## Lecture 11. Bayesian inference

How the brain infers the world?
How we infers the happenings in brain?

- Bayes rule
- Bayesian inference
- Bayesian decoding of hippocampus
- Perception as Bayesian inference
- Illusion as Optimal Bayes

Bayes approach

- Alan Turing cracking the Engima code
- Bernard Koopman narrowing down the search for German U-boats - Bayesian update.
John Craven finding the lost Hydrogen bomb in Palomares B-52 crash incident.

Susan McGrayne: The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant
from Two Centuries of Controversy

Perception as an inference process based on evidence and priors


Bayes' Rule
$P(H \mid E)=\frac{P(E \mid H) P_{\text {prior }}(H)}{\sum_{H^{\prime}} P\left(E \mid H^{\prime}\right) P_{\text {prior }}\left(H^{\prime}\right)}$
$H=$ a particular hypothesis
$E=$ evidence
$H^{\prime}=$ all the hypotheses considered
Bayes rule
Since $P\left(\omega_{j}, x\right)=P\left(\omega_{j} \mid x\right) P(x)=P\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)$
posterior $\quad P\left(\omega_{j} \mid x\right)=\frac{P\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{P(x)}$

- where in case of two categories

$$
P(x)=\sum_{i=1}^{j-2} P\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)
$$

- Posterior (hypothesis given the data) $=($
- Likelihood (data given the hypothesis) x Prior (hypothesis)) Prior(Observation)


## Bayes' Rule



If one event (catching Salmon) happens more often than the other (catching Chicken) ..

If $P\left(\omega_{1}\right)=2 / 3$, and $P\left(\omega_{2}\right)=1 / 3$,
without making an observation, how would I guess?

Now, if the observation indicates that $\mathrm{x}=12.2$ inches, how would I decide? First find the likelihood $p(x \mid w)$.



## Velocity Space

- The optical-flow constraint: the
flow velocity ( $u, v$ ) has to lie along a
straight line perpendicular to the
brightness gradient
$\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v=-\frac{\partial I}{\partial t}$

$$
\left(I_{x}, I_{y}\right) \cdot(u, v)=-I_{t}
$$

- We can determine the component in the direction of the brightness gradient, but not the flow
components in the direction at right
angles.



| What are the priors in motion perception? |
| :--- |
| Given the same evidence, do we prefer an <br> interpretation rest on slow motion or fast <br> motion? Do things tend to move fast or move <br> slowly? |
| Show Ellipse. |

Priors favoring slow speed.

$$
P(v) \propto \exp \left(-\|v\|^{2} / 2 \sigma_{p}^{2}\right)
$$

The posterior probability of a velocity was computed by combining the likelihood and prior using Bayes' rule. Because we assumed that the noise is independent over spatial location, the total likelihood function is just a product of likelihoods:

$$
\begin{equation*}
P(v \mid I) \propto P(v) \Pi P\left(I\left(x_{i}, y_{i}, t\right) \mid v\right), \tag{6}
\end{equation*}
$$

How to encode uncertainty about the constraints?


## Posterior on velocity

$$
P(v \mid) \propto \exp \left(-\|v\|^{2} / 2 \sigma_{p}^{2}-\frac{1}{2 \sigma^{2}} \int_{x, y} \sum_{i} w_{i}\left(x_{x} y\right)\left(I_{x}\left(x_{x} y\right) v_{x}+I_{y}\left(x_{x} y\right) v_{y}+I_{i}\right)^{2} \mathrm{dx} \mathrm{~d} y\right) .
$$

Here we assumed the entire image moves according to a single translational velocity, and so summed over all spatial positions. In this case, $\sum_{i} w_{i}(x, y)$ is a constant, so the posterior probability is given by:

$$
P(v \mid) \propto \exp \left(-\|v\|^{2} / 2 \sigma_{p}{ }^{2}-\frac{1}{2 \sigma^{2}} \int_{x, y}\left(I(x, y) v_{x}+I_{y}(x, y) v_{y}+I_{t}\right)^{2} \mathrm{~d} x \mathrm{~d} y\right)
$$



Hippocampus

Limbic system structure important in forming new memories and connecting emotion and senses (smell, sound) to memories. Primitive brain structure located on top of the brain stem, buried under the cortex, involved in emotion and motivation, feelings of pleasures (eating and sex).


Place cells in the CA1,CA3 and dentate gyrus in rodent hippocampus

How to decode the location of the rat based on the ensemble activities?

Naïve Bayes
• Bayes rule
$P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}$
$X=\left(X_{1}, \ldots, X_{N}\right)$
• Naïve Bayes assumes that Xi are conditionally
independent, given Y
$P(X \mid Y)=P\left(X_{1}, \ldots, X_{N} \mid Y\right)=\prod_{i=1}^{N} P\left(X_{i} \mid Y\right)$


