 

more reliably; on the other hand, the final result is 
perhaps not as good as before. 

Comments. Something should be said here about simu- 
lations 1 through 3. There are eight equally probable 
symmetrical alternatives in which the map may be 
realized in the ordering process. One way to break the 
symmetry and to define a particular orientation for the 
map is to define "seeds", i.e. units with fixed, prede- 
termined input weights. Another possibility is to use 
nonsymmetrical distributions and arrays which might 
have the same effect. We shall not take up this question 
in more detail. 

2.3. Formation of Feature Maps 
in a One-Dimensional Array 
with Non-Identical but Coherent Inputs 
to the Units (Frequency Map) 

The primary purpose of this experiment was to show 
that for self-organization non-identical but coherent 
inputs are sufficient. 

Simulation 4. Consider Fig. 6, which depicts a one- 
dimensional array of processing units governed by 
system equations (1) through (3). In this case each unit 
except the outermost ones has two nearest neighbours. 

i . . . . . . . . . . .  "l 
I I I I Mutually 

interacting 
t = processing 
L__ ~ _ _  _~ '_  . . . . . .  __ ~r~___ .i units 

Output 
~tll ~2 ~r/lO responses 

Fig. 6. Illustration of the one-dimensional system used in the self- 
organized formatiou of a frequency map 



Table 1. Formation of frequency maps in Simulation 4. The resonators (20 in number) corresponded to 
second-order filters with quality factor Q=2.5 and resonant frequencies selected at random from the range 
[1,2]. The training frequencies were selected at random from the range [0.5; 1]. This table shows two 
different ordering results. The numbers in the table indicate those test frequencies to which each processing 
unit became most sensitive 
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Unit i 1 2 3 4 5 6 7 8 9 10 

Frequency map 0.55 0.60 0.67 0.70 0.77 0.82 0.83 0.94 0.98 0.83 
in Experiment 1, 
2000 steps 

Frequency map 0.99 0.98 0.98 0.97 0.90 0.81 0.73 0.69 0.62 0.59 
in Experiment 2, 
3500 steps 

This system will receive sinusoidal signals and become 
ordered according to their frequency. Assume a set of 
resonators or bandpass filters tuned at random to 
different frequencies. Five inputs to each array unit are 
now picked up at random from the resonator outputs, 
so that there is no initial correlation or order in any 
structure or parameters. Next we shall carry out a 
series of adaptation operations, each time generating a 
new sinusoidal signal with a randomly chosen fre- 
quency. After a number of iteration steps the array 
units start to become sensitized to different frequencies 
in an ascending or descending order. The results of a 
few experiments are shown in Table 1. 

Although this model system was a completely 
fictive one, a striking resemblance to the tonotopic 
maps formed in the auditory cortices of mammals (e.g., 
Reale and Imig, 1980) can be discerned; the extent of 
the disorders in natural maps is also similar. 

3.  A P o s s i b l e  E m b o d i m e n t  o f  S e l f - O r g a n i z a t i o n  
in a N e u r a l  S truc ture  

The models in Sect. 2 were set up without any reference 
to physical realizability. This section will discuss as- 
sumptions which lead to essentially similar self- 
organization in a physical, possibly neural system. It 
will be useful to realize that the complete process, in 
the earlier as well as present models, always consists of 
two phases which can be implemented, studied, and 
adjusted independently: 1. Formation of an activity 
cluster in the array around the unit at which activation 
was maximum. 2. Adaptive change in the input 
weights of those units where activity was confined. 

It is salient that many structures of the central 
nervous system (CNS) are essentially two-dimensional, 
let alone the stratification of cells in several laminae. 
On the  other hand, it is also rather generally agreed 
that in the neocortex, for instance, which has a pro- 
nounced vertical texture, the cell responses are very 
similar in the vertical direction. Many investigators 

even hold the view that the cortical cell mass is 
functionally organized in vertical columns. It seems 
that such columns are organized around specific af- 
ferent axons so that they perform the basic input- 
output transformation of signals (Mountcastle, 1957; 
Towe, 1975). 

There is both anatomical and physiological evi- 
dence for the following type of lateral interaction 
between cells: 1. Short-range lateral excitation reach- 
ing laterally up to a radius of 50 to 100gin (in 
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Fig. 7. a Lateral interaction around an arbitrary point of excitation, 
as a function of distance. Positive value : excitation. Negative value: 
inhibition, b Schematic representation of lateral connectivity which 
may implement the function shown at a. Open (small) circle: 
excitatory synapse. Solid circle: inhibitory synapse. Dotted line: 
polysynaptie connection. The variables (Pc and rh: see simulations 
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primates); 2. The excitatory area is surrounded by a 
penumbra of inhibitory action reaching up to a radius 
of 200 to 500 gm; 3. A weaker excitatory action sur- 
rounds the inhibitory penumbra and reaches up to a 
radius of several centimeters. 

The form of the lateral interaction function is 
depicted in Fig. 7a, and a schematic representation of a 
laminar network model that has the type of lateral 
interconnectivity possibly underlying the observed in- 
teractions, is delineated in Fig. 7b. 

This  particular network model is first used to 
demonstrate, in an ultimately simplified configuration, 
that the activity of neighbouring cells, due to the 
lateral interactions, can become clustered in small 
groups of roughly the same lateral dimension as the 
diameter of the excitatory or inhibitory region. The 
second step in modelling is then to show that if 
changes in the synaptic efficacies of the input con, 
nections are changed adaptively in proportion to 
presynaptic as well as postsynaptic activity, the process 
will be very similar to that already discussed in Sect. 2. 

3.1. Dynamic Behaviour of the Network Activity 

The CNS neurons usually fire rather regularly at a rate 
which depends on the integrated presynaptic trans- 
mission. It is a good approximation to assume that 
differential changes in the postsynaptic potential add 
up linearly. The overall average triggering frequency/7 
of the neuron is then expressible as 

where cr[-] defines a characteristic functional form 
which we shall study in a few cases, the ~j are the 
presynaptic impulse frequencies of all synapses, and 
the flj now correspond to the synaptic efficacies. The flj 
are positive for excitatory synapses and negative for 
the inhibitory ones. 

Consider an array of principal neurons as depicted 
in Fig. 7; the interneurons have not been shown ex- 
plicitly but manifest themselves through the lateral 
couplings. In accordance with Eq. (4) we will write for 
every output 

,h(t) =,~ [q,~(t)+ ~ v~,/~(t- dr)], (5) 

where q3i(t ) is the integrated depolarization caused by 
all afferent (external) inputs, and the second term 
represents inputs due to lateral couplings. Here S~ is 
the set of cells connected to cell i. The coefficients 7k 
depend not only on synaptic efficacies but also on the 
type of lateral interconnections, and the Yk around cell i 
shall roughly depend on the distance according to 

- 3 a - 1  

l l l l l -  
I 
I 

l-b/3 
3 a + 1  

11ili 
Fig. 8. Definition of the ~, coefficients used in Simulation 5 

Fig. 7a. The synaptic transmission and latency delays 
A t of the lateral couplings are assumed to be identical 
since their variations are of no interest here. It is 
essential to first study the recurrent process in which 
the th(t ) settle down to their asymptotic values in time. 

Simulation 5. Most of the characteristic features of the 
above process will already be found in a one- 
dimensional model in which a row of cells is in- 
terconnected to yield a lateral excitability qualitatively 
similar to that given in Fig. 7a. (The long-range exci- 
tatory interaction is neglected.) Let us write 

~i(t)=~ q,~+ 2 ~,~+~(t-1), (6) 
k = - L  

where we have made At= 1; the coefficients ~ have 
been defned in Fig. 8. Moreover, cr[a] = 0 was chosen 
for a<0 ,  a[a] =a for O<-a<_A, and o-[a] = A for a>A.  

In Fig. ga, the outputs stabilized to values pro- 
portional t o  those of the cO i. The form of the distri- 
bution changed due to the lateral connections. In 
Fig. 9b the tli(t) tend to stable clusters which have a 
lateral extension of the same order of magnitude as the 
excitatory center in the connectivity function. Such 
clusters may have a relation to the physiological 
"columns" of the cortical organization, although here 
they simply follow from lateral interactions. 

It ought to be realized that these clusters are 
usually self-resetting ; they tend to decay due to habi- 
tuation, fluctuation of activation, etc. 

It should be pointed out that for good clustering 
the width of the interaction function of Figs. 7 or 8 
cannot be very small in relation to the curvature of the 
input activation. Otherwise, the lateral interaction 
tends only to enhance the borders of the input acti- 
vation. Symptoms of such an effect are discernible in 
Fig. 9b (also Wilson and Cowan, 1973) (see also 
Sect. 4.3). 
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Fig. 9a and b. Development of activity in time over a one-dimensional interconnected array, vs. unit position. Input excitation : ~0~ = 2 sin(nil50). 
a The lateral feedback was below a certain critical value (the parameters relating to Fig. 8 were: a = 5, b = 0.024, and the saturation limit was 
= 10). b Same as in a except that the lateral feedback exceeded the critical value (b=0.039) 

3.2. On the Analytical Model 
of Synaptic Plasticity 

The synaptic efficacy can adaptively depend on signal 
values in many ways; potentiation and habituation 
effects can have widely different durations and be 
proportional to presynaptic or postsynaptic activity. 
In complex learning situations in which associative 
learning is present, the more permanent synaptic 
changes seem to need both presynaptic and postsynap- 
tic activation. This is roughly the law usually referred 
to as the Hebbian hypothesis (Hebb, 1949). Some 
experimental evidence for the presence of both pre- 
synaptic and postsynaptic factors in the plasticity of 
cells in the visual cortex has recently been provided 
(Singer, 1977; Rauschecker and Singer, 1979) (Levy, 
1980). 

However, the original hypothesis of Hebb, which in 
effect stated that the efficacy of a synapse is increased 
with simultaneous presynaptic and postsynaptic trig- 
gering, is unsatisfactory for at least the following 
reasons: 1. Changes occur in one direction only. 
2. There would be changes with background activity. 
Therefore, a more natural possibility which also satis- 
fies the essential requirements is that the sum of 
synaptic resources of  a cell during a relatively short time 
span is approximately constant, and changes are induced 
only in the relative efficacies of the synapses. This is 
possible if the synaptic efficacy is mainly determined by 
one or more postsynaptic factors which are redistributed 
between the synaptic sites in proportion to their use 
(Kohonen, 1977). Notice that for synaptic transmission 
various chemical agents and energy must be supplied. 
Their reserves are also limited. 

It seems necessary to express the principle of 
limited synaptic resources in one form or another, not 
only for physical reasons but also since it seems to be 

very favourable for many learning processes, including 
the one discussed in this paper. 

One of the simplest analytical expressions for 
changing synaptic efficacy of the above type follows 
from rather simple dynamics (Kohonen, 1977): 

d#/dt = c~(~ - ~b)tl , (7) 

where # is the efficacy which corresponds to the input 
weight expressed in Eqs.(1) through (3), ~ is the 
presynaptic input (triggering frequency of the pre- 
synaptic neuron), ~b is an effective background value, t/ 
is the postsynaptic triggering frequency, and ~z is a 
proportionality constant (which depends on the type 
and location of the synapse). Notice that all plastic 
synapses in the present model can be excitatory. 

3.3. Demonstration of Self-Organization 
in Networks of Neuron-Like Elements 

We shall restrict ourselves below to physical models 
which have been constructed to implement the two 
partial processes mentioned at the beginning of this 
subsection : clustering of activity (Phase 1), and adap- 
tation of the input weights (Phase 2). 

Phase 1. Many simulations performed on the complete 
system models reported below have shown convinc- 
ingly that it is immaterial how the activity cluster is 
formed in Phase l, as long as it attains the proper form 
(Sect. 4) ; consequently, one may experiment with many 
differential equations for the system description. Since 
the numerical integration of these equations is usually 
rather tedious, it was considered permissible to speed 
up this phase as much as possible. Several simplifi- 
cations for the simulation of the dynamic process were 
suggested. The most straighforward method, without 
losing much fidelity with respect to the original pro- 
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cesses, was to make the increments of tli(t) fairly large 
at every interval of t, in fact on the order of one decade. 
Such a speed-up is normal in the discrete-time comput- 
ing models applied in system theory. 

It was then concluded that since the discrimination 
process is in any case a weIl-estabtished phenomenon, 
its accurate modelling might not contribute anything 
essential when contrasted with the more interesting 
Phase 2. Relying on the results achieved in modelling 
Phase 1, the solution in each discrimination process 
(training step) was simply postulated to be some static 

function of the input excitations cpi = ~, #u~j. A sim- 
j = l  

ple, although not quite equivalent way, is to in- 
troduce a threshold by defining a floating bias function 
6 common for all units, and then by putting the system 
equations into a form in which the solution is de- 
termined implicitly: 

l~i=G[q~ i'j- k~S 'k~k--51' 
+ (8) 

5 = m a x  { ~ 3  - ~- 

The nonlinearity o-[. ] might be similar to that applied 
in Eq. (6), and e is a small positive constant. 

Perhaps the simplest model which can still be 
regarded as physical first performs thresholding of the 
input excitation and then lets the short-range local 
feedback amplify the activity and spread it to neigh- 
bouring units. 

cO'i= a[c&- 5], 5= max {~oi} - e ,  
�9 i 

rl,= Z 7kO'k. (9) 
k~S~ 

All the above equations have been tested to yield 
roughly similar activity clusters. 

Phase 2. The wanted operation in the self2organizing 
process would be to rotate the weight vectors at each 
training step in the proper direction. Straightforward 
application of modifiability law of the type expressed 
in Eq. (7) would yield an expression 

#ij(t q- i )  -~ #ij( t) -F O~rli(t ) (r j -- eb) " (10) 

This, however, does not yet involve any normalization. 
Therefore it must be pointed out that Eq. (7) is already 
an approximation ; it was in fact derived by postulating 
that ~#u is constant. Therefore, a more accurate 
version of Eq. (10) is the following 

#o( t  + 1) = # , / t )  + ~n / t )  ( r  eb) 
Z [~ij(t) + atli(t) (r - -  {b)]' (t 1) 
J 

where normalization based on the conservation of 
"memory" resources (their linear sum)has been made. 

Notice that the factor t/i(t ) in Eqs. (t0) and (11) in fact 
corresponds to the selection rule relating to Eq. (3); the 
input weights of only the activated units change. 
Proportionality to th(t ) further means that the cor- 
rection becomes a function of distance from the maxi- 
mum response. However, in addition to rotating the m, 
vectors, this process still affects their lengths. 

It has been pointed out (Oja, 1981) that the factor 
which is assumed to be redistributed in the "memory" 
process actually need not be directly proportional to 
the input weight; for instance, if the input efficacy were 
proportional to the square root of this factor (a weaker 
function than the linear one !), then the denominator of 
Eq. (11) would already become similar to that applied 
in the teaching rule Eq. (3). Another interesting fact is 
that the Euclidean norm follows from a simple for- 
getting law. One may note further that a particular 
norm, and a particular form of the discrimination 
function should be related to each other; the most 
important requirement is to achieve good discrimi- 
nation between neighbouring responses in one way or 
another. 

Many simulations with physical process models of 
the above type were carried out; to make them 
comparable to those performed on the more fictive 
models of Sect. 2, three-dimensional vectors alone were 
used. The following adaptive law was then applied: 

#it(t) + c%(t) (r  eb) (12) ~(t+ 1)= {~=~ 1~/~" 

The results were not particularly sensitive to the value 
of ~b which could be made zero. 

Simulation 6. These experiments were performed with 
the simplest physical system model expressed in 
Eqs. (9), and in general they yielded very good results 
for many parameter values. The parameter e can be 
used to control selectivity of the responses, and it also 
affects the width of the activity cluster. In this simu- 
lation e was 0.05; on the other hand, if it was made 
equal to or greater than, say, 0.1, an interesting 
"collapse" phenomenon (Sect. 4.4) occurred. A "con- 
traction" phenomenon (Sect.4.2).due to boundary 
effects has also taken place (Fig. 10). 

With the more complicated system models simu- 
lations with varying degrees of success have been 
performed. The reasons for different kinds of outcomes 
are discussed in Sect. 4 in more detail. 

Conclusion. The conditions described in this section 
are in general favourable for the implementation of 
self-organization in a physical system. Most of these 
functions are also realizable with relatively simple 
components. This raises an intriguing question about 
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Fig. 10. a Distribution of training vectors used in a simple physical 
system model, b Distribution of weight vectors m~ after 4000 training 
steps 

the realizability of this phenomenon in the neural 
networks. At least if one does not stipulate that the 
exact mathematical expression should be valid, but 
allows some variance, which in any case retains certain 
necessary conditions (good discrimination between 
neighbouring responses and formation of activity clus- 
ters in one way  or another), the conditions met in 
neural circuits could also be conducive to this 
phenomenon. 

4. Some Special Effects 

4.1. The Magnification Factor 

In this subsection an important property characteristic 
of biological organisms will be demonstrated: the scale 
or magnification factor of the map is usually not 
constant but a function of location in the array which 
depends on the frequency of input events that have 
mapped into that location during adaptation. It seems 
that the magnification factor is approximately pro- 
portional to the above frequency; this me,ins that the 
network resources are utilized optimally in accordance 
with need. 

The optimal allocation of resources in the mapping 
was demonstrated by means of the following series of 
experiments. The distribution of the training vectors, 
which was uniform over an area, was made variable; in 
a given experiment one half, say the right-hand one, 
had a different contingent of the total distribution, h 
other words the relative frequency of vectors drawn 
from this half was variable, and in every experiment 
the mapping was permitted to settle down to the 
asymptotic value. The relative fraction of the map into 
which these vectors were then mapped, or the "occu- 
pation of memory", was evaluated vs. the relative 
frequency of the vectors, and plotted into Fig. 11 
(Kohonen, 1981). 
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Fig. 11. Diagram showing the fraction of the processing unit array 
occupied by pattern vectors of one half of the distribution, vs. their 
relative frequency. Middle curve: optimal third-degree weighted 
least-square fit. The other curves: standard deviation 

4.2. Boundary Effects 

Another effect which may deform the maps is caused 
by the fact that the arrays of processing units had 
borders. The outermost units had no neighbours on 
one side with which they could interact. Since the 
distribution of training vectors is usually bordered, 
too, some kind of "boundary effects" can then be 
observed. The most typical is "contraction" of the 
distribution of weight vectors: on average the o u t -  
ermost vectors are rotated more often inwards than 
outwards. This effect will iteratively spread to other 
vectors with the result that the whole distribution will 
be contracted from that o f  the training vectors. The 
"contraction" effect was clearly discernible in 
Simulation 6. 

It must be realized that the distribution of weight 
vectors on the one hand, and the output map on the 
other have scales which are reciprocal to each other : if 
the distribution of weight vectors is contracted, the 
corresponding output map is expanded, and may even 
overflow the array. In fact, this is the phenomenon 
mentioned above, which, when occurring in modest 
amounts, is useful and even essential for effective map 
formation. It will format the map automatically along 
the borders. In still other words, there seems to be a 
kind of "pressure" in the map which tends to "mould" 
it into the given form. 

Further it has to be remarked that brain networks 
do not have abrupt borders ; accordingly, such bound- 
ary effects need not be considered in this particular 
form. Brain networks are often parcelled into subareas 
each of which receives signals with different origin. 
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Ordering within each subarea may thus occur inde- 
pendently and be only slightly affected at the de- 
marcation zones. 

4.3. The "Pinch" Phenomenon 

Although the type of self-organization reported in this 
paper is not particularly "brittle" with respect to 
parameters, conditions in which this process fails do 
exist. One of the typical effects encountered is termed 
the "'pinch" phenomenon. This means simply that the 
distribution of the memory vectors does not spread out 
into a planar configuration, but is instead concentrated 
onto a ring. Some kind of one-dimensional order of 
vectors may be discernible along the perimeter of the 
ring which, however, does not produce a meaningful 
map in the processing unit array. 

A typical condition for the "pinch" phenomenon is 
poor selectivity in the discrimination process, especially 
when the range of  lateral interaction is too short. This 
results in several "peaks" of activity, usually at the 
opposite edges of the array. In consequence, con- 
tradictory corrections are imposed on the weight 
vectors. Figure 12 exemplifies a typical distribution of 
weight vectors (shown without lattice lines) when this 
effect was fully developed. 

4.4. The "Collapse" Phenomenon 

Another pitfall related to the "pinch" phenomenon, 
and not much different in principle from the con- 
traction effect discussed in Sect. 4.2, should be men- 
tioned. This is the outcome in which all weight vectors 
tend to attain the same value. This is termed "collapse" 
(of the distribution, not of the map). This phenomenon 
was observed when the range of  lateral interaction was 
too long. For instance, a too low threshold in the 
models of Sect. 3.4 resulted in the "collapse". 

This effect is manifested in the output responses so 
that large groups of units give the same response. 

,? ... " % .  / 

) 
\ 

Fig. 12. An example of a weight vector distribution when the "pinch" 
phenomenon was due 

4.5. The "Focusing" Phenomenon 

This case is opposite to the "collapse". It may happen 
that one or more array units take over, i.e., they 
become sensitized to large portions of the distribution 
of the training vectors. In this case there is usually no 
order in the mapping. This failure is mainly due to 
poor general design or malfunction of the system, 
especially if  the lateral interaction between neighbouring 
elements is too weak. Another common reason is that 
the normalization of the weight vectors is not done in a 
proper way whereby discrimination between the re- 
sponses of neighbouring units becomes impossible. 

5. On the Possible Roles 
of Various Neural Circuits Made by Interneurons 

In view of the effects reported in Sects. 4.1 through 4.4 
now seems possible to draw conclusions about the 
meaning of certain structures met in neural networks. 
Throughout the history of neuroanatomy and neu- 
rophysiology there has been much speculation about 
the purpose of the polysynaptic circuits made by 
various interneurons in CNS structures. Some in- 
vestigators seem to be searching for an explanation in 
terms of complex computational operations while 
others see the basic implementation of feature de- 
tectors for sensory signals in these circuits. There are, 
e.g., quite specific circuits made by some cells such as 
the bipolar, chandelier, and basket cells in the cortex, 
for which a more detailed explanation is needed. 

However, the roles of the above-mentioned cells, as 
well as the characteristic ramification of the axon 
collaterals of most cortical cell types would become 
quite obvious if the purpose was to implement a neural 
network with a capacity for predominantly two- 
dimensional self-organization. The bipolar cells, the 
recurrent axon collaterals of various cells, and the 
general vertical texture of the cortex warrant a high 
degree of conductance and spreading of signal activity 
in the vertical direction. On the other hand, if it were 
necessary to implement a lateral interaction, such as 
that described by the excitation function of the type 
delineated in Fig. 8a, then the stellate, basket, chan- 
delier, etc. interneurons, and the horizontal intracorti- 
cal axon collaterals would account for the desired 
lateral coupling. 

The effects reported in Sects.4.1 through 4.4 in- 
dicate that although self-organization of this type is 
not a particularly "brittle" phenomenon, the form of 
the lateral interaction function needs some adjustment. 
In a neural tissue this must be done by active circuits 
for which the interneurons are needed. 

It might even be said that the fraction of  a certain 
cell type in the composition of all neurons is a tuning 
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parameter by which an optimal form of local interaction 
can be defined. The characteristic branchings of a 
particular cell type may roughly serve a similar pur- 
pose to that of the different basis functions in ma- 
thematical functional expansions. This conception is 
also in agreement with the fact that all cell types are 
not present in different species, or even in different 
parts of the brain: for some purposes it may be 
sufficient to "tune" a certain interaction with fewer 
types of cell ("basis functions"), while for more exacting 
tasks a richer variety of cells would be needed. Such 
recruitment of new forms according to need would be 
in complete agreement with the general principles of 
evolution. 
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