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We update complementary learning systems (CLS) theory, which holds that
intelligent agents must possess two learning systems, instantiated in mamma-
lians in neocortex and hippocampus. The first gradually acquires structured
knowledge representations while the second quickly learns the specifics of
individual experiences. We broaden the role of replay of hippocampal memories
in the theory, noting that replay allows goal-dependent weighting of experience
statistics. We also address recent challenges to the theory and extend it by
showing that recurrent activation of hippocampal traces can support some
forms of generalization and that neocortical learning can be rapid for informa-
tion that is consistent with known structure. Finally, we note the relevance of the
theory to the design of artificial intelligent agents, highlighting connections
between neuroscience and machine learning.

Complementary Learning Systems
Twenty years have passed since the introduction of the CLS theory of human learning and
memory [1], a theory that, itself, had roots in earlier ideas of Marr and others. According to the
theory, effective learning requires two complementary systems: one, located in the neocortex,
serves as the basis for the gradual acquisition of structured knowledge about the environment,
while the other, centered on the hippocampus, allows rapid learning of the specifics of individual
items and experiences. We begin with a review of the core tenets of this theory. We then provide
three types of updates. First, we extend the role of replay of memories stored in the hippocam-
pus. This mechanism, initially proposed to support the integration of new information into the
neocortex, may support a diverse set of functions [2,3], including goal-related manipulation of
experience statistics such that the neocortex is not a slave to the statistics of its environment.
Second, we describe recent updates to the theory in response to two key empirical challenges:
(i) evidence suggesting that the hippocampus supports some forms of generalization that go
beyond those originally envisaged [4–6], and (ii) evidence suggesting that, when new information
is consistent with existing knowledge, the time required for its integration into the neocortex may
be much shorter than originally suggested [7,8]. In a final section, we highlight links between the
core principles of CLS theory and recent themes in machine learning, including neural network
architectures that incorporate memory modules that have parallels with the hippocampus. While
there remain several issues not yet fully addressed (see Outstanding Questions), the extensions,
responses to challenges, and integration with machine learning bring the theory into agreement
with many important recent developments and provide a take-off point for future investigation.

Trends
Discovery of structure in ensembles of
experiences depends on an interleaved
learning process both in biological
neural networks in neocortex and in
contemporary artificial neural networks.

Recent work shows that once struc-
tured knowledge has been acquired in
such networks, new consistent infor-
mation can be integrated rapidly.

Both natural and artificial learning sys-
tems benefit from a second system that
stores specific experiences, centred on
the hippocampus in mammalians.

Replay of experiences from this system
supports interleaved learning and can
be modulated by reward or novelty,
which acts to rebalance the general
statistics of the environment towards
the goals of the agent.

Recurrent activation of multiple mem-
ories within an instance-based system
can be used to discover links between
experiences, supporting generalization
and memory-based reasoning.
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Summary of the Theory
CLS theory [1] provided a framework within which to characterize the organization of learning in
the brain (Figure 1, Key Figure). Drawing on earlier ideas by David Marr [9], it offered a synthesis
of the computational functions and characteristics of the hippocampus and neocortex that not
only accounted for a wealth of empirical data (Box 1) but resonated with rational perspectives on
the challenges faced by intelligent agents.

Structured Knowledge Representation System in Neocortex
A central tenet of the theory is that the neocortex houses a structured knowledge representation,
stored in the connections among the neurons in the neocortex. This tenet arose from the
observation that multi-layered neural networks (Figure 2) gradually learn to extract structure
when trained by adjusting connection weights to minimize error in the network outputs [10]. Early

Key Figure

Complementary Learning Systems (CLS) and their Interactions.

Bidirec�onal connec�ons (blue)
link neocor�cal representa�ons
to the hippocampus/MTL for
storage, retrieval, and replay

Rapid learning in connec�ons within
hippocampus (red) supports ini�al
learning of arbitrary new informa�on

Connec�ons within and
among neocor�cal areas
(green) support gradual

acquisi�on of structured
knowledge through
interleaved learning

Figure 1. Lateral view of one hemisphere of the brain, where broken lines indicate regions deep inside the brain or on the
medial surface. Primary sensory and motor cortices are shown in darker yellow. Medial temporal lobe (MTL) surrounded by
broken lines, with hippocampus in dark grey and surrounding MTL cortices in light grey (size and location are approximate).
Green arrows represent bidirectional connections within and between integrative neocortical association areas, and
between these areas and modality specific areas (the integrative areas and their connections are more dispersed than
the figure suggests). Blue arrows denote bidirectional connections between neocortical areas and the MTL. Both blue and
green connections are part of the structure-sensitive neocortical learning system in the CLS theory. Red arrows within the
MTL denote connections within the hippocampus, and lighter-red arrows indicate connections between the hippocampus
and surrounding MTL cortices: these connections exhibit rapid synaptic plasticity (red greater than light-red arrows) crucial
for the rapid binding of the elements of an event into an integrated hippocampal representation. Systems-level consolidation
involves hippocampal activity during replay spreading to neocortical association areas via pathways indicated with blue
arrows, thereby supporting learning within intra-neocortical connections (green arrows). Systems-level consolidation is
considered complete when memory retrieval – reactivation of the relevant set of neocortical representations – can occur
without the hippocampus.
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examples were provided by networks that learned to read words aloud [11–13] from repeated,
interleaved exposure to the spellings and corresponding sounds of English words. These
networks supported the gradual acquisition of a structured knowledge representation in the
connection weights among the units in the network, shaped by the statistics of the environment
in a fashion that was efficient and generalized to novel examples [1,14,15], while also supporting
performance on atypical items occurring frequently in the domain. Such a representation can be
described as parametric (see Glossary) rather than as item-based (or non-parametric) in that
the connection weights can be viewed as a set of parameters optimized for the entire domain (e.
g., the spellings and sounds of the full set of words in the language) instead of supporting
memory for the items per se. According to the theory, such networks underlie acquired cognitive
abilities of all types in domains as diverse as perception, language, semantic knowledge
representation, and skilled action. This idea can be seen as an extension of Marr's original
proposal [9], which held that cortical neurons each learned the statistics associated with a
particular category.

The CLS theory proposed that learning in such a parametric system will necessarily be slow, for two
main reasons: first, each experience represents a single sample from the environment. Given this, a
small learning rate allows a more-accurate estimate of the underlying population statistics by
effectively aggregating information over a larger number of samples [1]. Second, the optimal
adjustment of each connection depends on the values of all of the other connections. Before the
ensemble of connections has been structured by experience, the signals specifying how to change
connection weights to optimize the representation will be both noisy and weak, slowing initial
learning. This issue has proved to be particularly important in deep (i.e., many-layered) neural
network architectures that have enjoyed recent successes in machine learning [16] as well as in

Glossary
Attractor network: networks with
recurrent connectivity that have
stable states which persist in the
absence of external inputs, and
afford noise tolerance. Discrete/point
attractor networks can be used to
store multiple memories as individual
stable states. Continuous attractor
networks have a continuous manifold
of stable points which allow them to
represent continuous variables (e.g.,
position in space).
Auto-associative storage: the
storage within an attractor network of
an input pattern constituting an
experience, such that elements of the
input pattern are linked together
through plasticity within the recurrent
connections of the network. The
operation of recurrent connections
supports functions such as pattern
completion, whereby the entire input
pattern (e.g., memory of a birthday
party) can be retrieved from a partial
cue (e.g., the face of a friend).
Exemplar models: exemplar models
in cognitive science, related to
instance-based models in machine
learning, operate by computing the
similarity of a new input pattern (i.e.,
presented as external sensory input)
to stored experiences. This results in
the output of the model, for example
a predicted category label for the
new input pattern, at which point the
process terminates.
Non-parametric: we use this term
to refer to algorithms where each
experience or datapoint has its own
set of coordinates, where capacity
can be increased as required – and
the number of parameters may grow
with the amount of data. K-nearest
neighbor constitutes one common
example of such a non-parametric
instance-based method.
Parametric: we use this term to
refer to algorithms that do not store
each datapoint, but instead directly
learn a function that (for example)
predicts the output value for a given
input. The number of parameters is
typically fixed.
Paired associative inference (PAI)
task: a paradigm in which items are
organized into (e.g., a hundred) sets
of triplets (e.g., ABC) or larger sets
(e.g., sextets: ABCDEF). Participants
view item pairs (e.g., AB, BC) during
the study phase and are tested on
their ability to appreciate the indirect
relationships between items that

Box 1. Empirical Evidence Supporting Core Principles of CLS Theory

The Role of the Hippocampus in Memory
Bilateral damage to the hippocampus profoundly affects memory for new information, leaving language, reading, general
knowledge, and acquired cognitive skills intact [29,34], consistent with the idea that many types of new learning are
initially hippocampus-dependent. Memory for recent pre-morbid information is profoundly affected by hippocampal
damage, with older memories being less dependent on the hippocampus and therefore less sensitive to hippocampal
lesions [1,34,51,128], supporting gradual integration of learned information into cortical knowledge structures. However,
some evidence suggests that memory for specific details of an event can remain MTL-dependent [52,129] as long as the
details are retained (e.g., [130]).

Hippocampus Supports Core Computations and Representations of a Fast-Learning Episodic Memory System
Episodic memory is widely accepted to depend on the hippocampus, mediated by a capacity to bind together (i.e., ‘auto-
associate’) diverse inputs from different brain areas that represent the constituents of an event. Indeed, information about
the spatial (e.g., place) and non-spatial (e.g., what happened) aspects of an event are thought to be processed primarily
by parallel streams before converging in the hippocampus at the level of the DG/CA3 subregions [37]. Two comple-
mentary computations – pattern separation and pattern completion – are viewed to be central to the function of the
hippocampus for storing details of specific experiences. Evidence suggests that the dentate gyrus (DG) subregion of the
hippocampus performs pattern separation, orthogonalizing incoming inputs before auto-associative storage in the
CA3 region [131–137]. Further, the CA3 subregion is crucial for pattern completion – allowing the output of an entire
stored pattern (e.g., corresponding to an entire episodic memory) from a partial input consistent with its function as an
attractor network [138,139] (Boxes 2–4).

Hippocampal Replay
A wealth of evidence demonstrates that replay of recent experiences occurs during offline periods (e.g., during sleep,
rest) [2,3]. Further, the hippocampus and neocortex interact during replay as predicted by CLS theory [65], putatively to
support interleaved learning. A causal role for replay in systems-level consolidation is supported by the finding that
optogenetic blockage of CA3 output in transgenic mouse after learning in a contextual fear paradigm specifically reduces
sharp-wave ripple (SWR) complexes in CA1 and impairs consolidation [69].

The Hippocampus And Neocortex Support Qualitatively Different Forms of Representation
A recent experiment [140] found initial evidence in favor: the behavior of rats in the Morris water maze early on appeared
to reflect individual episodic traces (i.e., an instance-based non-parametric representation), but at a later time-point (28
days after learning) was consistent with the use of a parametric representation putatively housed in the neocortex.
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were never presented together (e.g.,
A and C).
Paired associative recall task: a
paradigm where item pairs are
experienced during study (e.g., word
pairs such as ‘dog–table’ in a human
experiment, or flavor–location pairs in
a rodent experiment), and at test the
individual must recall the other item
(e.g., specific location) from a cue
(the specific flavor, e.g., banana).
Recurrent similarity computation:
recurrent similarity computation
allows the procedure performed by
exemplar models to iterate: that is,
the retrieved products from the first
step of similarity computation are
combined with the external sensory
input, and a subsequent round of
similarity computation is performed.
This process continues until a stable
state (i.e., basin of attraction in a
neural network) is reached. This
allows the model to capture higher-
order similarities present in a set of
related experiences, where pairwise
similarities alone are not informative.
Sharp-wave ripple (SWR):
spontaneous neural activity occurring
within the hippocampus during
periods of rest and slow wave sleep,
evident as negative potentials (i.e.,
sharp waves). Transient high-
frequency (�150 Hz) oscillations (i.e.,
ripples) occur within these sharp
waves, which can reflect the replay (i.
e., reactivation) of activity patterns
that occurred during actual
experience, sped up by an order of
magnitude.
Sparsity: the proportion of neurons
in a given brain region that are active
in response to a given stimulus
(‘population sparseness’). Sparse
coding, where a small (e.g., 1%)
proportion of neurons is active, is
contrasted with densely distributed
coding where a relatively large
proportion of neurons are active (e.g.,
20%).

modeling the neural computations supporting visual processing of objects in primates [17,18]. The
considerable advantages of depth in allowing the learning of increasingly complex and abstract
mappings [16] are balanced here by the strong interdependencies among connection weights in
deep networks [19,20] such that the weights are learned gradually through extensive, repeated,
and interleaved exposure to an ensemble of training examples that embody the domain statistics.

Although there are real advantages of a system using structured parametric representations, on
its own such a system would suffer from two drastic limitations [1]. First, it is important to be able
to base behavior on the content of an individual experience. For example, after experiencing a
life-threatening situation – for example, an encounter with a lion at a watering-hole – it would
clearly be beneficial to learn to avoid that particular location without the need for further
encounters with the lion. The second problem is that the rapid adjustment of connection
weights in a multilayer network to accommodate new information can severely disrupt the
representation of existing knowledge in it – a phenomenon termed catastrophic interference
[1,21–23] that is related to the stability–plasticity dilemma [24]. If the new information about the
dangerous lion is forced into a multi-layer network by making large connection weight adjust-
ments just to accommodate this item, this can interfere with knowledge of other less-threatening
animals one may already be familiar with.
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Layer 3

Layer 2

Layer 1 (Input)

Target Figure 2. A Neocortex-Like Artificial
Neural Network. In the complementary
learning systems (CLS) theory, neocortical
processing is seen as occurring through
the propagation of activation among neu-
rons via weighted connections, as simu-
lated using artificial networks of neuron-
like units (small circles). Each unit has an
input line and an output line (with arrow-
head). There is a separate real-valued
weight where each output line crosses
an input line. The weights are the knowl-
edge that governs processing in the net-
work. During processing (inset), each unit
computes a net input (n) from the activa-
tions of its inputs and the weights (plus a
bias term, omitted here), producing an
activation (a) that is a non-linear function
of n (one such function shown). The units
in a layer may project back onto their own
inputs (illustrated for layer 3), simulating
recurrent intra-cortical computations and
higher layers may project back to lower
layers (Figure 1). In the situation shown,
the input (lower left) is a pattern in which
units are either active (a = 1, black) or
inactive (a = 0, white), and examples of
possible activations produced in units of
other layers are shown (darker for greater
activation). Learning occurs through
adjusting the weights to reduce the differ-
ence between the output of the network
and a target output (upper right) [10,16]. In
the case shown, the output activations are
similar to the target, but there is some
error to drive learning. There are no tar-
gets for internal or hidden layers (i.e.,
layers 2 and 3). These patterns depend
on the connection weights, which in turn
are shaped by the error-driven learning
process.
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Instance-Based Representation in the Hippocampal System
Fortunately, a second, complementary learning system can address both problems, affording
the rapid and relatively individuated storage of information about individual items or experiences
(such as the encounter with the lion). Following Marr's and subsequent proposals [25–27], the
CLS theory proposed that the hippocampus and related structures in the medial temporal lobe
(MTL) support the initial storage of item-specific information, including the features of the
watering hole as well as those of the lion (Figure 1). This proposal has been captured in models
of the role of the hippocampus in recognition memory for specific items and in sensitivity to
context and co-occurrence of items within the same event or experience [28–36].

In CLS theory, the dentate gyrus (DG) and CA3 subregions of the hippocampus are the heart of
the fast learning system (Boxes 2–4). The DG is crucial in selecting a distinct neural activity
pattern in CA3 for each experience, even when different experiences are quite similar [25–
27,37,38], a process known as pattern separation. Increases in the strengths of connections
onto and among the participating neurons in DG and CA3 stabilize the activity pattern for an
experience and support reactivation of the pattern from a partial cue: because of the strength-
ened connections, reactivation of part of the pattern that was activated during storage (features
of the watering hole in which the lion was encountered) can then reactivate the rest of the
pattern (i.e., the encounter with the lion), a process called ‘pattern completion’. Return
connections from hippocampus to neocortex then support adaptive behavior (e.g., avoidance
of that location).

Note, however, that a hippocampal system acting alone would also be insufficient due to
capacity limitations [26] and its limited ability to generalize. Related to the latter point, the use of
pattern-separated hippocampal codes for related experiences – in contrast to the relatively
dense similarity-based coding scheme thought to operate in the parametric neocortical system
[17,39–46] – may be adaptive for some purposes but comes with a cost: it disregards shared
structure between experiences, thereby limiting both efficiency and generalization.

The theory is supported by findings that neocortical activity patterns generally show less
sparsity and exhibit greater similarity-based overlap compared to the hippocampus
[17,40,41,43–47] (Boxes 4 and 5). It should be noted, however, that the degree of sparsity
and similarity-based overlap varies across subregions of the hippocampus and neocortex
(Boxes 4 and 5). While some of the relevant findings have been seen as supporting other
theories [48], such differences are fully consistent with CLS and have long been exploited in
CLS-based accounts of the roles of specific hippocampal subregions (Boxes 2–4). Similarly,
learning rates vary across hippocampal areas in the theory (Box 2) and, likewise, there may be
variation in learning rates across neocortical areas (Box 5).

Joint Contribution to Task Performance
In the CLS theory, the hippocampal and neocortical systems contribute jointly to performance in
many tasks and many different types of memories. This point applies to tasks that are often
thought of as tapping ‘episodic memory’ (memory for the elements of one specific experience),
‘semantic memory’ (knowledge of facts, e.g., about the properties of objects) or ‘implicit
memory’ (performance enhancement as a consequence of prior experience that is not depen-
dent on explicit recollection of the prior experience). In the CLS theory, tasks and types of
memory are seen as falling on a continuum, with varying degrees of dependence on the two
learning systems depending on task, item, and other variables. For example, consider the task of
learning a list of paired associates. The list may contain a mixture of pairs with strong, weak, or no
discernable prior association (e.g., dog–cat, heavy–suitcase, city–tiger). Recall of the second
word of a pair when cued with the first is worse in hippocampal patients than controls, but both
groups show better performance on items with stronger prior association [49]. The findings have
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been captured in a model [50] (K. Kwok, PhD Thesis, Carnegie-Mellon University, 2003) in which
hippocampal and neocortical networks jointly contribute to retrieval. Background associative
knowledge is mediated by the cortex and the hippocampus mediates acquisition of associations
linking each item pair to the learning context.

Box 2. Functional Roles of Subregions of the Medial Temporal Lobes

Work within the CLS framework [27,116,141] relies on the anatomical and physiological properties of MTL subregions
and the computational insights of others [9,25,26] to characterize the computations performed within these structures.

Entorhinal Cortex (ERC) Input to the Hippocampal System
During an experience, inputs from neocortex produces a pattern of activation in the ERC that may be thought of as a
compressed description of the patterns in the contributing cortical areas (Figure I: illustrative active neurons in the ERC
are shown in blue). ERC neurons give rise to projections to three subregions of the hippocampus proper, the dentate
gyrus (DG), CA1, and CA3 [28,84]. Pattern selection and pattern separation: novel ERC patterns are thought to activate a
small set of previously uncommitted DG neurons (shown in red – these neurons may be relatively young neurons, created
by neurogenesis). These neurons, in turn, select a random subset of neurons in CA3 via large ‘detonator synapses’
(shown as red dots on the projection from DG to CA3) to serve as the representation of the memory in CA3, ensuring that
the new CA3 pattern is as distinct as possible from the CA3 patterns for other memories, including those for experiences
similar to the new experience (Boxes 3 and 4). Pattern completion: recurrent connections from the active CA3 neurons
onto other active CA3 neurons are strengthened during the experience, such that if a subset of the same neurons later
becomes active, the rest of the pattern will be reactivated. Direct connections from ERC to CA3 are also strengthened,
allowing the ERC input to directly activate the pattern in CA3 during retrieval without requiring DG involvement (Box 3).
Pattern reinstatement in ERC and neocortex [116,141]: The connections from ERC to CA1 and back are thought to
change relatively slowly to allow stable correspondence between patterns in CA1 and ERC. Strengthening of connec-
tions from the active CA3 neurons to the active CA1 neurons during memory encoding allows this CA1 pattern to be
reactivated when the corresponding CA3 pattern is reactivated; the stable connections from CA1 to ERC then allow the
appropriate pattern there to be reactivated, and stable connections between ERC and neocortical areas propagate the
reactivated ERC pattern to the neocortex. Importantly, the bidirectional projections between CA1 and ERC, and between
ERC and neocortex, support the formation and decoding of invertible CA1 representations of ERC and neocortical
patterns, and allow recurrent computations. These connections should not change rapidly given the extended role of the
hippocampus in memory – otherwise reinstatement in the neocortex of memories stored in the hippocampus would be
difficult [61].

CA3

CA1

DG

ERC

Neocortex Neocortex

Figure I. Hippocampal Subregions, Connectivity, and Representation. Schematic depictions of neurons (with
circular or triangular cell bodies) are shown, along with schematic depictions of projections from neurons in an area to
neurons in the same or other areas (grey or colored lines – red coloring indicates projections with highly-plastic synapses,
while grey coloring illustrates relatively less-plastic or stable projections). CA1 output to ERC then propagates out to
neocortex; ERC and even resulting neocortical activity can be fed back into the hippocampus (broken line) as proposed in
the REMERGE model (see below).
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Replay of Hippocampal Memories and Interleaved Learning
We now consider two important aspects of the CLS theory that are central foci of this review: the
replay of hippocampal memories and interleaved learning. According to the theory, the hippo-
campal representation formed in learning an event affords a way of allowing gradual integration
of knowledge of the event into neocortical knowledge structures. This can occur if the hippo-
campal representation can reactivate or replay the contents of the new experience back to the
neocortex, interleaved with replay and/or ongoing exposure to other experiences [1]. In this way
the new experience becomes part of the database of experiences that govern the values of the
connections in the neocortical learning system [51–53]. Which other memories are selected for
interleaving with the new experience remains an open question. Most simply, the hippocampus
might replay recent novel experiences interleaved with all other recent experiences still stored in

Box 3. Pattern Separation and Completion in Different Subregions of the Hippocampus

Pattern separation and completion [25–27] are defined in terms of transformations that affect the overlap or similarity among patterns of neural activity [28,142]. Pattern
separation makes similar patterns more distinct through conjunctive coding [9,25], in which each output neuron responds only to a specific combination of active input
neurons. Figures IA and IB illustrate how this can occur. Pattern separation is thought to be implemented in DG (see Box 4), using higher-order conjunctions that
reduce overlap even more than illustrated in the figure.

Pattern completion is a process that takes a fragment of a pattern and fills in the remaining features (as in recalling a lion upon seeing the scene where the lion previously
appeared) or that takes a pattern similar to a familiar pattern and makes it even more similar to it. Computational simulations [27] have shown how the CA3 region might
combine features of pattern separation and completion, such that moderate and high overlap results in pattern completion toward the stored memory, but less overlap
results in the creation of a new memory [37,133,143] (Figure IC). In this account, when environmental input produces a pattern in ERC similar to a previous pattern, the
CA3 outputs a pattern closer to the one it previously used for this ERC pattern [124,144]. However, when the environment produces an input on the ERC that has low
overlap with patterns stored previously, the DG recruits a new, statistically independent cell population in CA3 (i.e., pattern separation [27]). Emerging evidence
suggests that the amount of overlap required for pattern completion (as well as other characteristics of hippocampal processing) may differ across the proximal-distal
[145,146] and dorso–ventral axes [98,147–150] of the hippocampus, and may be shaped by neuromodulatory factors (e.g., Acetylcholine) [85,151]. Also, incomplete
patterns require less overlap with a stored pattern than distorted ones for completion to occur, so that partial cues will tend to produce completion, as when one sees
the watering hole and remembers seeing a lion there previously [27].

Several studies point to differences between the CA3 and CA1 regions in how their neural activity patterns respond to changes to the environment [37]: broadly, the
CA1 region tends to mirror the degree of overlap in the inputs from the ERC while CA3 shows more discontinuous responses reflecting either pattern separation or
completion [134,152].

Input overlap Input overlap
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Figure I. Conjunctive Coding, Pattern Separation, and Pattern Completion. (A) A set of 10 conjunctive units with connections from a layer of 5 input units is
shown twice with different input patterns. Here each conjunctive unit detects activity in a distinct pair of input units (arrows). The output for each pattern is sparser than
the input (i.e., 30% vs 60%, respectively), and the two outputs overlap less than the two corresponding inputs (i.e., 33% vs 67%, respectively; overlap is the number of
active units shared by two patterns divided by the number of units active in each). DG may use higher-order conjunctions, magnifying these effects. (B) An illustration of
the general form of a pattern separation function, showing the relationship between input and output overlap. Arrows indicate the overlap of the inputs and outputs
shown in the left panel. (C) The separation-and-completion profile associated with CA3, where low levels of input overlap are reduced further, while higher levels are
increased [27,37].
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the hippocampus. A variant of this scheme would be for new experiences to be interleaved with
related experiences activated by the new experience, through the dynamics of a recurrent
mechanism (as in the REMERGE model [5], described below). An alternative possibility would be
that interleaved learning does not actually involve the faithful replay of previous experiences:
instead, hippocampal replay of recent experiences might be interleaved with activation of cortical
activity patterns consistent with the structured knowledge implicit in the neocortical network (e.
g., [23,54–56]).

Thus, the dual-system architecture proposed by CLS theory effectively harnesses the comple-
mentary properties of each of the two component systems, allowing new information to be
rapidly stored in the hippocampus and then slowly integrated into neocortical representations.
This process, sometimes labeled ‘systems level consolidation’ [51], arises, within the theory,
from gradual cortical learning driven by replay of the new information, interleaved with other
activity to minimize disruption of existing knowledge during the integration of the new
information.

Empirical Evidence of Replay. Because of its centrality in the theory, we highlight key empirical
evidence that replay events really do occur. The data come primarily from rodents, recorded
during periods of inactivity (including sleep), in which hippocampal neurons exhibit large irregular
activity (LIA) patterns that are distinct from the activity patterns observed during active states
[2,3]. During LIA states, synchronous discharges thought to be initiated in hippocampal area
CA3 produce sharp-wave ripples (SWRs), which are propagated to neocortex. SWRs reflect
the reactivation of recent experiences, expressed as the sequential firing of so-called place cells,
cells that fire when the animal is at a specific location [2,3,57–59]. These replay events appear to
be time-compressed by a factor of about 20, bringing neuronal spikes that were well-separated
in time during an actual experience into a time-window that enhances synaptic plasticity both

Box 4. Sparse Conjunctive Coding and Pattern Separation in the Dentate Gyrus

Neuronal codes range from the extreme of localist codes – where neurons respond highly selectively to single entities
(‘grandmother cells’) to dense distributed codes where items are coded through the activity of many (e.g., 50%) neurons
in an area [153,154]. While localist codes minimize interference and are easily decodable, they are inefficient in terms of
representational capacity. By contrast, dense distributed codes are capacity-efficient; however, they are costly in terms
of metabolic cost and relatively difficult to decode. These are endpoints on a continuum quantified by a measure called
sparsity, where ‘population’ sparsity indexes the proportion of neurons that fire in response to a given stimulus/location,
and ‘lifetime’ sparsity indexes the proportion of stimuli to which a single neuron responds [26,153,155]. For example, a
population sparsity of 1% means that only 1% of the neurons in a population are active in representing a given input. Two
randomly selected sparse patterns tend to have low overlap (for two randomly selected patterns of equal sparsity over the
same set of neurons, the average proportion of neurons in either pattern that is active in the other is equal to the sparsity),
but neurons still participate in several different memories, making them more efficient than localist codes. Despite
variability in estimates of the sparsity of a given brain region [27,153,156,157], the DG is widely believed to sustain among
the sparsest neural code in the brain (�0.5–1% population sparseness) [25–27]. The CA3 region, to which the DG
projects, is thought to be less sparse (�2.5% [47]). Many studies find less-sparse patterns in CA1 than CA3 [134,152].

The unique functional and anatomical properties of the DG suggest the origins of its sparse, pattern-separated code. The
perforant path from the ERC (containing �200 000 neurons in the rodent) projects to a layer of �1 million of DG granule cells.
Combined with the high levels of inhibition in the DG, this supports the formation of highly sparse, conjunctive representa-
tions, such that each neuron in DG responds only when several input neurons are simultaneously active, reducing overlap
between similar input patterns [25–27,136]. Evidence also suggests that new DG neurons arise from stem cells throughout
adult life; these new neurons may be preferentially recruited in the formation of memories [136], further reducing overlap with
previously stored memories. The CA3 pattern for a memory is then selected by the active DG neurons, each of which has a
‘detonator’ synapse to �15 randomly selected CA3 neurons. This process helps minimize the overlap of CA3 patterns for
different memories, increasing storage capacity and minimizing interference between them, even if the two memories
represent similar events that have highly overlapping patterns in neocortex and ERC. Empirical evidence provides support for
this, with one study [137] showing that the representation supported by DG was highly sensitive to small changes in the
environment, despite evidence that incoming inputs from the ERC were little affected (also see [133,145]). Furthermore, DG
lesions impair an animals’ ability to learn to respond differently in two very similar environments while leaving the ability to learn
to respond differently in two environments that are not similar [136].
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within the hippocampus and between hippocampus and neocortex, and this allows a single
event to be replayed many times during a single sleep period [1–3,58,60,61]. Consistent with the
proposal that replay events are propagated to neocortex [1–3,60,61], SWRs within hippocam-
pus are synchronized with fluctuations in neocortical activity states [62,63]. Also, hippocampal
replay of specific place sequences has been shown to correlate with replay of patterns on grid
cells located in the deep layers of the entorhinal cortex that receive the output of the

Box 5. Similarity-Based Coding in High-Level Visual Cortex

High-level visual regions of the neocortex are thought to support distributed representations that are inferred to be less
sparse than those of the DG and the CA3/CA1 regions of the hippocampus (Box 4). Population sparseness in the ERC is
estimated at 7–10% [158], with high-level sensory cortices exhibiting similar or higher levels of sparseness (e.g., variable
estimates [44–46]). Although lifetime sparseness does not directly translate to population sparseness, recent evidence
suggests that V4 and inferotemporal cortex (ITc) have a sparseness of �10% on this measure [159]. It is worth noting that
learning rates may vary according to neuronal selectivity and lifetime sparseness, resulting in differences in learning rates
across neocortical areas and hippocampal subregions. Neurons in early visual regions that encode frequently-occurring
features (i.e., edges) may have a relatively slow learning rate while neurons in higher visual regions and beyond (e.g., ITc
and perirhinal cortex) may have a higher learning rate to support the encoding of less-frequently occurring, more-
conjunctive features (e.g., individual objects) [12,160,161].

Evidence from electrophysiological recording studies in high-level visual cortical regions such as the ITc in primates
provides support for the operation of a similarity-based coding scheme – whereby related categories (e.g., dogs and
cats) are represented by overlapping neuronal codes [17,40–43] (Figure I). Representational similarity analysis (RSA) of
the ITc population response during passive viewing of pictures reveals coding of fine-grained categorical structure (e.g.,
of a set of animate and inanimate objects) – that is well fit by deep convolutional neural networks which have algorithmic
parallels with feedforward processing in the ventral visual stream [17,40]. While analogous similarity-based coding was
observed using fMRI in the human homolog of ITc [41], there was no evidence for greater within-category (cf. between-
category) representational similarity in any subregion of the hippocampus in a recent fMRI study [162] which found
evidence consistent with the importance of pattern separation in episodic memory. Instead, similarity-based coding in
this study was observed in the perirhinal and parahippocampal cortex – MTL regions that project to the ERC and that are
typically considered to be intermediate zones (i.e., between the hippocampal and neocortical systems) in CLS theory.
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Figure I. Similarity-Based Coding in High-Level Visual Cortex. Representational dissimilarity matrices (RDM)
reflect the correlation (i.e., 1 � r, where r is the Pearson correlation coefficient) between the response of voxel patterns
(fMRI in humans [41], right panel) or neuronal populations (electrophysiological recording in monkey [43], left panel) to a
set of 92 object images. RDMs are analogous in monkey and human ITc. The RDMs show that the representations of
animate objects are similar, as are those of inanimate objects. In addition to this clear animate–inanimate distinction,
object coding in ITc exhibits finer categorical structure (e.g., for faces, body parts), visible in these RDMs (also see [41]).
Reproduced with permission from [41].
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hippocampal circuit [64], as well as more distant neocortical regions [65]. Furthermore, a recent
study observed coordinated reactivation of hippocampal and ventral striatal neurons during
slow-wave sleep (SWS), with location-specific hippocampal replay preceding activity in reward-
sensitive striatal neurons [66]. A causal role for replay is supported by studies showing that the
disruption of ripples in the hippocampus produces a significant impairment in systems-level
consolidation in rats [67–69].

Additional Roles of Replay. Recent work has highlighted additional roles for replay – both during
LIA but also during theta states [3,70,71] – well beyond its initially proposed role in systems-level
consolidation. Specifically, recent evidence suggests that hippocampal replay can: (i) be non-
local in nature, initiated by place cell activity coding for locations distant from the current position
of the animal [3]; (ii) reflect novel shortcut paths by stitching together components of trajectories
[72,73]; (iii) support look-ahead online planning during goal-directed behavior [70,74]; (iv) reflect
trajectories through parts of environments that have only been seen but never visited [75]; and (v)
be biased to reflect trajectories through rewarded locations in the environment [76]. Together,
this evidence points to a pervasive role for hippocampal replay in the creation, updating, and
deployment of representations of the environment [3]. Notably, these putative functions accord
well with perspectives that emphasize the role of the human hippocampus in prospection [77],
imagination [78,79], and the potential utility of episodic control of behavior over control based on
learned summary statistics in some circumstances (e.g., given relatively little experience in an
environment) [80].

Proposed Role for the Hippocampus in Circumventing the Statistics of the Environment. As we
have seen, hippocampal activity during LIA does not necessarily reflect a faithful replay of recent
experiences. Instead, mounting evidence suggests that replay may be biased towards reward-
ing events [59,76]. Building on this, we consider the broader hypothesis that the hippocampus
may allow the general statistics of the environment to be circumvented by reweighting expe-
riences such that statistically unusual but significant events may be afforded privileged status,
leading not only to preferential storage and/or stabilization (as originally envisaged in the theory)
but also leading to preferential replay that then shapes neocortical learning. We see this
hippocampal reweighting process as being particularly important in enriching the memories
of both biological and artificial agents, given memory capacity and other constraints as well as
incomplete exploration of environments. These ideas link our perspective to rational accounts
that view memory systems as being optimized to the goals of an organism rather than simply
mirroring the structure of the environment [81].

A wide range of factors may affect the significance of individual experiences [82,83]: for example,
they may be surprising or novel; high in reward value (either positive or negative) or in their
informational content (e.g., in reducing uncertainty about the best action to take in a given state).
The hippocampus – in receipt of highly processed multimodal sensory information [84] as well as
neuromodulatory signals triggered by such factors [83,85] – is well positioned to reweight
individual experiences accordingly. Indeed, recent work suggests specific molecular mecha-
nisms that support the stabilization of memories and specific neuromodulatory projections to the
hippocampus [83,86–88] that allow the persistence of individual experiences in the hippocam-
pus to be modulated by events that occur both before and afterwards, providing mechanisms by
which episodes may be retrospectively reweighted if their significance is enhanced by subse-
quent events [83,89], thereby influencing the probability of replay.

The importance of the reweighting capability of the hippocampus is illustrated by the following
example. Over a multitude of experiences, consider a child gradually acquiring conceptual
knowledge about the world, which includes the fact that dogs are typically friendly. Imagine that
one day the child experiences an encounter with a frightening, aggressive dog – an event that
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would be surprising, novel, and charged with emotion. Ideally, this significant experience would
not only be rapidly stored within the hippocampus but would also lead to appropriate updating of
relevant knowledge structures in the neocortex. While CLS theory initially emphasized the role of
the hippocampus in the first stage (i.e., initial storage of such one-shot experiences), here we
highlight an additional role for the hippocampus in ‘marking’ salient but statistically infrequent
experiences, thereby ensuring that such events are not swamped by the wealth of typical
experiences – but instead are preferentially stabilized and replayed to the neocortex, thereby
allowing knowledge structures to incorporate this new information. Although this reweighting
would generally be adaptive, it could on occasion have maladaptive consequences. For
example, in post-traumatic stress disorder, a unique aversive experience may be transformed
into a persistent and dominant representation through a runaway process of repeated
reactivation.

Challenges Arising from Recent Empirical Findings
In this section we discuss two significant challenges to the central tenets of CLS theory. Both
challenges have recently been addressed through computational modeling work that extends
and clarifies the principles of the theory.

The Hippocampus, Inference, and Generalization
Cross-Item Inferences
The first challenge concerns the role of the hippocampus in generalizing from specific expe-
riences to novel situations. As noted above, CLS theory emphasized the crucial role of the
hippocampus as a fast learning system relying on sparse activity patterns that minimize overlap
even in the representation of very similar experiences. This representation scheme was thought
to support memory of specifics, leaving generalization to the complementary neocortical system.
Evidence presenting a substantial challenge to this account, however, has come from para-
digms where individuals have been shown to rapidly utilize features that create links among a set
of related experiences as a basis for a form of inference within or shortly after a single
experimental session [4,5,90–95].

The paired associate inference (PAI) task [91,96–98] provides an example of a task that
involves the hippocampus and captures the essence of requiring cross-item inferences
required in other relevant tasks (such as the transitive inference task reviewed in [4]). In the
study phase of the PAI task, subjects view pairs of objects (e.g., AB, BC) that are derived from
triplets (i.e., ABC) or larger object sets (e.g., sextets: A, B, C, D, E, F; Box 6). In the crucial test
trials, subjects are tested on their ability to appreciate the indirect relationships between items
that were never presented together (e.g., A and F in the sextet version). Evidence for a role of the
hippocampus in supporting inference in such settings [91,92,96–98] naturally raises the
question of the neural mechanisms underlying this function, and has been seen as challenging
the view that the hippocampus only stores separate representations of specific items or
experiences. Indeed, the findings have been taken as supporting ‘encoding-based overlap’
models [4,95,99,100], in which it is proposed that the hippocampus supports inference by
using representations that integrate or combine overlapping pairs of items (e.g., AB and BC in
the triplet version of the PAI task).

While the PAI findings weigh against the view that the hippocampus only plays a role in the
behaviors based on the contents of a single previous episode, these findings could arise from
reliance on separate representations of the relevant AB, AC item pairs. Indeed, the CLS-
grounded REMERGE model [5] proposes that representations combining elements of items
never experienced together may arise from simultaneous activation of two or more memory
traces within the hippocampal system, driven by an interactive activation process occurring
within a recurrent circuit, whereby the output of the system can be recirculated back into it as a
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subsequent input (Box 6). This proposal is consistent with anatomical and physiological evi-
dence [101] (Box 2).

REMERGE, therefore, can be considered to capture the insights of the relational theory of
memory [29,102] by allowing the linkage of related episodes within a dynamic memory space,
while preserving the assumption that the hippocampal system relies primarily on pattern-
separated representations seen as essential for episodic memory [1,9,25–27,30,31,103,104].
Further, the recurrency within the hippocampal system makes the prediction that hippocampal
activity may sometimes combine information from several separate episodes – a notion that
receives empirical support from neuronal recordings in rodents [72,73]. This generalized replay
– simultaneous reactivation of multiple related traces during testing or offline periods – may
facilitate the creation of new representations from the recombination of multiple related
episodes (‘stored generalizations’) [5] and the discovery of novel relationships (e.g., shortcuts)
[72,73]. Empirical evidence also supports a role for the hippocampus in category- and so-called
‘statistical’ learning [105–107]: the mechanisms in REMERGE and other related models
that rely on separate memory traces for individual items allow weak hippocampal traces
that support only relatively poor item recognition to mediate near-normal generalization
[5,108].

Box 6. Generalization Through Recurrence in the Hippocampal System

The REMERGE model (Figure I) [5], which reflects a synthesis of interactive activation and competition (IAC) models [163]
and exemplar models of memory [108,164,165], constitutes an abstraction and simplification of the multi-stage
circuitry of the hippocampal system into two principal layers: feature and conjunctive layers, broadly corresponding to the
ERC and hippocampus proper, respectively. The localist coding (e.g., unit AB) in the conjunctive layer reflects an
idealization of the sparsely distributed pattern-separated codes in the DG/CA3 subregions of the hippocampus (Boxes
2–4) that support episodic memory (e.g., for trials involving presentation of A and B objects together).

An essential principle of the model – mediated by the bidirectional excitatory connections between feature and
conjunctive layers – is the principle of recurrence between the hippocampus proper and neocortical regions such
as the ERC (termed ‘big-loop’ recurrence, to distinguish it from the internal recurrence known to exist within the CA3
region). This allows recirculation of network output as a subsequent input to the system. Intuitively, this functionality is
crucial to allowing the model to discover the higher-order structure present within a set of related episodes: an initial
probe on the feature layer (e.g., denoting stimuli present on screen during a test trial) prompts the activation of
experiences containing these elements on the conjunctive layer, which in turn drives a new pattern of feature layer
activity that reflects not only the external input but also the content of retrieved experiences. This in turn leads to the
activation of conjunctive units denoting experiences related to the new feature layer pattern, and so on. This can bring
about a situation where, for example, the presentation of A and C can result in the activation of AB and BC, which jointly
activate B, in turn further activating AB and BC which then suppress other conjuncts involving A and C. This produces a
stable state in which AB, BC, and A, B, and C are all activated at the same time – thereby effectively inferring a link
between A and C. Longer-range inferences (e.g., B–E) can also be supported by the recurrent mechanism ([5] for details).
Formally, the function of the network can be viewed as carrying out recurrent similarity computation. Unlike other
exemplar models [108,164,165], in which similarity computation is performed only on external inputs, REMERGE
performs such computations on inputs affected by its own outputs.
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Figure I. A Schematic of the Architecture of REMERGE. Recurrent architecture of REMERGE, showing its two-
layer architecture, with input/output units for possible constituents of experiences (A–F), conjunctive units representing
pairs of constituents that have occurred together (AB, BC, etc.), bidirectional connections (broken arrows) between
conjuncts and their constituents, and recurrent inhibition (broad arrow) among conjunctive units. Adapted from [5].

Trends in Cognitive Sciences, July 2016, Vol. 20, No. 7 523



While encoding-based overlap and retrieval-based models make divergent experimental pre-
dictions, empirical evidence to date does not definitely distinguish between them ([4,5,98] for
discussion). Indeed, it is conceivable that both mechanisms operate under different circum-
stances – perhaps as a function of the experimental paradigm under consideration, amount of
training, and delay between training and testing (e.g., [109]). It is also worth noting that in reality
the difference between encoding-based and retrieval-based models is not absolute: as alluded
to above, generalized replay may facilitate the formation of new representations that directly
capture distant relationships between items (e.g., the linear hierarchy in the transitive inference
paradigm [5,90,110]). Such representations then become the contents of episodic memory,
subject to storage in the hippocampus.

The distinction between encoding- and retrieval-based models can be related more broadly to
the finding of ‘concept’ cells: hippocampal neurons which come to respond to common features
across many events, for example cells for specific odors [111], time-points within an episode
[112], attributes of a task [113], and even cells that fire to any picture or the name of a famous
person [114]. In Box 7 we review empirical findings concerning concept cells and pattern overlap
sometimes observed in parts of hippocampus, and consider how well these findings fit within the
perspective that the hippocampus supports pattern separation.

Rapid Schema-Dependent Consolidation
It is useful to distinguish systems-level consolidation from what we refer to as within-system
consolidation. The former refers to the gradual integration of knowledge into neocortical circuits,
while the latter denotes stabilization of recently formed memories within the hippocampus,
perhaps through stabilization of synapses among hippocampal neurons [89]. In the initial
formulation of CLS, systems-level consolidation was viewed as temporally extended (e.g.,
spanning years or even decades in humans [34,51–53]). Although it was noted in [1] that
the timeframe could be highly variable (depending, perhaps, on the rate of replay of memory

Box 7. Concept Cells and Nodal Codings?

Reports of concept cells in the hippocampus have been taken as contradicting a tenet of CLS theory, but the existence of
such neurons is not necessarily inconsistent with it, given that the theory expects different hippocampal regions to vary in
terms of context specificity and also permits variation within hippocampal regions (Box 3). Evidence supporting the CLS
prediction of context-specificity in the CA3 and DG comes from a recent intracranial recording study in humans [166]. In
this study, neurons in CA3/DG, and also in the subiculum, tended to discriminate between different images of a famous
person – with responses correlating with successful performance in a recognition memory task that required discri-
minating previously experienced targets from similar lures. Neurons in other MTL areas (i.e., entorhinal and parahippo-
campal cortices) exhibited more invariant ‘concept cell like’ responses that were not linked to memory performance (the
CA1 subregion was sparsely sampled in this study).

It is also interesting to consider the finding of ‘splitter’ cells in a task where animals must alternate between turning left and
right on successive trials in a T maze [167–179]: here, some CA1 and CA3 place cells for locations on the central stem of
the T maze are modulated by the trajectory of the rat (e.g., whether it will subsequently turn left or right) whereas others
are trajectory-independent. This phenomenon, known as partial remapping [48,170–172], is consistent with the idea that
pattern separation is a matter of degree in our theory [27,37]. As such, we should expect partly overlapping representa-
tions (i.e., rather than fully independent ‘charts’ [121]) when environmental changes are sufficiently small (Box 3). We also
expect the greatest differentiation in DG, and at an early point in learning. To our knowledge no studies have yet recorded
from DG in this paradigm.

In a recent study, representational similarity analysis techniques [173] were applied to ensemble recording data collected
while rats performed a context-guided reward discrimination task [113]. As expected, the population codes in CA3 and
CA1 were dominated by context and place coding, although other task dimensions – reward value and item – were also
represented [113] (also see [174]). Although there was some representational overlap across locations based on value
and item, CA3/CA1 codes were consistent with incomplete but still strong pattern separation, especially in the dorsal
hippocampus. Overall, these findings appear consistent with the CLS, with the provision that pattern separation is a
matter of degree, and may vary by task and region. Why CA3 shows greater specificity than CA1 in some studies but not
others requires further exploration.
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traces in the hippocampus), recent evidence suggests that this timeframe can be much shorter
than anticipated (e.g., as little as a few hours to a couple of days) [7,8]. We focus on empirical
data from the influential ‘event arena’ paradigm which demonstrated striking evidence of this
phenomenon [7,8].

In the studies using this paradigm [7], rats were trained to forage for food in an event arena
whose location was indicated by the identity of a flavor (e.g., banana) presented to the animal as
a cue in a start box (Box 8). Learning of six such flavor–place paired associations (PAs) required
multiple sessions distributed over several weeks, and was found to be hippocampus-depen-
dent. Interestingly, although the learning of the original six PAs proceeded at a slow rate, rats
were then able to learn two new PAs within the now familiar event arena based on a single
exposure to each. Importantly, this one-shot learning was dependent on the presence of prior
knowledge, often termed a ‘schema’: no such rapid learning was observed when rats that had
been trained within one event arena were exposed to new PAs within a novel arena. Further,
although the hippocampus must be intact for learning of new PAs in the familiar environment,
memory for the new PAs remained robust when the hippocampus was surgically removed 2
days later. A follow-up study [8] provided insights into the neural basis of this phenomenon: the
expression of genes associated with synaptic plasticity was significantly greater in neocortex
very shortly (80 minutes) after rats experienced new PAs in the familiar arena compared to new
PAs in the unfamiliar arena. Taken together, these results support the view that rapid systems-
level consolidation, mediated by extensive synaptic changes in the neocortex within a short time
after initial learning, is possible if the novel information is consistent with previously acquired
knowledge.

At face value, the findings from the event arena paradigm [7,8] present a substantial challenge to
a core tenet of CLS theory as originally stated: newly acquired memories, the theory proposed,
should remain hippocampus-dependent for an extended time to allow for gradual interleaved
learning such that integration into the neocortex can take place while avoiding the catastrophic
forgetting of previously acquired knowledge. It is worth noting, however, that the simulations
presented in the original CLS paper to illustrate the problem of catastrophic interference involved
the learning of new information that is inconsistent with prior knowledge. As such, the relation-
ship between the degree to which new information is schema-consistent and the timeframe of
systems-level consolidation was not actually explored.

Recent work within the CLS framework [115] addressed this issue using simulations designed
to parallel the key features of the event arena experiments [7,8] using the same neural network
architecture and content domain that had been used in the original CLS paper as an illustration
of the principles of learning in the neocortex. Briefly, the network was first trained to gradually
acquire a schema (structured body of knowledge) about the properties of a set of individual
animals (e.g., canary is a bird, can fly; salmon is a fish, can swim), paralleling the initial learning
phase over several weeks in the event area paradigm ([115] for details). Next, the ability of this
trained network to acquire new information was examined. The network was trained on a new
item X, whose features were either consistent or inconsistent with prior knowledge (e.g., X is a
bird and X can fly, consistent with known birds, or X is a bird but can swim, not fly, inconsistent
with the items known to the network), thus mirroring the learning of new PAs under schema-
consistent and schema-inconsistent conditions in the event arena studies [7]. Notably, the
network exhibited rapid learning of schema-consistent information without disrupting existing
knowledge, while schema-inconsistent information was acquired much more slowly and
necessitated interleaved training with the already-known examples (e.g., canary) to avoid
catastrophic interference. Interestingly, there was also a clear relationship between the profile
of weight changes occurring in the network and the consistency of the information being
learned. Specifically, even though the same small value of the learning rate parameter was
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used in both simulations, large amplitude weight changes occurred during the learning of
schema-consistent, but not schema-inconsistent, information – emulating the schema-
dependent pattern of neocortical plasticity-related gene expression reported in [8]. A theo-
retical analysis of multilayer neural networks makes clear why the model exhibits these effects
[20]: the analysis shows that the rate of learning within a multilayered neural network of the
type that CLS attributes to the neocortex [20] will always depend on the state of knowledge

Box 8. Rapid Integration of New Learning in the Neocortex: When Does it Occur?

In the event arena paradigm [7,8] (Figure I), hippocampal lesions prevent acquisition of new schema-consistent
associations. By contrast, hippocampal lesions performed as little as 48 h after learning leave memory intact. One
explanation for the crucial but temporary nature of the hippocampal contribution is replay: even a few minutes with the
hippocampus intact could allow multiple replays, each one incrementing the strength of intra-neocortical connections. In
an investigation of induction of plasticity-related genes in neocortex [8] the hippocampus was intact for 80 minutes after
initial exposure to the new associations. These findings raise the broader question of when rapid integration of new
learning into the neocortex occurs, and whether it can occur even without a hippocampus.

A substantial body of work from several laboratories now supports the view that a single period of sleep can produce
changes in how experiences from a single learning session impact on subsequent responding. As key examples, some
studies have reported increased levels of linking inferences [175], and others have reported increased lexical competition
and related phenomena [109,176] attributed to a single sleep session. These findings are often interpreted as evidence of
rapid systems-level consolidation (e.g., [176]). However, the materials used are not obviously highly consistent with prior
knowledge in most cases, and therefore under the CLS framework we would not expect full integration into neocortical
networks in such a short time-period. An alternative interpretation (illustrated in [5]) is that replays during sleep increase
the strength, robustness, and rate of activation of new hippocampus-dependent traces, and that such strengthening
may be sufficient to account for the observed effects. Thus, the findings are consistent with the view that integration of
these new memories into neocortical structures proceeds over a considerably longer time-period.

Work with the ‘fast mapping’ paradigm in humans with hippocampal lesions [177] provides another potential source of
evidence about rapid neocortical learning of arbitrary new information. In this paradigm, human participants see pairs of
pictures of objects – one familiar and one unfamiliar – and are asked a question such as ‘is the numbat's tail pointing up’,
inferring that the unfamiliar name ‘numbat’ must refer to the unfamiliar object [177]. Some studies find that patients with
extensive hippocampus damage show retention of the new object–name association at a delayed test [178,179],
suggesting very rapid neocortical learning even without a hippocampus. However, the finding has proven difficult to
replicate [180–182]; future studies should continue to investigate this issue.
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Figure I. Schematic Illustration of the Event Arena Paradigm. (A) Overhead view of 1.6 m � 1.6 m event arena:
rats are cued with one of six food flavors (e.g., banana) each associated with a location in the arena (e.g., location 3) and
are required to go from any of the four start-boxes to a specific location to retrieve food. (B) Following gradual learning of
the original set, two new flavor-place pairs are introduced: (e.g., cinnamon–location7; nutmeg–location8). Rapid schema-
dependent one-shot learning of these new PAs is observed (see Box text). Figure based on experimental design
described in [7].
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within the network as well as on the compatibility of new inputs with the structured system this
knowledge represents.

The analysis described above thus addresses the challenge to CLS theory posed by the findings
from the event arena paradigm [7,8] (Box 8 discusses other issues related to rapid systems-level
consolidation). Taken together, this empirical and theoretical research highlights the need for two
amendments to the theory as originally stated [115]. First, consider the core tenet of the theory
that the incorporation of novel information into neocortical networks must be slow to avoid
catastrophic interference: we now know that this statement only applies when new information is
inconsistent with existing knowledge in the neocortex. The second important amendment
relates to the original dichotomy between the slow-learning neocortical system and a fast-
learning system instantiated in the hippocampus. The empirical data, simulations, and theoreti-
cal work summarized above demonstrate that the neocortex does not necessarily learn slowly.
More accurately, we now characterize the rate of learning in the neocortex as being dependent
on prior knowledge rather than being slow per se. Because input to the hippocampus depends
on the structured knowledge in the cortex, it follows that hippocampal learning will also be
dependent on prior knowledge [116]. Future research should explore this issue.

Links Between CLS Theory and Machine-Learning Research
The core principles of CLS theory have broad relevance not only in understanding the organi-
zation of memory in biological systems but also in designing agents with artificial intelligence. We
discuss here connections between aspects of CLS theory and recent themes in machine-
learning research.

Deep Neural Networks and the Slow-Learning Neocortical System
Very deep networks [16], sometimes with more than 10 layers, grew out of earlier computational
work [15,16,117] on networks with only a few layers, which were used to model the essential
principles of the slow-learning neocortical system within the CLS framework. In general,
therefore, deep networks share the characteristics of the slow-learning neocortical system
discussed previously: they achieve an optimal parametric characterization of the statistics of the
environment by learning gradually through repeated, interleaved exposure to large numbers of
training examples.

In recent years, deep networks have achieved state-of-the-art performance in several domains,
including image recognition and speech recognition [16], made possible through increased
computing power and algorithmic development. Their power resides in their ability to learn
successively more abstract representations from raw sensory data (e.g., the image of an object)
– for example oriented edges, edge combinations, and object parts – through composing
multiple processing layers that perform non-linear transformations. One class of deep networks,
termed convolutional neural networks (CNNs), has been particularly successful in achieving
state-of-the-art performance in challenging object-recognition tasks (e.g., ImageNet [118]).
CNNs are particularly suited to the task of object recognition because their architecture naturally
builds in robustness to changes in position through the use of a hierarchy of convolutional filters
where units within a feature map at each layer share the same weights, thereby allowing them to
detect the same feature at different locations. Interestingly, CNNs have recently also been shown
to provide a good model of object recognition in primates at both behavioral and neural levels (e.
g., V4, inferotemporal cortex) [17,18,40].

Neural Networks and Replay
For the purposes of machine learning, deep networks are often trained in interleaved fashion
because the examples from the entire dataset are available throughout. This is not generally the
case, however, in a developmental or online learning context, when intelligent agents need to
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learn and make decisions while gathering experiences and/or where the data distribution is
changing perhaps as the agent's abilities change. Here, recent machine-learning research has
drawn inspiration from CLS theory about the role of hippocampal replay. Implementation of an
‘experience replay’ mechanism was crucial to developing the first neural network (Deep Q-
Network or DQN) capable of achieving human-level performance across a wide variety of Atari
2600 games by successfully harnessing the power of deep neural networks and reinforcement
learning (RL) [119] (Box 9).

Continual Learning and the Hippocampus
Continual learning – the name machine-learning researchers use for the ability to learn succes-
sive tasks in sequential fashion (e.g., tasks A, B, C) without catastrophic forgetting of earlier tasks
(e.g., task A) – remains a fundamental challenge in machine-learning research, and addressing it
can be considered a prerequisite to developing artificial agents we would consider truly
intelligent. A principal motivation for incorporating a fast-learning hippocampal system as a
complement to the slow neocortical system in CLS theory was to support continual learning in
the neocortex: hippocampal replay was proposed to mediate interleaved training of the neo-
cortex (i.e., intermixed examples from tasks A, B, C) despite the sequential nature of the real-
world experiences. We draw attention here to a second relatively underexplored reason why the
hippocampus may facilitate continual learning, particularly over relatively short timescales (i.e.,
before systems-level consolidation).

As discussed previously, the hippocampus is thought to represent experiences in pattern-
separated fashion, whereby in the idealized case even highly similar events are allocated
neuronal codes that are non-overlapping or orthogonal (e.g., [26]). Notably, the advantages
of this coding scheme for episodic memory – reduction of interference between similar but
distinct events – may also have significant benefits for continual learning. Specifically, this
mechanism allows the rapid creation of distinct non-interfering representations for multiple
tasks to which an agent has been exposed in sequential fashion. The utility of this function, and
the ubiquity of continual learning, is well established in the domain of spatial navigation, where
the notion of a task can be related to that of an environmental context: rodents are able to learn
and sustain robust representations of many different environments (e.g., >10 environments in
[120]), with each environment being represented by a pattern-separated representational space

Box 9. Experience Replay in Deep Q-Networks

Instead of employing a standard online learning method in which each unit of play experience (consisting of a state,
action, next state and resulting reward) is used immediately to adjust connection weights and then discarded, an
experience replay buffer similar to the hippocampus is used. This allows learning based on randomly chosen subsets of
recent experiences stored in the replay buffer ([119] for details) to be interleaved with ongoing game-play. The approach is
in line with findings cited above [66] that hippocampal replay reactivates reward related neurons in striatum, in accord
with the hypothesis that hippocampus-dependent RL facilitates learning during off-line periods.

Experience replay in the DQN architecture was crucial in (i) maximizing data efficiency, allowing each unit of experience to
be reused in many updates (e.g., mirroring benefits of repeated time-compressed hippocampal replay) and (ii) smoothing
out learning and avoiding unstable response policies that can result from the tendency of the current policy to bias the
experienced samples. The approach minimizes learning from consecutive samples, which is undesirable owing to their
strongly correlated nature and inconsistent with the implicit assumptions built into neural-network learning algorithms.
Instead experience replay allows updates within the deep Q-network to be performed on non-adjacent samples from a
set of recent experiences in a fashion that breaks up these correlations while still relying on relevant statistics. The
dramatic advantage of a network implementing interleaved learning through experience replay was illustrated by the
effects of disabling replay on network performance: this caused a severe drop in performance to at best �30% of when
experience replay was present [119]. Note that the uniform sampling mechanism as implemented treats all transitions in
the replay memory as if they were equal. Recent work [183] shows that biasing replay towards significant events –

specifically, experiences that are associated with high reward prediction errors – yields further gains. This mechanism,
which resonates with the role of the hippocampus in reweighting experiences as discussed above, allows information to
be harvested from rare experiences that may be particularly informative.
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(putatively implemented as a continuous attractor, called a ‘chart’ [121]) within the CA3 subre-
gion of the hippocampus, and within which specific locations are further individuated [122–124].

Neural Networks with External Memory and the Hippocampus
Recent work has suggested that deep networks may be considerably enhanced by the addition
of an external memory. For example, an external memory is used in the neural Turing machine

Box 10. Neural Networks with External Memory and the Hippocampus

The neural Turing machine (NTM) [125] consists of two basic components: an external memory and a neural network
controller that is distinguished by its ability to interact with the external memory (Figure I). An external memory allows
specific inputs (such as items to be remembered) or the results of intermediate computations to be written to it, and then
to be read out in a content- or location-based addressable fashion [184].

The controller interacts with the external memory through write and read heads that focus on particular parts of the
memory matrix through attentional addressing mechanisms. Content-based addressing focuses attention on memory
slots based on their similarity to the current values (i.e., ‘key’) emitted by the controller. The graded, similarity-based
nature of these addressing mechanisms allows the architecture to be trained using the continuous learning signals that
drive learning in other deep neural networks [10]. The controller may be a feedforward network, but is more typically a
recurrent network exploiting specialized long-short-term memory (LSTM) modules [185] that can learn to retain
information over very extended numbers of time-steps. In contrast to standard neural networks, the architecture of
the NTM allows a separation of computation from memory, as in conventional computers [125]. This allows the NTM to
learn to perform algorithms independently of the variables concerned (also see [186]).

While parallels have been drawn between the external memory of the NTM and working memory [125], the characteristics
of its external memory can easily be related to long-term memory systems as well. Indeed, content-based addressable
external memories of this kind share functionalities with attractor networks [145], an architecture often used to model the
computational functions performed by the CA3 subregion of the hippocampus (e.g., storage and retrieval of episodic
memories) [187]. There are further points of connection between the operation of the NTM and the hippocampus:
information is not stored and retained indiscriminately; instead it is selected based on an estimate of potential future
relevance (see section ‘Proposed Role for the Hippocampus in Circumventing the Statistics of the Environment’).

Input (Xt) Output (Yt)

Controller

Write heads

External memory

Read heads

Figure I. NTM and the Paired Associative Recall Task. The input to the controller is a sequence of column vectors.
The network receives one column per time-step, and the figure shows the columns presented over 29 consecutive time-
steps indexed by t. The input here consists of a sequence of items, where each item is three binary random vectors
presented in adjacent time-steps. Two items are highlighted, one in a green box and one in a red box. A delimiter symbol
(in row 4) appears in the time-step preceding each item. After three items have been presented, a different delimiter
symbol (row 5) occurs followed by a query (single item in green box). The network responds correctly with the appropriate
target (red box). Schematic representation of external memory matrix shown. Adapted with permission from [125].
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(NTM) [125], and this memory has content-addressable properties akin to those of the attractor
networks used to model pattern completion in the hippocampus (Box 10). Such an external
memory has been shown to support functionalities such as the learning of new algorithms, for
example performing paired associative recall (Box 10 [125]) or question-and-answering (Q&A
[126,127]) – a class of machine-learning paradigms where textual outputs are required based on
queries (e.g., Q: where is Bill?; A: the bathroom) requiring inference over a knowledge database
(e.g., a set of sentences).

It is also worth noting that the neuropsychological testing of story recall can be considered to be
a version of the Q&A task used in machine learning (e.g., [126]). When the amount of story
content to be retained exceeds a few sentences, this task is crucially dependent on the memory
storage properties of the hippocampus. Indeed, the specific working of the REMERGE model of
the hippocampus – recurrent similarity computation, such that the output of the episodic
system is recirculated as a new input – has parallels in a recent machine-learning algorithm
developed for the purpose of Q&A, termed a ‘memory network’ [127]. Specifically, a learned,
dense feature-vector representation of an input query (e.g., ‘where is the milk?’) is used to
retrieve the sentence with the most similar feature vector in the database (e.g., ‘Joe left the milk’):
a combined feature representation of the initial query and retrieved sentence is then used to
identify similar sentences earlier in the story (‘Joe traveled to the office’); this process iterates until
a response is emitted by the network (‘the office’). The joint dependence of this system on input/
output feature representations that are developed gradually through training with a large corpus
of text and on individual stored sentences nicely parallels the complementary roles of neocortical
and hippocampal representations in CLS theory and REMERGE.

Concluding Remarks
We have argued that the core features of the memory architecture proposed by CLS theory
continue to provide a useful framework for understanding the organization of learning
systems in the brain. We have, however, refined and extended the theory in several ways.
First, we now encompass a broader and more-significant role for the hippocampus in
generalization than previously thought. Second, we have amended the statement that
neocortical learning is constrained to be slow per se – instead, we now clarify that the rate
of neocortical learning is dependent on prior knowledge and can be relatively fast under some
conditions. Together, these revisions to the theory imply a softening of the originally strict
dichotomy between the characteristics of neocortical (slow learning, parametric, and there-
fore generalizing) and hippocampal (fast-learning, item-based) systems. In addition, we have
extended the proposed functions for the fast-learning hippocampal system, suggesting that
this system can circumvent the general statistics of the environment by reweighting expe-
riences that are of significance. Finally, we have highlighted the broad applicability of the
principles of CLS theory to developing agents with artificial intelligence, an area which we
hope will continue to rise in interest and become a significant direction for future research (see
Outstanding Questions).
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