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How the mechanisms of long-term
synaptic potentiation and depression
serve experience-dependent plasticity
in primary visual cortex

Sam F. Cooke and Mark F. Bear

Howard Hughes Medical Institute and The Picower Institute for Learning and Memory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent

to exemplify his theories of how the brain stores information through long-

lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for

bidirectional ‘Hebbian’ plasticity in the modification of vision through experi-

ence. First, we discuss the consequences of monocular deprivation (MD) in the

mouse, which have been studied by many laboratories over many years, and

the evidence that synaptic depression of excitatory input from the thalamus is

a primary contributor to the loss of visual cortical responsiveness to stimuli

viewed through the deprived eye. Second, we describe a less studied, but

no less interesting form of plasticity in the visual cortex known as stimulus-

selective response potentiation (SRP). SRP results in increases in the response

of V1 to a visual stimulus through repeated viewing and bears all the hallmarks

of perceptual learning. We describe evidence implicating an important role for

potentiation of thalamo-cortical synapses in SRP. In addition, we present new

data indicating that there are some features of this form of plasticity that cannot

be fully accounted for by such feed-forward Hebbian plasticity, suggesting

contributions from intra-cortical circuit components.
1. Introduction
The idea that information is stored in the brain by changing the strength of

neuronal connections can be traced back as far as the nineteenth century [1].

However, the modern concept of the plastic synapse as a unit of information

storage arose with the writing of Donald Hebb. In his famous book, The Organ-
ization of Behaviour, Hebb first considered the ways in which synaptic plasticity

in visual cortex might account for the recognition of familiar visual cues by

rodents [2]. He chose primary visual cortex (V1) as an exemplary system

within which to frame his theories ‘not because vision has any unique signifi-

cance but because it is in visual perception, with few exceptions, that the

problem of patterning and form has been studied experimentally’ (p. 16).

Although a huge amount of work has now been conducted in other systems

since Hebb’s writing, this deep understanding of V1 remains a major reason

why it is an attractive system within which to investigate the mechanisms

that support memory and other forms of experience-dependent plasticity.

Another advantage of V1, of course, is that we have known for 50 years that

this is indeed a site of robust experience-dependent plasticity. To test the role of

visual experience in the development of cortical connections that serve binocu-

lar vision, Wiesel & Hubel [3] examined the consequences of temporary

monocular deprivation (MD) in young animals. Their dramatic findings

revealed that visual experience indeed sculpts connections during early life.

Hebbian principles were soon invoked to explain how correlated patterns of

activity in the two eyes could be used to establish precise binocular connectivity

[4–6]. To account for the effects of deprivation and other features of visual cor-

tical plasticity, elaborations on Hebb’s initial postulates were introduced that
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Figure 1. Ocular dominance (OD) plasticity resulting from visual deprivation. (a) Head-fixed mice view phase-reversing sinusoidal grating stimuli while visual-evoked
potentials (VEPs) and unit activity are recorded. An occluder is used to restrict visual input to one eye or the other. (b) Recordings are made from electrodes
implanted in layer 4 of the binocular zone of V1 (green), receiving independent input from the contralateral (blue) and ipsilateral (yellow) eyes. (c) In binocular
V1 of the mouse, thalamo-recipient principal cells in layers 2/3 and 4 receive independent inputs from contralateral and ipsilateral eyes. Pronounced feed-forward
connections from layer 4 to layer 2/3 and horizontal connections within layers 2/3 also exist. Inhibitory cells receive thalamic and intra-cortical input and inhibit
principal cells throughout cortex. (d ) OD plasticity is assayed by suturing the contralateral eye for 3 days to deprive this eye of visual input. Monocular deprivation
(MD) results in a significant reduction in the amplitude of VEPs driven by visual input through the contralateral eye. Example waveforms are displayed at the top of
the figure. (e) Binocularly responsive units can be scored for ocular dominance by assessing the bias towards response to the contralateral or ipsilateral eye prior to
MD (open circles). After 3 days of MD this OD index shifts away from the deprived eye towards the non-deprived eye (closed circles). ( f ) Pairing of low-frequency
stimulation (LFS) of white matter and layer 4 cell depolarization in V1 slices induces thalamo-cortical LTD (open circles). MD occludes this Hebbian LTD, preventing it
from being established long-term (closed circles). Data are reproduced from [15]. (g) Clathrin-dependent endocytosis can be blocked by expression of a peptide that
mimics the cytoplasmic tail of the GluR2 subunit (GluR2-CT). Expression of the GluR2-CT peptide blocks LFS pairing-induced Hebbian thalamocortical (TC) LTD in
layer 4 (dark grey) of V1 slices relative to GFP-only control (light grey). (h) This same treatment prevents the OD shift resulting from MD relative to the interleaved
controls presented in (d ). (i) The ocular dominance shift resulting from MD is also blocked by the GluR2-CT peptide. This block can be compared to controls shown
in (e). (d, e, g, h and i) are reproduced from [16]. Throughout the figure asterisks denote comparisons revealing significance of p , 0.05.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130284

2

notably included assumptions about bidirectional synaptic

plasticity and homosynaptic depression that have now been

validated [7,8]. The experimental model of homosynaptic

long-term depression (LTD) was introduced to facilitate

investigation of the mechanisms that might underlie the

effects of MD [9–12]. Here, we will review the evidence accu-

mulated over the past 25 years that LTD mechanisms serve

ocular dominance (OD) plasticity in visual cortex.

We also describe more recent experimental findings

demonstrating that, as Hebb had surmised, discrimination

of simple novel and familiar visual stimuli relies on long-

lasting, input-specific plasticity within V1. Furthermore, we

show that stimulus-selective visual plasticity uses the mechan-

isms of long-term synaptic potentiation (LTP) to modify visual

responses. We argue that this form of stimulus-selective visual

learning provides a platform upon which to gain a deep

understanding of how Hebbian plasticity operates in tandem

with other processes across visual cortical circuits to store infor-

mation. Taken together, these studies of V1 make abundantly

clear that the decades-old study of LTP and LTD has paid

great dividends in furthering the understanding of experi-

ence-dependent cortical plasticity. It is also clear that Hebb’s

conjectures were prescient in terms of the form, function and

locus of synaptic modification.
2. Ocular dominance plasticity
The study of cortical plasticity as a result of MD has revealed a

great deal about how experience shapes receptive fields in V1

[13,14]. MD reliably causes OD plasticity in all mammals

with binocular vision, manifest as a reduction of V1 respon-

siveness to input through the deprived eye and enhancement

of responsiveness to input through the non-deprived eye.

In mice (figure 1a), within the region of V1 described as the bin-

ocular zone (figure 1b), layer 4 cells receive converging

synaptic input from the two eyes [17] (figure 1c). This input

is innately biased in strength towards the eye contralateral to

V1 in each hemisphere at a ratio of approximately 2 : 1. The con-

tralateral bias can be detected with intrinsic imaging [18] or

single unit recordings [19,20], and reflects the anatomical

organization of the ascending visual pathway from the retinas

through the dorsal lateral geniculate nucleus (dLGN) to the

cortex in mice [21].

Visual-evoked potentials (VEPs) provide a convenient assay

to study the consequences of MD [22] and have the added

benefit of stability over days [23], enabling explicit measure-

ment of the contributions of loss and gain in responsiveness

through the deprived and non-deprived eye, respectively, to

the OD shift (albeit with the limitation that the VEP is more
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sensitive to changes in synaptic currents than to changes in

spiking [24,25]). Suturing closed the contralateral eyelid

during the fourth postnatal week causes a pronounced and sig-

nificant loss of responsiveness through the deprived eye such

that V1 becomes more-or-less equally responsive to input

from the two eyes [20,26] (figure 1d,e). Longer periods of depri-

vation result additionally in potentiation of responsiveness to

the non-deprived eye [19,26]. In the mouse, this capacity for

gain through the non-deprived eye is retained into adulthood

while the deprived eye depression no longer occurs reliably if

MD is initiated from the second month of the animal’s postnatal

life onwards [23,27,28]. Two major questions have shaped this

area of research: first, what are the mechanisms that mediate

OD plasticity? Second, what are the mechanisms that change

the quality of OD plasticity as the animal matures? Here, we

will focus on the first question, with a particular emphasis on

the means by which responsiveness of V1 to input through the

deprived eye is reduced. This is a question of considera-

ble practical importance, as the loss of cortical responsiveness

triggered by poor quality vision during early childhood is a

leading cause of human visual disability worldwide [29].

Degrading image formation by lid closure has no effect on

average firing rates of dLGN neurons, but replaces temporally

and spatially structured activity with spontaneous activity that

can be described as ‘noise’ [30]. Building on Hebb’s initial pos-

tulates about synaptic modification, Bienenstock, Cooper &

Munro (BCM) [31] proposed that this synaptic noise in cortex

actively triggers the loss of synaptic strength when the postsyn-

aptic target of these synapses is weakly activated under the

influence of other inputs. Thus, the BCM theory proposed

that homosynaptic LTD of excitatory afferent synapses is

chiefly responsible for the loss of visual cortical responsiveness

after MD. The BCM theory inspired the experiments that even-

tually demonstrated the existence of homosynaptic LTD

(reviewed by Bear [7] and Cooper & Bear [8]).

Just as with LTP, Hebbian LTD was first identified in the hip-

pocampus [9,32], but it has since been observed at many

synapses throughout the brain, including those impinging on

excitatory neurons within layer 4 of V1 that receive direct

dLGN input [15,16,33,34]. There is evidence that LTD in V1 is

developmentally constrained [33–35], perhaps contributing to

the loss in adulthood of deprived-eye depression following

MD. LTD induction in V1 requires activation of NMDA

(N-methyl-D-aspartate) receptors (NMDAR), but the down-

stream mechanisms vary according to the layer [15]. In layer 4,

which receives most input from the thalamus, LTD is caused

by NMDAR-mediated endocytosis of postsynaptic AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) recep-

tors (AMPAR) and is sensitive to (i) specific peptides that

interfere with the recognition of the GluA2 subunit C-terminus

by the endocytosis machinery [36,37], (ii) the levels of the

immediate early gene product Arc, which regulates AMPAR

endocytosis rate [38,39] and (iii) the NR2A/NR2B subunit

ratio of cortical NMDAR which regulates the intracellular signal-

ling that triggers endocytosis [40–42]. A distinct form of LTD is

expressed outside of layer 4 that depends on endocannabinoid

signalling via the CB1 receptor and is likely to be expressed

presynaptically [15,43], but there is evidence that some synapses

in layer 3 also express LTD via AMPAR endocytosis [35]. It is

well established that OD plasticity in vivo requires activation of

cortical NMDAR [23,44–46], and the LTD model suggests

how NMDAR might trigger the loss of visual responsiveness

[47]. This ‘LTD hypothesis’ is now very well supported by
experimental findings. Over the past decade extensive research

has shown (i) that MD in visual cortex triggers LTD-like synaptic

modifications and (ii) that the molecular mechanisms of LTD are

required for the effects of MD.

Mimicry and occlusion are the two main criteria used to

assess whether two different triggers of synaptic plasticity con-

verge onto a common set of mechanisms [7]. This approach has

been taken to establish, for example, that one-trial learning in the

hippocampus [48,49] induces plasticity akin to LTP. A biochemi-

cal signature of LTD is the loss of surface expressed AMPAR and

concomitant changes in AMPAR subunit phosphorylation at

specific residues, and these same changes have been observed

in visual cortex following brief MD [50]. Furthermore, the induc-

tion of LTD using electrical stimulation of the dLGN causes

depression of VEP amplitude similar to that observed after

MD. Thus, deprivation-induced depression and LTD mimic

one another. In addition, the induction of synaptic depression

by MD in vivo reduces the amount of LTD that can be achieved

ex vivo [15,50] (figure 1f), suggesting that deprivation-induced

depression also occludes LTD. Together, these findings indicate

that MD induces LTD in visual cortex.

The common requirement of LTD and OD plasticity

for NMDAR activation supports the hypothesis that LTD

mechanisms are required for the effects of MD; however, it is

known that NMDAR contribute to multiple forms of synaptic

plasticity, e.g. LTP, as well as to polysynaptic information pro-

cessing in the cortex. Thus, additional evidence has been

required to establish that the molecular mechanisms of LTD

actually contribute importantly to the functional consequences

of MD. One approach has been to take advantage of highly

specific manipulations of NMDAR-dependent AMPAR endo-

cytosis. Two independent studies have now shown that

intracellular delivery of peptides that interfere specifically

with AMPAR endocytosis (G2CT and GluR23Y) prevent the

OD shift in mouse visual cortex after 3–4 days of MD [16,35]

(figure 1g,i). In addition, OD plasticity is completely absent

in layer 4 of V1 in the Arc knockout mouse, which has impaired

LTD and AMPAR trafficking [18]. In layer 3, where LTD has

been shown to depend at least partly on cannabinoid signal-

ling, the cannabinoid CB1 receptor blocker AM251 prevents

the OD shift [51]. Finally, mice deficient in the NR2A subunit

of NMDAR, which have impaired LTD and facilitated LTP in

layer 4, exhibit a qualitatively different OD shift after MD

that is expressed solely by potentiation of responses to the

non-deprived eye; deprived eye depression is completely

absent [42]. Thus, the mechanisms revealed by the study of

homosynaptic LTD appear to be essential for the loss of cortical

response after MD.

A requirement for LTD of excitatory synapses in triggering

deprived-eye depression after MD does not rule out important

contributions for modifications of GABA (gamma-aminobuty-

ric acid)-mediated cortical inhibition in the expression of the

OD shift [52–55], and successive generations of scientists

have examined this issue with various methods in kittens

and mice (reviewed by Smith & Bear [56]). To investigate

whether inhibition plays an important role in the expression

of OD plasticity in the mouse, experiments were performed

recently using local infusion of inhibitors of GABAA receptors,

bicuculline methiodide (BMI) [57] and gabazine (LA Khibnik,

KK Cho, MF Bear 2010, unpublished data) (figure 2a,b),

before and after induction of the OD shift. Removal of inhi-

bition by these drugs has no effect on the innate 2 : 1

contralateral : ipsilateral eye OD ratio in layer 4 [57], indicating
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that this property is generated by the degree of feed-forward

excitatory input to V1 [21]. Moreover, the drop in this OD

ratio to 1 : 1 following MD is also maintained in the presence

of BMI [57] (figure 2c). Thus, although modifications of inhi-

bition clearly can occur as a result of MD [55], they are not

required for expression of OD plasticity in principal cells

(figure 1f–h). Much further work will be required to elucidate

the functional importance of plasticity in inhibitory inter-

neurons in V1.

Even if the cause of the OD shift is a modification of excit-

atory synaptic transmission, the question remains as to which

excitatory synapses are primarily responsible. It is known

from the pioneering work of Hubel and Wiesel that long-

term MD, lasting weeks or months, can shrink dLGN axon

arbours, but it has been less clear the extent to which modi-

fication of thalamocortical (TC) synaptic transmission is

responsible for the rapid loss of visual responsiveness

during MD [58]. This question was addressed recently in

the mouse using an in vivo pharmacological strategy to isolate

purely TC synaptic VEPs [57]. By co-applying a cocktail of

the GABAA receptor agonist muscimol with the GABAB

receptor blocker SCH50911, it was possible to prevent all

unit firing in an area of cortex while preserving TC input

[59]. Under these circumstances, purely synaptic TC VEPs

can be recorded in awake animals before or after deprived

eye depression induced by three days of MD. Prior to any

OD shift, the TC VEP shows a normal 2 : 1 contralateral:ipsi-

lateral eye response ratio, indicating that TC input from the

contralateral eye is twice as strong overall as input from

the ipsilateral eye [21]. Deprived eye depression pushes the

OD ratio to 1 : 1 and this ratio is retained in the presence of

the inhibitory cocktail, indicating that OD shifts can be

fully accounted for through TC plasticity (figure 2d–f ). This

conclusion receives additional support from an ultrastruc-

tural study showing shrinkage and loss of TC synapses in

layer 4 after only 3 days of MD [60]. Although these exper-

iments do not provide any insights into the degree to
which MD-induced plasticity is distributed across visual

cortical excitatory and inhibitory circuit elements, they do

demonstrate that there is no requirement for further plasticity

to account for the full OD shift.

Longer periods of MD (more than 5 days) cause

potentiation of the cortical response to input through the

non-deprived (ipsilateral) eye. Consensus has not yet been

achieved on the mechanism for this homeostatic compensa-

tion, and it is reasonable to think that different mechanisms

might predominate in different layers (thalamorecipient layer

4 versus layers 2/3), and at different ages ( juvenile versus

adult). With respect to visually evoked responses through the

non-deprived eye, several observations have been made in

binocular V1 that we summarize below.

— Non-deprived eye response potentiation can occur

independently from deprived-eye depression. These pheno-

mena are dissociated in adults [23,27] and in juvenile mice

lacking the NR2A subunit of NMDAR [42] and tumour

necrosis factor alpha (TNFa) [61], and on the C57BL/

6JOlaHsd (6JOla) genetic background [62].

— Potentiation of VEPs requires visual experience through the

non-deprived eye. Comparable changes are not observed fol-

lowing binocular deprivation or in the monocular segment

after contralateral eye deprivation [26,63,64]. However,

exceptions are worth noting. In some experiments

[26,61,65], but not all [18], the deprived-eye response can

drift up concurrently with open-eye potentiation. When it

occurs, however, this effect is less pronounced than the

potentiation of the open eye input [66].

— Non-deprived eye response potentiation is behaviourally

significant. Long-term MD leads to a gain in visual

grating acuity through the non-deprived eye [67]. Of rel-

evance to the upward drift in the deprived-eye response

mentioned above, there is no evidence to our knowledge

of any ‘spontaneous’ recovery of visual acuity through the

deprived eye with prolonged deprivation. However, it is
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well known that substantial visual acuity is maintained

despite deprivation in the monocular segment of the

visual field [68].

— Non-deprived eye response potentiation requires activation

of cortical NMDAR. In juvenile mice, initiation of treat-

ment with an NMDAR blocker following 3 days of MD,

when deprived-eye depression is asymptotic, completely

blocks potentiation of open-eye VEPs (and prevents

upward drift of the deprived eye responses) [42]. Similarly,

open eye response potentiation of units and VEPs is pre-

vented in adults by treatment with an NMDAR blocker

[27] or by adult-onset, cortex-specific genetic deletion of

NMDARs [23].

Two models have dominated the discussion of potential

mechanism. According to a ‘metaplasticity’ model, deprivation

of the contralateral eye enables LTP-like strengthening of

synapses serving the non-deprived ipsilateral eye via a

metaplastic shift in the LTP threshold [7,8,69]. According to

a ‘synaptic scaling’ model, the reduction in cortical activity

wrought by deprivation and depression of the contralateral

eye inputs causes all excitatory cortical synapses to undergo a

general process of upward scaling of strength [61,65,70].

Observations that (i) open-eye potentiation requires visual

experience and can occur in an input-specific manner [18,66],

(ii) the LTP threshold in visual cortex is reduced by brief

periods of visual deprivation, in part by a change in the

NR2A/B ratio of synaptic NMDAR [40–42,71] and (iii) open-

eye potentiation is abolished by NMDAR blockade [23,27,42],

all support the metaplasticity model. Findings that (i) increases

in the average miniature excitatory postsynaptic current

(EPSC) amplitude and intrinsic excitability in layer 2/3 pyra-

midal neurons correlate with open-eye potentiation [70], (ii)

deprived-eye responses can also rebound slightly at the same

time as open-eye potentiation [26,65] and (iii) open-eye poten-

tiation in vivo and synaptic scaling (but not LTP) ex vivo are both

absent in juvenile mice lacking TNFa [61], all support the scal-

ing model. We note that evidence supporting scaling is not

inconsistent with metaplasticity. Because interocular corre-

lations are still possible during MD for visual stimuli with

low spatial frequencies, upward drift of deprived-eye

responses could reflect an associative LTP-like process during

open-eye potentiation [63]. And, as discussed at length else-

where [72], failures to observe correlated changes in

electrically induced synaptic plasticity ex vivo (e.g. LTP) and

experience-dependent changes in vivo (e.g. non-deprived eye

potentiation) do not constitute strong evidence that they are

unrelated. On the other hand, it is more difficult to reconcile

the input specificity and NMDAR-dependence of open-eye

potentiation with scaling (see [8] for review).

Two very recent studies add a new twist to this issue.

In one study, it was reported that two genetically defined

mouse strains (TNFa2/2 and 6JOla) fail to display synaptic

scaling after MD, but exhibit normal open-eye potentiation

in adult mice (.P90) [62]. These findings clearly indicate

that scaling is not a mechanism for adult open-eye potentiation.

However, as reported previously for the TNFa2/2 mutants,

juvenile mice on the 6JOla background failed to show both scal-

ing and open-eye potentiation. These data suggest that the

requirements for this form of plasticity vary according to age.

Even more provocative are data from an elegant recent

study that employed intracellular recordings of eye-specific

synaptic responses in vivo [25]. The authors confirmed that
depression of VEPs and unit responses to deprived-eye stimu-

lation is accounted for by rapid and long-lasting depression of

visually evoked EPSCs. Unexpectedly, however, they found

that inhibitory postsynaptic currents (IPSCs) driven by the

non-deprived eye were markedly depressed after long-, but

not short-term MD. Consequently, the ratio of excitation to

inhibition (E/I) driven by the non-deprived eye is greatly

increased after MD. Thus, input-specific modulation of inhi-

bition offers a new mechanism to consider for non-deprived

eye potentiation. How this modulation occurs remains to be

determined, but the NMDAR dependence and input-speci-

ficity of non-deprived eye potentiation favours a model in

which inhibition driven by the non-deprived eye is selectively

reduced via LTD of excitatory TC synapses onto inhibitory

interneurons.

Understanding these forms of plasticity has clinical as

well as theoretical implications. MD is a model for some

forms of amblyopia, a condition that affects a large number

of people in the developed world and an even greater pro-

portion of those that live in the developing world [29].

Amblyopia results from a wide variety of fairly common

ocular dysfunctions, such as cataracts, strabismus or anisome-

tropia. If these ocular dysfunctions are not treated until late in

childhood, beyond the closure of the so-called critical period

(as happens most often in the developing world), then per-

manent visual impairment results. This functional deficit is

largely unrecoverable even if the eyes are returned to perfect

working order.

Three major approaches are currently being pursued

to improve the prognosis for the recovery of vision in adult

patients, all exploiting knowledge of synaptic plasticity: first,

finding ways to re-establish the conditions required for juvenile

plasticity in the adult cortex [73]; second, exploiting the

principles of metaplasticity to encourage the potentiation of

synaptic inputs that have withered as a consequence of long-

term deprivation [69,74,75]; and third, providing appropriate

sensory experience through deprived, and perhaps non-

deprived eyes, to induce plasticity that will maximally drive

recovery of function [76]. This third approach attempts to

exploit a pervasive and fascinating category of sensory plas-

ticity known as perceptual learning [77]. As we now discuss,

recent work in our laboratory has uncovered mechanisms for

this type of learning in V1.
3. Stimulus selective response potentiation
Perceptual learning, resulting in improved perception

through repeated sensory experience, occurs in adults as

well as children [78,79]. This broad category of learning is

characterized by an exquisite selectivity for the experienced

stimulus. In the visual domain, gains in perception can be

limited to the orientation or spatial frequency of the stimulus

[80] and, in some cases, restricted to the eye through which

the stimulus has been viewed [81,82]. These features are com-

monly invoked as psychophysical evidence that contributing

plasticity resides prior to integration of sensory primitives

into complex and generalized representations [83]. Indeed,

evidence exists in humans and animals that stimulus-

selective changes in the responsiveness of V1 occur during

visual perceptual learning [84,85]. However, until recently,

there have been few experimental findings to establish the

exact location and mechanisms of plasticity supporting it.
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Unlike many other species, orientation selectivity within

V1 of rodents observes a confetti-like interleaved arrangement,

meaning that VEPs recorded at any one site within V1 have

approximately equal amplitudes across all orientations

(figure 3a). This arrangement enables relatively easy internally

controlled assessment of changes in the response to orien-

ted stimuli through experience. Stimulus-selective response

potentiation (SRP) is a form of plasticity observed in thalamo-

recipient layer 4 of binocular V1 that shares features with

visual perceptual learning [86]. SRP occurs in awake, head-

fixed mice (figure 1a), in the absence of explicit reward or

punishment, as they view a phase-reversing sinusoidal grating

stimulus, resulting in an increase in the responsiveness of V1

(figure 3b). This increase in responsiveness is measured as a

potentiation of the amplitude of VEPs one day after initial stimu-

lus presentation, approaching saturation by around 5 days. SRP

is highly selective for the orientation (figure 2c) and the spatial

frequency of the stimulus that has been viewed (figure 3d)

[87] and occurs repeatedly within an individual animal over a

similar time-course for each new stimulus that is presented.

SRP also lasts for at least a week and possibly many months

(SF Cooke, MF Bear 2010, unpublished data) even in the absence

of intervening stimulus presentation (figure 3b). Importantly,
if the stimulus is viewed through just one eye (figure 1a), SRP

does not transfer to the other eye (figure 3e). This observa-

tion is consistent not only with plasticity occurring prior to,

or at the point of binocular integration but also suggests that

plasticity is input-specific: in rodents, ocular inputs remain seg-

regated until thalamo-recipient layers in binocular V1, at which

point many cells are binocularly responsive as they receive

independent synaptic input carrying information from the ipsi-

lateral and contralateral eyes (figure 1c) [19,20]. Interestingly,

SRP occurs at high but not low stimulus contrast (figure 3f),
suggesting a requirement for cooperation between multiple

strongly excited afferents in its induction [88]. Longevity,

input specificity and this potential requirement for cooperativity

are all consistent with SRP being mediated by LTP-like Hebbian

synaptic plasticity. Given that it occurs in the mouse, SRP offers

an opportunity for interventional experimental approaches to

test this hypothesis. Although the mouse LGN has neurons

with the property of orientation-selectivity, conferred by con-

vergent feed-forward retinogeniculate connections [89], the

evidence to be reviewed below places the mechanism for SRP

in V1.

A number of molecular features of SRP indicate that it is

supported by similar mechanisms to LTP. First, NMDARs are
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required for SRP induction. SRP is blocked by the systemic

application of the selective NMDAR antagonist CPP (3-(2-car-

boxypiperazin-4-yl)propyl-1-phosphonic acid [86] and SRP is

also blocked by local application of another antagonist, AP5,

within V1 (SF Cooke, RW Komorowski, JP Gavornik, MF

Bear 2013, unpublished data). The NMDAR is a central induc-

tion mechanism in canonical forms of LTP [90] and, more

specifically, the induction of LTP in layer 4 of V1 depends

upon this receptor [15,42]. Thus, it is likely that the NMDAR,

through its combined ligand and voltage gating, serves as the

detector of coincident pre and post-synaptic activity required

for the induction of Hebbian synaptic plasticity that supports

SRP in V1. Second, prevention of activity-dependent insertion

of GluR1-containing AMPAR into the post-synaptic membrane

prevents SRP expression. This block is accomplished by locally

expressing a dominant-negative peptide in V1 that mimics the

cytoplasmic tail of the GluR1 subunit (GluR1-CT), thereby

sequestering an expression mechanism of many forms of LTP

[91]. Third, SRP is completely absent in a mouse that lacks

the immediate early gene Arc [18], which is required for the

long-term maintenance of some forms of hippocampal LTP

and many forms of memory [92,93]. As yet, it is unclear how

Arc contributes to LTP maintenance, although as discussed

above it plays an important role in the opposing process of
LTD where it has a defined role in activity-dependent

AMPAR endocytosis [94]. Finally, SRP is also susceptible to

erasure by V1 infusion of the myristolated peptide ZIP (Z-

pseudosubstrate inhibitory peptide) [87]. This peptide has the

remarkable property of reversing established LTP in the hippo-

campus [95] and erasing long-standing associative memories

when applied locally in the cortex [96] and elsewhere [95],

albeit by an unresolved mechanism [97,98]. Thus, there are

multiple molecular mechanisms at play locally within V1

that are common to LTP and SRP.

Recently, we directly tested the involvement of LTP-like

plasticity in the induction and maintenance of SRP using an

approach of mimicry and mutual occlusion similar to those

that have been applied in the hippocampus [48,49,99–103]

and motor cortex [104]. We first demonstrated that LTP of

TC synapses within mouse V1, induced through tetanic

stimulation of the dLGN (figure 4a–c), increases the ampli-

tude of VEPs (figure 4d ). This observation is consistent

with previous findings in rodents [105–107] and indicates

that experimentally induced LTP can mimic the effects of

SRP on visually driven synaptic activity in V1. Having satu-

rated LTP at these synapses with multiple bursts of theta

frequency stimulation, we then went on to test the impact

of prior LTP on the subsequent induction of SRP. In all of
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these experiments, one hemisphere underwent LTP and the

other was used as a control (figure 4c). Within each animal,

a greater degree of SRP occurred in the control hemisphere

than the hemisphere that had undergone LTP (figure 4e),

indicating that saturation of synaptic plasticity through teta-

nic stimulation occluded subsequent potentiation through

visual experience, and implying shared mechanisms. We

then conducted the reverse experiment, in which SRP was

saturated to a single orientation prior to the induction of

LTP. In this case, the impact of LTP on VEP amplitude was

limited to oriented stimuli that were novel to the animal

(figure 4f ), indicating that, just as with the effects of visual

experience in inducing SRP, the occluding impact of SRP on

LTP is also highly stimulus-selective [87].

The conclusion from this work is that sparse subsets

of synapses conveying very selective information undergo

Hebbian potentiation as a result of experience. The occlu-

sion of subsequent plasticity by any other means, whether

experimental or natural, is limited to that large remaining

population of synapses that have not previously been altered

by experience (figure 4g). The selectivity of the occlusion

effect to familiar stimuli in SRP is notable as it rules out

potential contributions of meta-plasticity to the block that

prior learning imposes on LTP, or that LTP imposes on

subsequent learning. The stimulus-selectivity of the occlusion

effect in our SRP–LTP study contrasts somewhat with other

studies that have taken this approach [48,99,104], including

a recent study describing the occluding effects of visual

perceptual learning on LTP in ex vivo visual cortical slices

[108], because these studies demonstrate an apparently

robust and general occluding impact on LTP by single

instances of very specific learning. On the other hand, in

contrast to our previous work on SRP, these same studies

have demonstrated that learning of obvious ethological

importance to the animal occludes LTP. If SRP does indeed

represent a form of perceptual learning it will be fascinating

to determine what behavioural consequences arise from this

form of plasticity.
4. Stimulus-selective response potentiation is
more than thalamo-cortical long-term
potentiation

We have so far described several lines of evidence that indicate

an important role in SRP for feed-forward Hebbian plasti-

city similar to LTP. However, there are several interesting

observations suggesting that a great deal of further work

is required to fully understand SRP. In fact, SRP may provide an

opportunity to determine how Hebbian plasticity cooperates

with other critical processes in the encoding, consolidation

and retrieval of memory. One notable feature of SRP is that it

is not expressed within a recording session but takes several

hours to emerge [86] (figure 5a). This feature contrasts with

most forms of LTP, which are typically immediately estab-

lished by the appropriate pattern of stimulation. It will be

important to determine the events that unfold during this lag

prior to the emergence of SRP, during which the animal is no

longer viewing the stimulus and is returned to its home cage.

Previous studies of the Arc null mutant mouse indicate that

short-term memory and synaptic plasticity remain intact but

that after an hour or two memories are lost and synaptic

change returns to baseline [92]. Given the pronounced SRP def-

icit observed in the absence of Arc expression [18] it seems

reasonable to suppose that post-learning consolidation is

required if SRP is to be expressed. Further investigation

is required to determine if this is the case and, more impor-

tantly, whether critical off-line processes involve cellular or

systems-level consolidation processes [109].

SRP also has a number of other features that suggest

that it is a complex network phenomenon. First, SRP is so

stimulus-selective that it is hard to envisage how it could be

accomplished purely through thalamo-cortical potentiation.

Shifts from the familiar orientation of as little as five degrees

result in a significant reduction in VEP amplitude [87]

(figure 3c), demonstrating a greater degree of tuning in the

mouse than any one individual simple cell appears to construct
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from its untuned TC input [110]. This observation strongly

suggests a network representation in which fine-grained orien-

tation tuning is integrated from neuronal populations with

differing but overlapping selectivity. Second, SRP is specific

not just for the spatial frequency and orientation of the stimulus

but also for the contrast of the stimulus (figure 5b). This is

difficult to explain from the perspective of simple potentiation

of TC synapses because stimuli that are identical in all aspects

other than contrast should share a large subset of fibres origi-

nating in the dLGN and projecting to V1. We would therefore

anticipate that SRP at 50% contrast would at least be partly

inherited by a stimulus that is the same size, orientation

and spatial frequency but presented at 100% contrast. This

is not the case. Finally, presentation of a relatively complex

chessboard stimulus, which comprises both vertical and

horizontal lines, can drive SRP. However, there is no transfer

of SRP from this compound stimulus to its component hori-

zontal and vertical lines when they are isolated from each

other (figure 5c). The same is true for the reverse experiment,

in which SRP occurs to a range of stimuli, including both cardi-

nal and oblique orientations, without there being any transfer

to a compound chessboard stimulus that effectively contains

all four of these orientations [86]. It will be a great challenge

to understand exactly how the network can segregate represen-

tations of compound from component stimuli and, perhaps

most puzzlingly, how the same stimulus presented at different

contrasts can be recognized as two different stimuli given the

typical contrast invariance that is a feature of the visual

system [13].

These considerations inspired us to ask whether SRP

is apparent at layer 4 TC synapses using the same in vivo
pharmacological technique as we have already described in

the context of OD plasticity. Here, we present the findings of

this experiment, which are new and previously unpublished.

In contrast to the normal OD ratio and its shift as a result of

MD, both of which continue to be expressed in the presence

of a GABA receptor agonist cocktail [57], the ratio of the VEP

amplitude evoked by familiar and novel stimuli (familiar/

novel) dropped significantly from 2.068+0.264 prior to appli-

cation of the cocktail to 1.156+0.063 when the drug was

present at the recording site in V1 (n ¼ 6 mice; Mann–Whitney

U rank sum t-test, T ¼ 57.000, p ¼ 0.002) (figure 5d,e). Thus,

SRP does not appear to be the inverse of the consequences of

MD, despite the fact that, in terms of scale, the impact on

VEPs that are unperturbed by pharmacological intervention

is approximately equivalent for deprived eye depression over

3 days (approx. halved from baseline) and potentiation as a

result of SRP (approx. doubled from baseline). It is plausible,

however, that synaptic plasticity that supports SRP does

occur at TC synapses in layer 4 but is so much sparser than

that resulting from the dramatic deprivation incurred through

eye closure that a further intra-cortical amplification process is

required to noticeably impact visual cortical responsiveness as

assayed with VEPs. A second alternative is that potentiation

may occur at thalamo-cortical input to layer 2/3 (figure 1c),

which is well documented in the mouse [64], and is therefore

not detectable when recording in layer 4. Again, this inter-

pretation requires some intra-cortical feedback to explain the

observation that, under normal conditions, SRP is readily

apparent in VEPs recorded in layer 4. Finally, it is important

to consider the possibility that SRP is supported exclusively

by intra-cortical plasticity, in contrast to the effects of MD,

and that, just as is observed in visual cortical slices under
the right degree of inhibition, appropriate patterns of stimu-

lation of thalamic inputs can di-synaptically induce lasting

potentiation at layer 4–2/3 intra-cortical synapses [11,111].

Distinguishing between these possibilities will require a great

deal of further experimental work.
5. Conclusion
The discovery of LTP in the hippocampus [112] provided the first

experimental demonstration of lasting Hebbian synaptic plas-

ticity. LTP generated a platform upon which to experimentally

dissect the ubiquitous but varied molecular implementation of

Hebbian plasticity throughout the nervous system. This discov-

ery also introduced an experimental approach that enabled the

discovery of other forms of plasticity including the opposing

process of synaptic LTD [9,32].

The hippocampus has been a popular model for study-

ing LTP and LTD because it has a simple structure, an

implicated role in episodic memory [113] and robust ex vivo
transverse slices [114]. It is important to remember, however,

that Donald Hebb considered primary visual cortex (V1) to

be the most intuitive framework within which to present

his influential theories of learning, principally because

the functional organization was better understood than the

hippocampus, a fact that is still true today. There are also

other reasons to study experience-dependent plasticity

within V1: owing to its proximity to sensory input, incoming

information remains relatively unprocessed, enabling strict

experimental constraint. Additionally, it is a surface structure

and can therefore be accessed with relative ease in vivo, allow-

ing for the application of a wide variety of recording and

imaging techniques. A dogma exists that primary sensory

cortices are immutable feature detectors in the adult animal

and do not store memory. However, a growing body of evidence

suggests that this is not the case. In this article, we have discussed

not only Hebbian contributions to modification of V1 in the

juvenile animal, in the form of OD plasticity, but also clear

evidence that Hebbian plasticity may underlie adult percep-

tual learning in V1. We believe that the study of perceptual

learning may facilitate an understanding of how Hebbian

plasticity, which is theoretically compelling as a mnemonic

mechanism, participates with other circuit elements to store

and retrieve information.
6. Methods
All animals were male C57BL/6 mice (Charles River Laboratory

International, Wilmington, MA). Mice were group-housed with

food and water available ad libitum and maintained on a 12 L :

12 D cycle. All SRP experiments were conducted as described in

[87] but used 400 phase reversals of 0.05 cycles per degree, 100%

contrast, full field, sinusoidal grating stimuli averaged for each

VEP recording session. Cannulation, preparation of the 4 mM

muscimol/6 mM SCH50911 cocktail and drug infusions were con-

ducted exactly as described in [57]. Statistical comparisons were

made on the ratio of VEP amplitude driven by the familiar and

novel stimuli (familiar VEP amplitude/novel VEP amplitude)

before and during drug application. As data did not show normal-

ity of distribution or equality of variance, Mann–Whitney U rank

sum t-tests were used for statistical comparisons.
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