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Abstract

Sensory processing is often characterized as implementing probabilistic inference:
networks of neurons compute posterior beliefs over unobserved causes given
the sensory inputs. How these beliefs are computed and represented by neural
responses is much-debated (Fiser et al. 2010, Pouget et al. 2013). A central debate
concerns the question of whether neural responses represent samples of latent
variables (Hoyer & Hyvarinnen 2003) or parameters of their distributions (Ma et al.
2006) with efforts being made to distinguish between them (Grabska-Barwinska et
al. 2013). A separate debate addresses the question of whether neural responses are
proportionally related to the encoded probabilities (Barlow 1969), or proportional
to the logarithm of those probabilities (Jazayeri & Movshon 2006, Ma et al. 2006,
Beck et al. 2012). Here, we show that these alternatives – contrary to common
assumptions – are not mutually exclusive and that the very same system can be
compatible with all of them. As a central analytical result, we show that modeling
neural responses in area V1 as samples from a posterior distribution over latents
in a linear Gaussian model of the image implies that those neural responses form
a linear Probabilistic Population Code (PPC, Ma et al. 2006). In particular, the
posterior distribution over some experimenter-defined variable like “orientation” is
part of the exponential family with sufficient statistics that are linear in the neural
sampling-based firing rates.

1 Introduction

In order to guide behavior, the brain has to infer behaviorally relevant but unobserved quantities from
observed inputs in the senses. Bayesian inference provides a normative framework to do so; however,
the computations required to compute posterior beliefs about those variables exactly are typically
intractable. As a result, the brain needs to perform these computations in an approximate manner.
The nature of this approximation is unclear with two principal classes having emerged as candidate
hypotheses: parametric (variational) and sampling-based [8, 20].

In the first class, neural responses are interpreted as the parameters of the probability distributions
that the brain computes and represents. The most popular members of this class are Probabilistic
Population Codes (PPCs, [13, 4, 3, 2, 21, 19]). Common PPCs are based on the empirical observation
that neural variability is well-described by an exponential family with linear sufficient statistics.
Applying Bayes’ rule to compute the posterior probability, pps|rq, over some task-relevant scalar
quantity, s, from the neural population response, r, one can write [2]:

pps|rq 9 gpsq exp
“

hpsqJr
‰

(1)

where each entry of hpsq represents a stimulus-dependent kernel characterizing the contribution
of each neuron’s response to the distribution, and gpsq is some stimulus-dependent function that

˚Equal contribution
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Figure 1: General setup: Our model performs sampling-based inference over x in a probabilistic
model of the image, I. In a given experiment, the image is generated according to the experimenter’s
model that turns a scalar stimulus s, e.g. orientation, into an image observed by the brain. The
samples drawn from the model are then probabilistically “decoded” in order to infer the implied
probability distribution over s from the brain’s perspective. While the samples shown here are binary,
our derivation of the PPC is agnostic to whether they are binary or continuous, or to the nature of the
brain’s prior over x.

is independent of r. Importantly, the neural responses, r, are linearly related to the logarithm of
the probability rather than the probability itself. This has been argued to be a convenient choice
for the brain to implement important probabilistic operations like evidence integration over time
and cues using linear operations on firing rates [2]. In addition, PPC-like codes are typically
“distributed” since the belief over a single variable is distributed over the activity of many neurons,
and different low-dimensional projections of those activities may represent beliefs over multiple
variables simultaneously [19]. Furthermore, because s is defined by the experimenter and not
explicitly inferred by the brain in our model we call it “implicit.”

In the second class of models, instead of representing parameters, neural responses are interpreted
as samples from the represented distribution. First proposed by Hoyer & Hyvarinnen (2003), this
line of research has been elaborated in the abstract showing how it might be implemented in neural
circuits [7, 18, 5] as well as for concrete generative models designed to explain properties of neurons
in early visual cortex [14, 15, 24, 12, 16, 10]. Here, each neuron (or a subset of principal neurons),
represents a single latent variable in a probabilistic model of the world. The starting point for these
models is typically a specific generative model of the inputs which is assumed to have been learnt
by the brain from earlier sensory experience, effectively assuming a separation of time-scales for
learning and inference that is empirically justified at least for early visual areas. Rather than being
the starting point as for PPCs, neural variability in sampling-based models emerges as a consequence
of any uncertainty in the represented posterior. Importantly, samples have the same domain as the
latents and do not normally relate to either log probability or probability directly.

This paper will proceed as illustrated in Figure 1: First, we will define a simple linear Gaussian
image model as has been used in previous studies. Second, we will show that samples from this
model approximate an exponential family with linear sufficient statistics. Third, we will relate the
implied PPC, in particular the kernels, hpsq, to the projective fields in our image model. Fourth,
we will discuss the role of nuisance variables in our model. And finally, we will show that under
assumption of binary latent in the image model, neural firing rates are both proportional to probability
(of presence of a given image element) and log probability (of implicitly encoded variables like
orientation).

2 A neural sampling-based model

We follow previous work in assuming that neurons in primary visual cortex (V1) implement proba-
bilistic inference in a linear Gaussian model of the input image [14, 15, 12, 6, 10]:

P pI|xq “ N pI;Ax, σ2
x1q (2)

where N py;µ,Σq denotes the probability distribution function of a normal random variable (mean
µ and covariance Σ) evaluated at y, and 1 is the identity matrix. The observed image, I, is
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drawn from a Normal distribution around a linear combination of the projective fields (PFn),
A “ pPF1, . . . ,PFN q of all the neurons p1, . . . , Nq weighted by their activation (responses),
x “ px1, . . . , xN q

J. The projective fields can be thought of as the brain’s learned set of basis
functions over images. The main empirical justification for this model consists in the fact that under
the assumption of a sparse independent prior over x, the model learns projective field parameters that
strongly resemble the localized, oriented and bandpass features that characterize V1 neurons when
trained on natural images [14, 6]. Hoyer & Hyvarinen (2003) proposed that during inference neural
responses can be interpreted as samples in this model. Furthermore, Orban et al. (2016) showed
that samples from a closely related generative model (Gaussian Scale Mixture Model, [24]) could
explain many response properties of V1 neurons beyond receptive fields. Since our main points are
conceptual in nature, we will develop them for the slightly simpler original model described above.

Given an image, I, we assume that neural activities can be thought of as samples from the posterior
distribution, xpiq „ ppx|Iq 9 ppI|xqpbrainpxq where pbrainpxq is the brain’s prior over x. In this
model each population response, x “ px1, . . . , xN qJ, represents a sample from the brain’s posterior
belief about x|I. Each xn, individually, then represents the brain marginal belief about the intensity of
the feature PFn in the image. This interpretation is independent of any task demands, or assumptions
by the experimenter. It is up to the experimenter to infer the nature of the variables encoded by
some population of neurons from their responses, e.g. by fitting this model to data. In the next
section we will show how these samples can also be interpreted as a population code over some
experimenter-defined quantity like orientation (Figure 1).

3 Neural samples form a Probabilistic Population Code (PPC)

In many classic neurophysiology experiments [17], the experimenter presents images that only vary
along a single experimenter-defined dimension, e.g. orientation. We call this dimension the quantity
of interest, or s. The question is then posed, what can be inferred about s given the neural activity in
response to a single image representing s, x „ ppx|sq. An ideal observer would simply apply Bayes’
rule to infer pps|xq9 ppx|sqppsq using its knowledge of the likelihood, ppx|sq, and prior knowledge,
ppsq. We will now derive this posterior over s as implied by the samples drawn from our model in
section (2).

We assume the image as represented by the brain’s sensory periphery (retinal ganglion cells) can be
written as

ppI|sq “ N pI;Tpsq, σ2
expÑbrain1q (3)

where T is the experimenter-defined function that translates the scalar quantity of interest, s, into an
actual image, I. T could represent a grating of a particular spatial frequency and contrast, or any other
shape that is being varied along s in the course of the experimenter. We further allow for Gaussian
pixel noise with variance σ2

expÑbrain around the template Tpsq in order to model both external noise
(which is sometimes added by experimentalists to vary the informativeness of the image) and noise
internal to the brain (e.g. sensor noise).
Let us now consider a single neural sample xpiq drawn from the brain’s posterior conditioned on an
image I. From the linear Gaussian generative model in equation (2), the likelihood of a single sample
is

ppI|xpiqq “ N pI;Axpiq, σ2
x1q.

The probability of drawing t independent samples2 of x is,

ppxp1,2,...,tq|Iq “

t
ź

i“1

ppxpiq|Iq

“

t
ź

i“1

ppI|xpiqqpbrainpx
piqq

pbrainpIq

2Depending on how the samples are being generated, consecutive samples are likely to be correlated to
some degree. However, the central result derived in this section which is valid for infinitely many samples still
holds due to the possibility of thinning in this case. Only for the finite sample case will autocorrelations lead to
deviations from the solutions here
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“
1

pbrainpIqt

t
ź

i“1

ppI|xpiqqpbrainpx
piqq

Since the experimenter and brain have different generative models, the prior over the variables are
dependent on the generative model that they are a part of (specified by the subscript in their pdf).
Substituting in the Gaussian densities and combining all terms that depend on x but not on I into
κpxp1,2,...,tqq, we get

ppxp1,2,...,tq|Iq “ κ
´

xp1,2,...,tq
¯ 1

pbrainpIqt
N

ˆ

I;Ax̄,
σ2
x

t
1

˙

. (4)

where x̄ “ 1
t

řt
1 x
piq is the mean activity of the units over time.

We next derive the posterior over samples given the experimenter-defined stimulus s:

ppxp1,2,...,tq|sq “

ż

ppxp1,2,...,tq|IqppI|sqdI

Substituting in our result from equation (4), we obtain

ppxp1,2,...,tq|sq “ κ
´

xp1,2,...,tq
¯

ż

1

pbrainpIqt
N

ˆ

I;Ax̄,
σ2
x

t
1

˙

ppI|sqdI.

Making use of equation (3) we can write

ppxp1,2,...,tq|sq “ κ
´

xp1,2,...,tq
¯

ż

1

pbrainpIqt
N

ˆ

I;Ax̄,
σ2
x

t
1

˙

N pI;Tpsq, σ2
expÑbrain1qdI

“ κ
´

xp1,2,...,tq
¯

N
„

Tpsq;Ax̄,

ˆ

σ2
expÑbrain `

σ2
x

t

˙

1



. . .

ż

1

pbrainpIqt
N

«

I;
Tpsqσ2

x `Ax̄tσ2
expÑbrain

tσ2
expÑbrain ` σ

2
x

,
σ2
xσ

2
expÑbrain

tσ2
expÑbrain ` σ

2
x

1

ff

dI

As the number of samples, t, increases, the variance of the Gaussian inside the integral converges to
zero so that for large t we can approximate the integral by the integrand’s value at the mean of the
Gaussian. The Gaussian’s mean itself converges to Ax̄ so that we obtain:

ppxp1,2,...,tq|sq « κ
´

xp1,2,...,tq
¯

N
“

Tpsq;Ax̄, σ2
expÑbrain1

‰ 1

pbrainpAx̄qt
.

Applying Bayes’ rule and absorbing all terms that do not contain s into the proportionality we find
that in the limit of infinitely many samples

pps|xp1,2,...,tqq 9 N pTpsq;Ax̄, σ2
expÑbrain1qpexppsq. (5)

We can now rewrite this expression in the canonical form for the exponential family
pps|xp1,2,...,tqq 9 gpsq expphpsqJx̄q where (6)

gpsq “ exp

˜

´
TpsqJTpsq

2σ2
expÑbrain

¸

pexppsq and (7)

hpsq “
TpsqJA

σ2
expÑbrain

. (8)

If xpiq is represented by neural responses (either spikes or instantaneous rates), x̄ becomes the vector
of mean firing rates (r) of the population up to time t. Hence, in the limit of many samples, the neural
responses form a linear PPC (equation (1)).

Finite number of samples

The top row of Figure 2 shows a numerical approximation to the posterior over s for the finite sample
case and illustrates its convergence for t Ñ 8 for the example model described in the previous
section. As expected, posteriors for small numbers of samples are both wide and variable, and they get
sharper and less variable as the number of samples increases (three runs are shown for each condition).
Since the mean samples (x̄) only depends on the marginals over x, we can approximate it using
the mean field solution for our image model. The bottom row of Figure 2 shows the corresponding
population responses: spike count for each neurons on the y´axis sorted by the preferred stimulus of
each neuron on the x´axis.
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Figure 2: a-c) Posterior over s for three runs (colored) and the expected posterior across many
runs (black) for increasing number of samples. d) All runs converge to the same posterior (black).
Posterior decoded from a mean-field Variational Bayes (VB) approximation to asymptotic firing rates
in orange. e-h) Same simulations as in a-d but now plotting population spike counts sorted by each
neuron’s preferred orientation. Note that the counting window scales with the number of samples
across panels. Panel h shows VB approximation to asymptotic firing rates in orange.

Interpretation of the implied PPC

The relationships that we have derived for gpsq and hpsq (equations (7-8)) provide insights into
the nature of the PPC that arises in a linear Gaussian model of the inputs. A classic stimulus to
consider when probing and modeling neurons in area V1 is orientation. If the presented images
are identical up to orientation, and if the prior distribution over presented orientations is flat, then
gpsq will be constant. Equation (7) shows how gpsq changes as either of those conditions does
not apply, for instance when considering stimuli like spatial frequency or binocular disparity for
which the prior significantly deviates from constant. More interestingly, equation (8) tells us how
the kernels that characterize how each neuron’s response contribute to the population code over s
depends both on the used images, Tpsq, and the projective fields, PFn, contained in A. Intuitively,
the more TpsqJPFn depends on s, the more informative is that neuron’s response for the posterior
over s. Interestingly, equation (8) can be seen as a generalization from a classic feedforward model
consisting of independent linear-nonlinear-Poisson (LNP) neurons in which the output nonlinearity
is exponential, to a non-factorized model in which neural responses are generally correlated. In
this case, hpsq is determined by the projective field, rather than the receptive field of a neuron (the
receptive field, RF, being the linear image kernel in an LNP model of the neuron’s response). It
has been proposed that each latent’s sample may be represented by a linear combination of neural
responses [23], which can be incorporated into our model with hpsq absorbing the linear mapping.

Importantly, the kernels, hpsq, and hence the nature of the PPC changes both with changes in the
experimenter-defined variable, s (e.g. whether it is orientation, spatial frequency, binocular disparity,
etc.), and with the set of images, Tpsq. The hpsq will be different for gratings of different size
and spatial frequency, for plaids, and for rotated images of houses, to name a few examples. This
means that a downstream area trying to form a belief about s (e.g. a best estimate), or an area that
is combining the information contained in the neural responses x with that contained in another
population (e.g. in the context of cue integration) will need to learn the hpsq separately for each task.
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Figure 3: The link between s and x is provided by the likelihood defined in image space. a) A
manifold defined by Tpsq is shown in the space of two example pixels. The likelihood of any stimulus
s for a particular sample x is related to the distance of that x projected into image space, Ax, and s,
projected into image space, T psq (up to σexpÑbrain noise). b) Same as a, but for a more complicated
manifold. (Illustration, but note that rotating even a simple grating looks similar to the manifold
shown here, not that in a.) The location of Ax in this space determines the relative heights of the
multiple peaks of the implied posterior over s, shown in panel c.

Multimodality of the PPC

Useful insights can be gained from the fact that – at least in the case investigated here — the implied
PPC is crucially shaped by the distance measure in the space of sensory inputs, I, defined by our
generative model (see equation 3). Figure 3 illustrates this dependence in pixel space: the posterior
for a given value of s is monotonically related to the distance between the image “reconstructed” by
the mean sample, x̄, and the image corresponding to that value of s. If this reconstruction lies close
enough to the image manifold defined by Tpsq, then the implied posterior will have a local maximum
at the value for s which corresponds to the Tpsq closest to Ax̄. Whether pps|xp1q, . . . ,xptqq has other
local extrema depends on the shape of the Tpsq´manifold (compare panels a and b). Importantly,
the relative height of the global peak compared to other local maxima will depend on two other
factors: (a) the amount of noise in the experimenter-brain channel, represented by σexpÑbrain, and
(b) how well the generative model learnt by the brain can reconstruct the Tpsq in the first place.
For a complete, or overcomplete model, for instance, Ax̄ will exactly reconstruct the input image
in the limit of many samples. As a result, the brain’s likelihood, and hence the implied posterior
over s, will have a global maximum at the corresponding s (blue in Figure 3B). However, if the
generative model is undercomplete, then Ax̄ may lie far from the Tpsq manifold and in fact be
approximately equidistant to two or more points on Tpsq with the result that the implied posterior
over s becomes multimodal with the possibility that multiple peaks have similar height. While V1’s
model for monocular images is commonly assumed to be complete or even overcomplete [25], it may
be undercomplete for binocular images where large parts of the binocular image space do not contain
any natural images. (Note that the multimodality in the posterior over s discussed here is independent
of any multimodality in the posterior over x. In fact, it is easy to see that for an exponential prior and
Gaussian likelihood, the posterior ppx|Iq is always Gaussian and hence unimodal while the posterior
over s may still be multimodal.)

Dissociation of neural variability and uncertainty

It is important to appreciate the difference between the brain’s posteriors over x, and over s. The
former represents a belief about the intensity or absence/presence of individual image elements in
the input. The latter represents implicit knowledge about the stimulus that caused the input given
the neural responses. Neural variability, as modeled here, corresponds to variability in the samples
xpiq and is directly related to the uncertainty in the posterior over x. The uncertainty over s encoded
by the PPC, on the other hand, depends on the samples only through their mean, not their variance.
Given sufficiently many samples, the uncertainty over s is only determined by the noise in the channel
between experimenter and brain (modeled as external pixel noise plus pixel-wise internal sensor
noise added to the template, Tpsq). This means that an experimenter increasing uncertainty over s by
increasing external noise should not necessarily expect a corresponding increase in neural variability.
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Figure 4: Illustration of the effect of two nuisance variables: luminance (a-b) and contrast (c-d)
on image (a,c), and on the corresponding posteriors over s (b,d). While the posterior is invariant to
luminance, it depends contrast.

Nuisance variables

So far we have ignored the possible presence of nuisance variables beyond individual pixel noise.
Such nuisance variables can be internal or external to the brain. Relevant nuisance variables when
considering experiments done on V1 neurons include overall luminance, contrast, phases, spatial
frequencies, etc (for an illustration of the effect of luminance and contrast see Figure 4). An important
question from the perspective of a downstream area in the brain interpreting V1 responses is whether
they need to be inferred separately and incorporated in any computations, or whether they leave the
PPC invariant and can be ignored.

For any external nuisance variables, we can easily modify the experimenter’s model in equation (3) to
include a nuisance variable η that modifies the template, Tps, ηq, and hence, the brain’s observation,
I. This dependency carries through the derivation of the PPC to the end, such that

gps, ηq “ exp

˜

´
Tps, ηqJTps, ηq

2σ2
expÑbrain

¸

pexppsq and hps, ηq “
Tps, ηqJA

σ2
expÑbrain

. (9)

As long as Tps, ηqJTps, ηq are separable in s and η, the nuisance’s parameter influence on g can
be absorbed into the proportionality constant. This is clearly the case for the contrast as nuisance
variable as discussed in Ma et al. (2006), but in general it will be under the experimenter’s control of
T whether the separability condition is met. For the PPC over s to be invariant over η, additionally,
hpsq needs to be independent of η. For a linear Gaussian model, this is the case when the projective
fields making up A “ pPF1, . . . ,PFnq are either invariant to s or to η. For instance, when A is
learnt on natural images, this is usually the case for overall luminance (Figure 4a) since one projective
field will represent the DC component of any input image, while the other projective fields average to
zero. So while Tps, ηqJPF for the projective field representing the DC component will depend on
the image’s DC component (overall luminance), it does not depend on other aspects of the image (i.e.
s). For projective fields that integrate to zero, however, Tps, ηqJPF is independent of η, but may be
modulated by s (e.g. orientation if the projective fields are orientation-selective).

The original PPC described by Ma et al. (2006) was shown to be contrast-invariant since both
the “tuning curve” of each neuron, relating to Tps, ηqJPF in our case, and the response variance
(taking the place of σ2

expÑbrain) were assumed to scale linearly with contrast (in line with empirical
measurements). For our model, we assumed that σexpÑbrain was independent of the input, and hence,
the T are not invariant to contrast. However, since the noise characteristics of the brain’s sensory
periphery (included as sensor noise in our σexpÑbrain term) generally depend on the inputs, it remains
a question for future research whether more realistic assumptions about the sensory noise imply an
approximately invariant PPC over s. 3

Generally speaking, the nature of the PPC will depend on the particular image model that the brain
has learnt. For instance, numerical results by Orban et al. (2016) suggest that explicitly including

3In contrast to the interpretation of Ma et al. (2006), where contrast invariance is the result of a combination of
mean response scaling and response variance scaling, in our case it would be a combination of the “feedforward”
part of the mean response scaling and the scaling of the variability of the inputs.
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a contrast variable in the image model (Gaussian Scale Mixture, [24]) implies an approximately
contrast-invariant PPC over orientation, but how precise and general that finding is, remains to be
seen analytically.

4 Neurons simultaneously represent both probability & log probabilities

Taking the log of equation 6 makes it explicit that the neural responses, x, are linearly related to
the log posterior over s. This interpretation agrees with a long list of prior work suggesting that
neural responses are linearly related to the logarithm of the probabilities that they represent. This
contrasts with a number of proposals, starting with Barlow (1969) [1], in which neural responses
are proportional to the probabilities themselves (both schemes are reviewed in [20]). Both schemes
have different advantages and disadvantages in terms of computation (e.g. making multiplication and
addition particularly convenient, respectively) and are commonly discussed as mutually exclusive.

While in our model, with respect to the posterior over x, neural responses generally correspond to
samples, i.e. neither probabilities nor log probabilities, they do become proportional to probabilities
for the special case of binary latents. In that case, on the time scale of a single sample, the response
is either 0 or 1, making the firing rate of neuron i proportional to its marginal probability, ppxn|Iq.
Such a binary image model has been shown to be as successful as the original continuous model of
Olshausen & Field (1996) in explaining the properties of V1 receptive fields [11, 6], and is supported
by studies on the biological implementability of binary sampling [7, 18].

In sum, for the special case of binary latents, responses implied by our neural sampling model are at
once proportional to probabilities (over xn), and to log probabilities (over s).

5 Discussion

We have shown that sampling-based inference in a simple generative model of V1 can be interpreted
in multiple ways, some previously discussed as mutually exclusive. In particular, the neural responses
can be interpreted both as samples from the probabilistic model that the brain has learnt for its inputs
and as parameters of the posterior distribution over any experimenter-defined variables that are only
implicitly encoded, like orientation. Furthermore, we describe how both a log probability code as
well as a direct probability code can be used to describe the very same system.

The idea of multiple codes present in a single system has been mentioned in earlier work [23, 5]
but we make this link explicit by starting with one type of code (sampling) and showing how it
can be interpreted as a different type of code (parametric) depending on the variable assumed to be
represented by the neurons. Our findings indicate the importance of committing to a model and set of
variables for which the probabilities are computed when comparing alternate coding schemes (e.g. as
done in [9]).

Our work connects to machine learning in several ways: (1) our distinction between explicit variables
(which are sampled) and implicit variables (which can be decoded parametrically) is analogous to the
practice of re-using pre-trained models in new tasks, where the “encoding” is given but the “decoding”
is re-learned per task. Furthermore, (2) the nature of approximate inference might be different for
encoded latents and for other task-relevant decoded variables, given that our model can be interpreted
either as performing parametric or sampling-based inference. Finally, (3) this suggests a relaxation
of the commonplace distinction between Monte-Carlo and Variational methods for approximate
inference [22]. For instance, our model could potentially be interpreted as a mixture of parametric
distributions, where the parameters themselves are sampled.

We emphasize that we are not proposing that the model analyzed here is the best, or even a particular
good model for neural responses in area V1. Our primary goal was to show that the same model can
support multiple interpretations that had previously been thought to be mutually exclusive, and to
derive analytical relationships between those interpretations.

The connection between the two codes specifies the dependence of the PPC kernels on how the image
manifold defined by the implicit variable interacts with the properties of the explicitly represented
variables. It makes explicit how infinitely many posteriors over implicit variables can be “decoded”
by taking linear projections of the neural responses, raising questions about the parsimony of a
description of the neural code based on implicitly represented variables like orientation.
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We also note that the PPC that arises from the image model analyzed here is not contrast invariant
like the one proposed by Ma et al. (2006), which was based on the empirically observed response
variability of V1 neurons, and the linear contrast scaling of their tuning with respect to orientation.
Of course, a linear Gaussian model is insufficient to explain V1 responses, and it would be interesting
to derive the PPC implied by more sophisticated models like a Gaussian Scale Mixture Model [24]
that is both a better model for natural images, enjoys more empirical support and, based on numerical
simulations, may approximate a contrast-invariant linear PPC over orientation [16].

Finally, a more general relationship between the structure of the generative model for the inputs, and
the invariance properties of PPCs empirically observed for different cortical areas, may help extend
probabilistic generative models to higher cortical areas beyond V1.
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