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Abstract

In this note, we develop semi-analytical techniques to obtain the full correlational struc-
ture of a stochastic network of nonlinear neurons described by rate variables. Under the
assumption that pairs of membrane potentials are jointly Gaussian – which they tend to
be in large networks – we obtain deterministic equations for the temporal evolution of the
mean firing rates and the noise covariance matrix that can be solved straightforwardly given
the network connectivity. We also obtain spike count statistics such as Fano factors and
pairwise correlations, assuming doubly-stochastic action potential firing. Importantly, our
theory does not require fluctuations to be small, and works for several biologically motivated,
convex single-neuron nonlinearities.
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1 Introduction

In this technical note, we develop a novel theoretical framework for characterising across-trial
(and temporal) variability in stochastic, nonlinear recurrent neuronal networks with rate-based
dynamics. We consider networks in which momentary firing rates r are given by a nonlinear
function of the underlying (coarse-grained) membrane potentials u. In particular, we treat the
case of the threshold-power-law nonlinearity r = kbucn+ (where n is an arbitrary positive integer),
which has been shown to approximate the input-output function of real cortical neurons (with
n ranging from 1 to 5; Priebe et al., 2004; Miller and Troyer, 2002). This model is of particular
interest as it captures many of the nonlinearities observed in the trial-averaged responses of
primary visual cortex (V1) neurons to visual stimuli (Ahmadian et al., 2013; Rubin et al., 2015),
as well as the stimulus-induced suppression of (co-)variability observed in many cortical areas
(Hennequin et al., submitted).

We derive assumed density filtering equations that describe the temporal evolution of the first
two moments of the joint probability distribution of membrane potentials and firing rates in the
network. These equations are based on the assumption that pairs of membrane potentials are
jointly Gaussian at all times, which tends to hold in large networks. This approach allows us
to solve the temporal evolution of the mean firing rates and the across-trial noise covariance
matrix, given the model parameters (network connectivity, feedforward input to the network,
and statistics of the input noise). We also obtain the full firing rate cross-correlogram for any pair
of neurons, which allows us to compute both Fano factors and pairwise spike count correlations
in arbitrary time windows, assuming doubly stochastic (inhomogeneous Poisson) spike emission.
Importantly, our theory does not require fluctuations to be small, and is therefore applicable to
physiologically relevant regimes where spike count variability is well above Poisson variability
(implying large fluctuations of u, which is therefore often found below the threshold of the
nonlinearity).

This note is structured as follows. We first provide all the derivations, together with a summary
of equations and some practical details on implementation. We then demonstrate the accuracy of
our approach on two different networks of excitatory and inhibitory neurons: a random, weakly
connected network, and a random, strongly connected but inhibition-stabilized network. In
the latter case, the stochastic dynamics are dominated by balanced (nonnormal) amplification,
leading to the emergence of strong correlations between neurons (Murphy and Miller, 2009;
Hennequin et al., 2014) which could in principle make the membrane potential distribution non-
Gaussian – the only condition that could break the accuracy of our theory. Even in this regime,
we obtain good estimates of the first and second-order moments of the joint distributions of
both u and r.

2 Theoretical results

Notations We use ·T to denote the vector/matrix transpose, bold letters to denote column
vectors (v ≡ (v1, . . . , vN )T) and bold capitals for matrices (e.g. W = {Wij}) . The notation
diag(v) is used for the diagonal matrix with entries v1, v2, . . . , vN along the diagonal.
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2.1 Model setup

We consider a network of N interconnected neurons, whose continuous-time, stochastic and
nonlinear dynamics follow

dui =
dt

τi

−ui(t) + hi(t) +
∑
j

Wij rj(t)

+ dχi (1)

where the momentary firing rate rj(t) is given by a positive, nonlinear function f of uj(t):

rj(t) = f [uj(t)] (2)

The first few derivations below hold for arbitrary nonlinearity f ; we will commit to the threshold-
powerlaw nonlinearity f(u) ∝ bucn+ only later. In Equation 1, τi is the intrinsic (“membrane”)
time constant of unit i, hi(t) denotes a deterministic and perhaps time-varying feedforward
input, Wi` is the synaptic weight from unit ` onto unit i, and dχ is a multivariate Wiener
process with covariance 〈χi(t) χj(t+ s)〉 = Σχ

ijδ(s). Note that the elements of Σχ have units of

(mV)2/s. We will later extend Equation 1 to the case of temporally correlated input noise.

Most of our results can be derived from the finite-difference version of Equation 1, given for very
small ε by

ui(t)− ui(t− ε) =
ε

τi

[
−ui(t− ε) + hi(t) +

∑
`

Wi` r`(t− ε)

]
+
√
ε χi(t) (3)

Here χ(t) is drawn from a multivariate normal distribution with covariance matrix Σχ, inde-
pendently of the state of the sytem in the previous time step (t− ε).

We now show how to derive deterministic equations of motion for the first and second-order
moments of u, then explain how these can be made self-consistent using the Gaussian assumption
mentioned in the introduction. Solving these equations is straightforward, and returns the mean
membrane potential of each neuron as well as the full matrix of pairwise covariances. We also
show how the moments of r can be derived from those of u, and how Fano factors and spike
count correlations can then be obtained from those.

2.2 Temporal evolution of the moments of the voltage

We are interested in the moments of the membrane potential variables, defined as

µi(t) ≡ 〈ui(t)〉 (4a)

Σij(t, s) ≡ 〈ũi(t) ũj(t+ s)〉 (4b)

where 〈·(t)〉 denotes ensemble averaging (or “trial-averaging”, i.e. an average over all possible
realisations of the noise processes χ(t′) for 0 ≤ t′ ≤ t), and with the notation z̃(t) ≡ z(t)−〈z(t)〉.
Note that 〈·(t)〉 will coincide with temporal averages in the stationary case when the dynamics
has a single fixed point (ergodicity). Before we proceed, let us introduce similar notations for
other moments:

νi(t) ≡ 〈ri(t)〉 (5a)

Γij(t, s) ≡ 〈ũi(t) r̃j(t+ s)〉 (5b)

Λij(t, s) ≡ 〈r̃i(t) r̃j(t+ s)〉 (5c)
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Taking the ensemble average of Equation 3 and the limit ε→ 0 yields a differential equation for
the membrane potential mean:

τi
dµi
dt

= −µi(t) + hi(t) +
∑
j

Wij νj(t) (6)

We now subtract its average from Equation 3:

ũi(t)− ũi(t− ε) =
ε

τi

−ũi(t− ε) +
∑
j

Wij r̃j(t− ε)

+
√
ε χi(t) (7)

The equations of motion for the variances and covariances can be obtained in a number of ways.
Here we adopt a simple approach based on the finite differences of Equation 7, observing that

ũi(t) ũj(t)− ũi(t− ε) ũj(t− ε) = ũi(t) [ũj(t)− ũj(t− ε)] + ũj(t− ε) [ũi(t)− ũi(t− ε)] (8)

Substituting Equation 7 into Equation 8, we obtain

ũi(t) ũj(t)− ũi(t− ε) ũj(t− ε) =− ε

τi
ũi(t− ε) ũj(t− ε)−

ε

τj
ũi(t) ũj(t− ε) (9)

+ ε
∑
`

r̃`(t− ε)
(
Wi`

τi
ũj(t− ε) +

Wj`

τj
ũi(t)

)
+
√
ε (χi(t) ũj(t) + χj(t) ũi(t− ε))

We now take ensemble expectations on both sides. The l.h.s. of Equation 9 averages to Σij(t)−
Σij(t− ε). The term χj(t) ũi(t− ε) averages to zero for any (i, j) pair, because the input noise
terms at time t are independent of the state of the system at time t − ε. However, we expect
the equal-time product χi(t) ũj(t) to average to something small (O(

√
ε)) but non-zero. Let us

compute it, by recalling that

ũj(t) = ũj(t− ε) +
ε

τj
[ something at time (t− ε) ] +

√
ε χj(t) (10)

Multiplying both sides by χi(t) and taking expectations, again all products of χi(t) with quan-
tities at time t− ε vanish, and we are left with

〈ũj(t) χi(t)〉 = Σχ
ij

√
ε (11)

Thus, when averaged, Equation 9 becomes

Σij(t)− Σij(t− ε)
ε

= −Σij(t− ε, 0)

τi
− Σij(t,−ε)

τj
+
∑
`

(
Wi`

τi
Γj`(t− ε, 0) +

Wj`

τj
Γi`(t,−ε)

)
+ Σχ

ij

(12)
Now taking the limit of ε→ 0, and by continuity of both u and r, we obtain the desired equation
of motion of the zero-lag covariances:

dΣij(t, 0)

dt
= Σχ

ij+
1

τi

(
−Σij(t, 0) +

∑
`

Wi` Γj`(t, 0)

)
+

1

τj

(
−Σij(t, 0) +

∑
`

Wj` Γi`(t, 0)

)
(13)

In the special case of constant input hi(t), the covariance matrix of the steady-state, stationary
distribution of potentials satisfies Equation 13 with the l.h.s. set to zero. This system of equations
can be seen as a nonlinear extension of the classical Lyapunov equation for the multivariate
(linear) Ornstein-Uhlenbeck process (Gardiner, 1985), in which Wi` Σj` would replace Wi` Γj`
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inside the sum. Such linear equations have been derived previously in the context of balanced
networks of threshold binary units (Renart et al., 2010; Barrett, 2012; Dahmen et al., 2016).

We can also obtain the lagged cross-covariances by integrating the following differential equation
– obtained using similar methods as above – over s > 0:

dΣij(t, s)

ds
=

1

τj

(
−Σij(t, s) +

∑
`

Wj` Γi`(t, s)

)
(14)

Covariances for negative time lags are then obtained from those at positive lags, since:

Σ(t,−s) = Σ(t− s, s)T. (15)

In the stationary case, we have simply Σ(∞,−s) = Σ(∞, s)T. Equation 14 can be integrated
with initial condition Σ(t, 0) which is itself obtained by integrating Equations 6 and 13.

2.3 Calculation of nonlinear moments

To be able to integrate Equations 6, 13 and 14, we need to express the nonlinear moments ν
and Γ as a function of µ and Σ. This is a moment closure problem, which in general cannot be
solved exactly. Here, we will approximate ν and Γ by making a Gaussian process assumption
for u: we assume that for any pair of neurons (i, j) and any pair of time points (t, t + s), the
potentials ui(t) and uj(t+ s) are jointly Gaussian, i.e.

∀(i, j), ∀(t, s)
(

ui(t)
uj(t+ s)

)
∼ N

[(
µi(t)

µj(t+ s)

)
,

(
Σii(t, 0) Σij(t, s)
Σij(t, s) Σjj(t+ s, 0)

)]
(16)

In other words, we systematically and consistently ignore all moments of order 3 or higher. This
is the strongest assumption we make here, but its validity can always be checked empirically by
running stochastic simulations. For certain firing rate nonlinearities f (in particular, threshold-
power law functions), the Gaussian process assumption will enable a direct and exact calculation
of ν and Γ given µ and Σ, with no need to linearise the dynamics, as detailed below.

From now on, we will drop the time dependence from the notations to keep the derivations
uncluttered, with the understanding that in using the results that follow to compute second-
order moments such as Γij(t, s) or Λij(t, s), the quantities µi and variances Σii that regard
neuron i will have to be evaluated at time t, those that regard neuron j evaluated at time t+ s,
and any covariance Σij will have to be understood as Σij(t, s) as defined in Equation 4b.

Using the Gaussian assumption, mean firing rates become Gaussian integrals:

νi =

∫
Dz · f

(
µi + z

√
Σii

)
(17)

where Dz denotes the standard Gaussian measure, and f(·) is the firing rate nonlinearity (cf.
Equation 2). Similarly,

Γij =

∫∫
dui duj · N

[(
ui
uj

)
;

(
µi
µj

)
,

(
Σii Σij

Σij Σjj

)]
· (ui − µi) · f(uj) (18)

To calculate Γij , we make use of the fact that the elliptical Gaussian distribution with correlation
cij = Σij/

√
ΣiiΣjj in Equation 18 can be turned into a spherical Gaussian via a change of

variable:

Γij =

∫∫
Dz Dz′ ·

√
Σii

(
z′cij + z

√
1− c2ij

)
· f
(
µj + z′

√
Σjj

)
(19)
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Now, the integral over z can be performed inside the other one, and clearly vanishes. We are
left with

Γij = cij
√

Σii

∫
Du · u · f

(
µj + u

√
Σjj

)
(20)

Finally, integrating by part (assuming the relevant integrals exist), we obtain a simpler form:

Γij = Σijγj (21)

with

γj ≡
∫
Du · f ′

(
µj + u

√
Σjj

)
(22)

The one-dimensional integrals in Equations 17 and 22 turn out to have closed-form solutions for
a number of nonlinearities u 7→ f(u), including the exponential f(u) ∝ exp(u) (Buesing et al.,
2012) and the class of threshold power-law nonlinearities of the form f(u) = kbucn+ for any
integer exponent n ≥ 1, which closely match the behavior of real cortical neurons under realistic
noise conditions (Priebe et al., 2004; Miller and Troyer, 2002).

In the threshold-powerlaw case r = kbucn+, integration by parts yields the following recursive
formulas:

ν
(n)
i =


kµi ψ

(
µi√
Σii

)
+ k
√

Σii φ

(
µi√
Σii

)
if n = 1

µiν
(1)
i + kΣiiψ

(
µi√
Σii

)
if n = 2

µi ν
(n−1)
i + (n− 1)Σiiν

(n−2)
i otherwise

(23)

γ
(n)
i =

kψ
(

µi√
Σii

)
if n = 1

n ν
(n−1)
i otherwise

(24)

where φ and ψ denote the standard Gaussian probability density function and its cumulative
density function respectively.

Plugging the moment-conversion results of Equations 23 and 24 into the equations of motion
(Equations 6, 13 and 14) yields a system of self-consistent, deterministic differential equations
for the temporal evolution of the potential distribution (or its moments). These equations can
be integrated straightforwardly given the initial moments at time t = 0.

If we are interested in the stationary distribution of u(t) or r(t), i.e. in the case where hi(t) =
constant, we can start from any valid initial condition (µ,Σ) with Σ � 0, and let the integration
of Equations 6 and 13 converge to a fixed point. In the ergodic case, this will indeed converge
to a unique stationary distribution, independent of the initial conditions used to integrate the
equations of motion. If there are several fixed points, this procedure yields the moments of the
stationary distribution of u conditioned on the initial conditions, i.e. will discover only one of
the fixed points and return the moments of the fluctuations around it. Our approach cannot
capture multistability explicitly, that is, it ignores the possibility that the network could change
its set point with non-zero probability.

Finally, let us emphasise that we have never required that fluctuations be small. As long as
the Gaussian assumption holds for the membrane potentials (Equation 16), we expect to obtain
accurate solutions which is confirmed below in our numerical examples. This is because we
have been able to express the moments of r as a function of those of u in closed form, without
approximation.
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2.4 Extension to temporally correlated input noise

So far, we have considered spatially correlated, but temporally white, external noise sources.
We now extend our equations to the case of noise with spatiotemporal correlations, assuming
space and time are separable, and temporal correlations in the input fall off exponentially with
time constant τη:

τi
dui
dt

= −ui(t) + hi(t) +
∑
`

Wi` r`(t) + ηi(t) (25)

with 〈ηi(t)〉 = 0 and 〈ηi(t) ηj(t + s)〉 ≡ Ση
ije
−|s|/τη . The equation for the mean voltages (Equa-

tion 6) does not change. For the voltage covariances, however, Equation 13 becomes

dΣij(t, 0)

dt
=

1

τi

(
−Σij(t, 0) +

∑
`

Wi` Γj`(t, 0) + Σ?
ij(t)

)

+
1

τj

(
−Σij(t, 0) +

∑
`

Wj` Γi`(t, 0) + Σ?
ji(t)

)
(26)

with the definition Σ?
ij(t) ≡ 〈ηi(t) ũj(t)〉. These moments can also be obtained by simultaneously

integrating the following:

dΣ?
ij(t)

dt
= −

Σ?
ij(t)

τη
+

1

τj

(
−Σ?

ij(t) + Ση
ij +

∑
`

Wj` Γ?i`(t)

)
(27)

with an analogous definition Γ?ij(t) ≡ 〈ηi(t) r̃j(t)〉 = Σ?
ij(t)γj(t), which can be expressed self-

consistently as a function of µj(t), Σjj(t), and Σ?
ij(t) according to Equations 21 and 24. Alto-

gether, Equations 6, 26 and 27 form a set of closed and coupled differential equations for {µi(t)}i
and {Σij(t, 0)}i≥j which can be integrated straightforwardly.

Temporal correlations are given by (for s > 0):

dΣij(t, s)

ds
=

1

τj

[
−Σij(t, s) +

∑
`

Wj` Γi`(t, s) + Σ?
ji(t) exp

(
− s

τη

)]
(28)

2.5 Summary of equations

The equations of motion for the moments of u can be summarised in matrix form as follows.

Temporally white input noise

Dynamics du = T−1 [−u(t) + h(t) + Wr(t)] dt+ dχ (29)

Mean
dµ(t)

dt
= T−1 [−µ(t) + h(t) + Wν(t)] (30)

Covariance
dΣ(t, 0)

dt
= Σχ + J (t)Σ(t, 0) + Σ(t, 0)J (t)T (31)

Lagged cov.
dΣ(t, s)

ds
= Σ(t, s)J (t+ s)T (32)

where we have defined T = diag(τ1, . . . , τN ), and J (t) ≡ T−1 [Wdiag(γ1(t), . . . , γN (t))− I]. In
these equations, ν(t) and γ(t) are given in closed form as functions of µ(t) and Σ(t, 0) according
to Equations 23 and 24.
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Temporally correlated input noise

Dynamics
du

dt
= T−1 [−u(t) + h(t) + Wr(t) + η(t)] (33)

Mean
dµ(t)

dt
= T−1 [−µ(t) + h(t) + Wν(t)] (34)

Covariance
dΣ(t, 0)

dt
=

[
T−1Σ?(t)

]
+
[
T−1Σ?(t)

]T
+ J (t)Σ(t, 0) + Σ(t, 0)J (t)T

(35)

dΣ?(t)

dt
= − 1

τη
Σ?(t) + ΣηT−1 + Σ?(t)J (t)T (36)

Lagged cov.
dΣ(t, s)

ds
= e−s/τη

[
T−1Σ?(t)

]T
+ Σ(t, s)J (t+ s)T (37)

with the same definitions of T and J (t) as above, and with ν(t) and γ(t) again given by
Equations 23 and 24 as functions of µ(t) and Σ(t, 0).

Note on implementation We favor using the equations of motion in their matrix form, as
we can then use highly efficient libraries for vectorised operations, especially matrix products
(we use the OpenBLAS library). We integrate Equations 30 to 32 and Equations 34 to 37
using the classical Euler method with a small time step δt = 0.1 ms. When interested in the
stationary moments, a good initial condition from which to start the integration is given by the

case W = 0, i.e. µ(0) ≡ h, Σ?(0) ≡ Σηdiag
(

1
1+τ/τη

)
, and Σ(0, 0) obtained by solving a simple

Lyapunov equation.

Care should be taken in integrating the covariance flow of Equations 31 and 35 to preserve the
positive definiteness of Σ at all times. We do this for Equation 31 using the following integrator
(Bonnabel and Sepulchre, 2012):

Σ(t+ δt, 0) = [I + δtJ (t)] Σ(t, 0) [I + δtJ (t)]T + δtΣ
χ (38)

and analogously for Equation 35. The complexity is O(TN3) where T is the number of time
bins, and N is the number of neurons. In comparison, stochastic simulations of Equation 1 cost
O(KTN2), where K is a certain number of independent trials that must be simulated to get
an estimate of activity variability. This complexity is only quadratic in N , but in practice K
will have to be large for the moments to be accurately estimated. Moreover, the generation
of random numbers in Monte-Carlo simulations is expensive. In all the numerical examples
given below, theoretical values were obtained at least 10 times faster than the corresponding
Monte-Carlo estimates, given a decent accuracy criterion (required number of trials). Where
appropriate, one could also apply low-rank reduction techniques to reduce the complexity of the
equations of motion to O(TN2) (e.g. in the spirit of Bonnabel and Sepulchre, 2012); this is left
for future work.

2.6 Firing rate correlations

So far we have obtained results for pairwise membrane potential covariances Σij(t, s), but, as
indicated above, these can also be translated into covariances between the corresponding rate
variables, Λij(t, s) ≡ 〈r̃i(t) r̃j(t+ s)〉, which we will need later to compute spike count statistics
(e.g. Fano factors or correlations). To shorten the notation, we again drop the time dependence,
with the same understanding that in using the equations that follow to compute Λij(t, s), the
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quantities µi and variances Σii that regard neuron i will have to be evaluated at time t, those
that regard neuron j evaluated at time t+ s, and the covariance Σij will have to be understood
as Σij(t, s).

Under the same Gaussian process assumption as above, we have

Λij =

∫∫
du du′ · N

[(
u
u′

)
;

(
µi
µj

)
,

(
Σii Σij

Σij Σjj

)]
· (f(u)− νi) · (f(u′)− νj) (39)

Calculating this double integral exactly seems infeasible. However, as detailed below, we were
able to derive an analytical approximation that is highly accurate over a broad range of physiolog-
ically relevant values (Figure 1), for the class of threshold power-law nonlinearities f(u) = kbucn+.

Numerical explorations of the behaviour of Λij as a function of the moments of ui and uj suggest
the following ansatz :

Λij = α
(3)
ij c

3
ij + α

(2)
ij c

2
ij + α

(1)
ij cij (40)

where cij = Σij/
√

ΣiiΣjj is the correlation coefficient between ui and uj (at time t and lag

s), and the three coefficients α
(·)
ij do not depend on cij (though they depend on the marginals

over ui and uj , as detailed below) and can be computed exactly. We focus on Λij as a function
of cij – we abuse the notation of Equation 5c and write this dependence as Λij(cij). Clearly,
Λij(0) = 0. Next, we note that

α
(2)
ij = [Λij(+1) + Λij(−1)] /2 (41a)

α
(1)
ij + α

(3)
ij = [Λij(+1)− Λij(−1)] /2 (41b)

α
(1)
ij =

dΛij(cij)

dcij

∣∣∣∣
cij=0

(41c)

where, specialising to the threshold-power law nonlinearity f(u) = kbucn+,

Λij(±1) = −νi νj + k2
∫
Du bµi±u

√
Σiicn+ bµj + u

√
Σjjcn+ (42)

After some algebra, Equation 41c yields

α
(1)
ij =

(
γi
√

Σii

)(
γj
√

Σjj

)
(43)

where Γii and Γjj were derived previously in Equations 21 and 24. To compute Λij(+1), let us
define more generally

A
(n,m)
ij ≡ k2

∫
Du bµi + u

√
Σiicn+ bµj + u

√
Σjjcm+ (44)

keeping in mind that we are ultimately interested in A
(n,n)
ij , since Λij(+1) = −νiνj + A

(n,n)
ij . In

the following, we assume that µi/
√

Σii ≥ µj
√

Σjj . If the opposite holds, then the indices i and
j must be swapped at this stage (this is just a matter of notation). Using techniques similar to
the integral calculations carried out previously (mostly, integration by parts), we derived the
following recursive formula valid for 0 ≤ n ≤ m:

A
(n,m)
ij =


kν

(m)
j if n = 0

kµiν
(m)
j + k

√
Σii

Σjj
Γ
(m)
jj if n = 1

µiA
(n−1,m)
ij + (n− 1)ΣiiA

(n−2,m)
ij +m

√
ΣiiΣjjA

(n−1,m−1)
ij otherwise

(45)
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Figure 1: Numerical validation of our ansatz for rate covariances. Shown in 5 different colors are
the results of 5 different simulations in which

√
Σii (resp.

√
Σjj) was drawn uniformly between

1 and 4, and µi (resp. µj) was chosen so as to achieve a mean firing rate νi (resp. νj) drawn
from a Gamma distribution with a mean 5 Hz and a shape parameter of 1. Dots show Λij as a
function of cij , as estimated via Monte-Carlo integration of Equation 39 with a million samples.
Solid lines show Equation 40, which is by construction always exact at cij = ±1, and always has
the right slope at cij = 0. The corresponding tables show the mean firing rates and the Fano
factors of both neurons (Fano factors were computed using Equation 54 with τA = 50 ms and
T = 100 ms). The figures indicate that our approximation is highly accurate over a range of
parameters corresponding to physiological values of firing rates and Fano factors. Parameters:
k = 3 (threshold-linear), k = 0.3 (threshold-quadratic), k = 0.02 (threshold-cubic).

where ν
(m)
j and Γ

(m)
j were calculated previously (cf. Equations 23 and 24).

The calculation of Λij(−1) is slightly more involved, but follows a similar logic. This time we
assume that µi/

√
Σii > −µj/

√
Σjj (otherwise, Λij(−1) = 0), and we define

B
(n,m)
ij ≡ k2

∫
Du bµi − u

√
Σiicn+ bµj + u

√
Σjjcm+ (46)

Similar to Equation 45, we have the following recursive formula for 1 < n ≤ m:

B
(n,m)
ij = µiB

(n−1,m)
ij + (n− 1)ΣiiB

(n−2,m)
ij −m

√
ΣiiΣjjB

(n−1,m−1)
ij (47)

However, now the boundary conditions must also be computed recursively:

B
(0,m)
ij =


k2 [ψi + ψj − 1] if m = 0

µjB
0,0
ij + k2

√
Σjj (φj − φi) if m = 1

µjB
(0,m−1)
ij −

√
Σjj

[
k2φiR

m−1
ij − (m− 1)

√
ΣjjB

(0,m−2)
ij

]
otherwise

(48)

B
(1,m)
ij = µiB

(0,m)
ij +

√
Σii

{
k2 (φi − φj) if m = 0

k2φiR
m
ij −m

√
ΣjjB

(0,m−1)
ij otherwise

(49)

where we have used the shorthands φ` ≡ φ(µ`/
√

Σ``), ψ` ≡ ψ(µ`/
√

Σ``), and Rij ≡ µj +
µi
√

Σjj/Σii.
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Thus, Λij(cij) is approximated in closed-form by a third-order polynomial in cij , given µi, µj ,
Σii, Σjj and Σij . Our polynomial approximation is very accurate over a broad, physiologically
relevant range of parameters (and in fact, even beyond that), for power law exponents in the
physiological range (Figure 1).

In combination with the results of Section 2.2, we can then obtain the moments of r, which we
use in the following section to compute Fano factors and spike count correlations.

2.7 Spike count statistics

Under the assumption that each neuron i emits spikes according to an inhomogeneous Poisson
process with rate function ri(t) (“doubly stochastic”, or “Cox” process)1, we can compute the
joint statistics of the spike counts in some time window, which is what electrophysiologists often
report. Let CTi (t) denote the number of spikes that are emitted by neuron i in a window of

duration T starting at time t, and let κTi (t) =
∫ T
0 dt ri(t) be the expected number of spikes in

that window, for a given trial and given the underlying rate trace ri(t). The Fano factor of the
distribution of CTi (t) is given by

FTi (t) =
var
[
CTi (t)

]
mean

[
CTi (t)

] = 1 +
var
[
κTi (t)

]
〈κTi (t)〉

(50)

with

〈κTi (t)〉 =

∫ T

0
dt′ νi(t+ t′) (51)

and

var
[
κTi (t)

]
=

∫ T

0
ds

∫ T

0
ds′ Λii(t+ s, s′ − s) (52)

All expected values such as νi and Λii have been calculated in previous sections. We approximate
the integrals above by simple Riemann sums with a discretisation step of 1 ms.

In the special case of constant input h leading to a stationary rate distribution, Equation 50
simplifies to

FTi = 1 +
1

Tνi

∫ T

0
ds

∫ T

0
ds′ Λii(·, s′ − s) (53)

(the rate variance Λii(t, τ) no longer depends on t, hence the notation Λii(·, τ)). A closed-form
approximation can be derived if the rate autocorrelation is well approximated by a Laplacian
with decay time constant τA, i.e. Λii(·, τ) ≈ Λii(·, 0) exp (−|τ |/τA). In this case, Equation 53
evaluates to

FTi ≈ 1 +
2 τA Λii(·, 0)

νi

[
1− τA

T

(
1− e−T/τA

)]
(54)

This expression is shown in Figure 2 as a function of the counting window T , for various auto-
correlation lengths τA.

The behaviour of Fi as a function of membrane potential sufficient statistics µi and
√

Σii is
depicted in Figure 3, for various exponents of the threshold power-law gain function. In all cases
(i.e. independent of the exponent n), the Fano factor grows with increasing potential variance.
However, the dependence on µi strongly depends on n. For n = 1, the Fano factor decreases
with µi, while for n = 3 it increases. For n = 2, the Fano factor has only a weak dependence on
µi. This behaviour can be understood qualitatively by linearising the gain function around the

1This does not affect the form of the network dynamics which remain rate-based (Equation 1); that is, spikes
are generated on top of the firing rate fluctuations given by the rate model.
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Figure 2: Approximation of the Fano factor when the autocorrelation is a Laplacian with time
constant τA (varied here; cf. color legend) – see also Equation 54.

mean potential, which gives us an idea of how the super-Poisson part of the Fano factor depends
on membrane potential statistics:

FTi − 1 ∝ nµn−2i Σii (55)

Therefore, the iso-Fano-factor lines in Figure 3 are expected to approximately obey
√

Σii ≈ µ2−ni ,
which is roughly what we see from Figure 3.

It is instructive to plug in some typical numbers: assuming a mean firing rate of νi = 5 Hz, a
counting window T = 50 ms, a Fano factor FTi = 1.5 (characteristic of spontaneous activity in
the cortex, Churchland et al., 2010), and an autocorrelation time constant τA = 40 ms (Kenet
et al., 2003; Berkes et al., 2011), then Equation 54 tells us that the fluctuations in ri must have
a standard deviation of

√
Λii ' 8.5 Hz. This is larger than the assumed mean firing rate (5 Hz),

thus implying that the underlying rate variable in physiological conditions is often going to be
zero, in turn implying that the membrane potential will often be found below the threshold of the
firing rate nonlinearity f(u). It is precisely in this regime that it becomes important to perform
the nonlinear conversion of the moments of u into those of r, taking into account the specific
form of the nonlinearity; in that same regime, linearisation of the dynamics of Equation 1 can
become very inaccurate.

Similar derivations can be done for spike count correlations:

ρTij(t) ≡
cov

[
CTi (t), CTj (t)

]
√

var
[
CTi (t)

]
var
[
CTj (t)

]
=

〈κTi (t)κTj (t)〉 − 〈κTi (t)〉〈κTj (t)〉√(
var
[
κTi (t)

]
+ 〈κTi (t)〉

)(
var
[
κTj (t)

]
+ 〈κTj (t)〉

)

=

∫∫
[0:T ]2

ds ds′ Λij(t, s
′ − s)√(

var
[
κTi (t)

]
+ 〈κTi (t)〉

)(
var
[
κTj (t)

]
+ 〈κTj (t)〉

)
=
[
〈κTi (t)〉 〈κTj (t)〉 FTi (t) FTi (t)

]− 1
2

∫∫
[0:T ]2

ds ds′ Λij(t, s
′ − s) (56)

In the stationary case, Equation 56 becomes

ρTij =

∫∫
[0:T ]2

ds ds′ Λij(·, s′ − s)

T
√
νiνjFTi FTj

(57)
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Figure 3: Fano factor Fi (top row) and mean firing rate νi (bottom row) as a function of
membrane potential mean µi and standard deviation

√
Σii, for n = 1 to n = 3 (left to right). To

calculate Fi, we used Equation 54, assuming an autocorrelation time constant of τA = 50 ms.
The multiplicative rescaling k of the threshold power-law gain function was adjusted so that
both Fano factors and firing rates span roughly the same range of values across n = 1 to n = 3,
but the precise value of k has no impact on the shape of the contour lines.

3 Numerical validation

In this section, we demonstrate the validity of the equations derived in Section 2 on two examples:
a random E/I network with weak and sparse connections, and a strongly connected, inhibition-
stabilized E/I network.

3.1 Weakly connected random network

The network is made of NE = 250 excitatory and NI = 250 inhibitory neurons, each with a
threshold-quadratic I/O nonlinearity: f(u) = 0.3buc2+. We set all intrinsic time constants to
τi = τ ≡ 20 ms. The input noise has no spatial, but only temporal, correlations:

〈ηi(t)ηj(t+ s)〉 =
σ20

1 + τ/τη
exp

(
−|s|
τη

)
δij (58)

with τη = 50 ms and σ0 = 3 mV representing the standard deviation of the membrane potentials
if the recurrent connectivity were removed. Synaptic weights are drawn randomly from the
following distribution:

Wij =
αsj√
N
×
{

1 with probability 0.2
0 otherwise

(59)
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where α is a global scaling factor (see below), sj is a presynaptic signed factor equal to +1 if
neuron j is excitatory (1 ≤ j ≤ N/2), and equal to −γ if neuron j is inhibitory (N/2 < j ≤ N).
We set γ = 3 to place the network in the inhibition-dominated regime where the average pairwise
correlation among neurons is weak (Renart et al., 2010; Hennequin et al., 2012). The scaling
factor α = 2.2 was chosen such that the network is effectively weakly connected and thus far
from instability.

The network is fed with a constant input h = u? −Wf(u?), such that, in the absence of
stochasticity, the network would have a (stable) fixed point at u = u? – we drew the elements
of u? from a uniform distribution between 1 and 4 mV.

We simulated the stochastic dynamics of the network (Equation 25) for 5000 seconds, and
computed empirical estimates of the moments in the steady-state, stationary regime (mean
firing rates, firing rate variances, firing rate correlations, and full membrane potential cross-
correlograms). We found those estimates to agree very well with the semi-analytical solutions
obtained by integrating the relevant equations of motion derived in Section 2 under the Gaus-
sian assumption (Figure 4A). Membrane potentials are indeed roughly normally distributed
(Figure 4B), with a standard deviation on the same order as the mean, yielding very skewed

Figure 4: Validation of our theoretical results on a random, weakly connected E/I
network. (A) Mean firing rates {νi}, firing rate variances {Λii}, and pairwise firing rate corre-
lations, as predicted semi-analytically by the moment dynamics equations of Section 2 (x-axes)
and compared to empirical estimates obtained from long stochastic simulations of Equation 25
(y-axes). (B) Distribution of membrane potentials ui(t) for a randomly chosen neuron (gray),
and its Gaussian approximation N (u;µi,Σii) used in our theory. (C) Corresponding firing
rate distribution of the same neuron as in (B). (D) Distribution of pairwise firing rate corre-
lations across the network. (E) Example membrane potential normalized auto- (top row) and
cross- (bottom rows) correlograms (Σij(∞, s)/

√
ΣiiΣjj), as predicted by the theory (solid) and

estimated from simulations (dots).
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distributions of firing rates (Figure 4C). Due to the effectively weak connectivity, pairwise corre-
lations among firing rate fluctuations are weak in magnitude (Figure 4D). Membrane potential
cross-correlograms have a simple, near-symmetric structure (random, weakly connected networks
are close to equilibrium) and are well captured by the theory.

3.2 Strongly connected, inhibition-stabilized random network

We now consider a strongly connected E/I network much further away from equilibrium than
the weakly-connected network of Figure 4. This network operates in the inhibition-stabilized
regime, whereby excitatory feedback is strongly distabilizing on its own, but is dynamically
stabilized by feedback inhibition. The details of how we obtained such a network are largely
irrelevant here (but see Hennequin et al., 2014). All the parameters of the network will be posted
online together with the code to ensure reproducibility.

Our results are summarized in Figure 5, in exactly the same format as in Figure 4. This network
strongly amplifies the input noise process along a few specific directions in state space, leading
to strong (negative and positive) pairwise correlations among neuronal firing rates Figure 5D.
Thus, the central limit theorem – which would in principle justify our core assumption that
membrane potentials are jointly Gaussian, as large (and low-pass-filtered) sums of uncorrelated
variables – may not apply. Indeed, most membrane potential distributions have substantial
(negative) skewness (Figure 5B), leading to some inaccuracies in our semi-analytical calculation
of the moments (Figure 5A), which we find are reasonably small nonetheless. We leave the
extension of our theory to third-order moments (e.g. Dahmen et al., 2016) for future work.
Finally, the strong connectivity gives rise to non-trivial temporal structure in the joint activity
of pairs of neurons reflecting non-equilibrium dynamics. Even in this regime, our results capture
the membrane potential cross-correlograms well (Figure 5E).
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Figure 5: Validation of our theoretical results on a random, strongly connected,
inhibition-stabilized E/I network. The figure follows the same format as in Figure 4 above;
see caption there.
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