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Abstract

We analyze the dynamics of an online algorithm for independent component
analysis in the high-dimensional scaling limit. As the ambient dimension tends to
infinity, and with proper time scaling, we show that the time-varying joint empirical
measure of the target feature vector and the estimates provided by the algorithm
will converge weakly to a deterministic measured-valued process that can be
characterized as the unique solution of a nonlinear PDE. Numerical solutions of this
PDE, which involves two spatial variables and one time variable, can be efficiently
obtained. These solutions provide detailed information about the performance
of the ICA algorithm, as many practical performance metrics are functionals of
the joint empirical measures. Numerical simulations show that our asymptotic
analysis is accurate even for moderate dimensions. In addition to providing a tool
for understanding the performance of the algorithm, our PDE analysis also provides
useful insight. In particular, in the high-dimensional limit, the original coupled
dynamics associated with the algorithm will be asymptotically “decoupled”, with
each coordinate independently solving a 1-D effective minimization problem via
stochastic gradient descent. Exploiting this insight to design new algorithms for
achieving optimal trade-offs between computational and statistical efficiency may
prove an interesting line of future research.

1 Introduction

Online learning methods based on stochastic gradient descent are widely used in many learning and
signal processing problems. Examples includes the classical least mean squares (LMS) algorithm
[1] in adaptive filtering, principal component analysis [2, 3], independent component analysis (ICA)
[4], and the training of shallow or deep artificial neural networks [5–7]. Analyzing the convergence
rate of stochastic gradient descent has already been the subject of a vast literature (see, e.g., [8–11].)
Unlike existing work that analyze the behaviors of the algorithms in finite dimensions, we present
in this paper a framework for studying the exact dynamics of stochastic gradient algorithms in the
high-dimensional limit, using online ICA as a concrete example. Instead of minimizing a generic
function as considered in the optimization literature, the stochastic algorithm we analyze here is
solving an estimation problem. The extra assumptions on the ground truth (e.g., the feature vector)
and the generative models for the observations allow us to obtain the exact asymptotic dynamics of
the algorithms.

As the main result of this work, we show that, as the ambient dimension n → ∞ and with proper
time-scaling, the time-varying joint empirical measure of the true underlying independent component
ξ and its estimate x converges weakly to the unique solution of a nonlinear partial differential
equation (PDE) [see (6).] Since many performance metrics, such as the correlation between ξ and
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x and the support recover rate, are functionals of the joint empirical measure, knowledge about the
asymptotics of the latter allows us to easily compute the asymptotic limits of various performance
metrics of the algorithm.

This work is an extension of a recent analysis on the dynamics of online sparse PCA [12] to more
general settings. The idea of studying the scaling limits of online learning algorithm first appeared in
a series of work that mostly came from the statistical physics communities [3, 5, 13–16] in the 1990s.
Similar to our setting, those early papers studied the dynamics of various online learning algorithms
in high dimensions. In particular, they show that the mean-squared error (MSE) of the estimation,
together with a few other “order parameters”, can be characterized as the solution of a deterministic
system of coupled ordinary differential equations (ODEs) in the large system limit. One limitation of
such ODE-level analysis is that it cannot provide information about the distributions of the estimates.
The latter are often needed when one wants to understand more general performance metrics beyond
the MSE. Another limitation is that the ODE analysis cannot handle cases where the algorithms have
non-quadratic regularization terms (e.g., the incorporation of `1 norms to promote sparsity.) In this
paper, we show that both limitations can be eliminated by using our PDE-level analysis, which tracks
the asymptotic evolution of the probability distributions of the estimates given by the algorithm. In a
recent paper [10], the dynamics of an ICA algorithm was studied via a diffusion approximation. As
an important distinction, the analysis in [10] keeps the ambient dimension n fixed and studies the
scaling limit of the algorithm as the step size tends to 0. The resulting PDEs involve O(n) spatial
variables. In contrast, our analysis studies the limit as the dimension n→∞, with a constant step
size. The resulting PDEs only involve 2 spatial variables. This low-dimensional characterization
makes our limiting results more practical to use, especially when the dimension is large.

The basic idea underlying our analysis can trace its root to the early work of McKean [17, 18], who
studied the statistical mechanics of Markovian-type mean-field interactive particles. The mathematical
foundation of this line of research has been further established in the 1980s (see, e.g., [19, 20]). This
theoretical tool has been used in the analysis of high-dimensional MCMC algorithms [21]. In our
work, we study algorithms through the lens of high-dimensional stochastic processes. Interestingly,
the analysis does not explicitly depend on whether the underlying optimization problem is convex
or nonconvex. This feature makes the presented analysis techniques a potentially very useful tool
in understanding the effectiveness of using low-complexity iterative algorithms for solving high-
dimensional nonconvex estimation problems, a line of research that has recently attracted much
attention (see, e.g., [22–25].)

The rest of the paper is organized as follows. We first describe in Section 2 the observation model and
the online ICA algorithm studied in this work. The main convergence results are given in Section 3,
where we show that the time-varying joint empirical measure of the target independent component
and its estimates given by the algorithm can be characterized, in the high-dimensional limit, by the
solution of a deterministic PDE. Due to space constraint, we only provide in the appendix a formal
derivation leading to the PDE, and leave the rigorous proof of the convergence to a follow-up paper.
Finally, in Section 4 we present some insight obtained from our asymptotic analysis. In particular,
in the high-dimensional limit, the original coupled dynamics associated with the algorithm will be
asymptotically “decoupled”, with each coordinate independently solving a 1-D effective minimization
problem via stochastic gradient descent.

Notations and Conventions: Throughout this paper, we use boldfaced lowercase letters, such as ξ
and xk, to represent n-dimensional vectors. The subscript k in xk denotes the discrete-time iteration
step. The ith component of the vectors ξ and xk are written as ξi and xk,i, respectively.

2 Data model and online ICA

We consider a generative model where a stream of sample vectors yk ∈ Rn, k = 1, 2, . . . are
generated according to

yk = 1√
n
ξck + ak, (1)

where ξ ∈ Rn is a unique feature vector we want to recover. (For simplicity, we consider the case
of recovering a single feature vector, but our analysis technique can be generalized to study cases
involving a finite number of feature vectors.) Here ck ∈ R is an i.i.d. random variable drawn from an
unknown non-Gaussian distribution Pc with zero mean and unit variance. And ak ∼ N (0, I− 1

nξξ
T )
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models background noise. We use the normalization ‖ξ‖2 = n so that in the large n limit, all elements
ξi of the vector are O(1) quantities. The observation model (1) is equivalent to the standard sphered

data model yk = A

[
ck
sk

]
, where A ∈ Rn×n is an orthonormal matrix with the first column being

ξ/
√
n and sk is an i.i.d. (n− 1)-dimensional standard Gaussian random vector.

To establish the large n limit, we shall assume that the empirical measure of ξ defined by µ(ξ) =
1
n

∑n
i=1 δ(ξ − ξi) converges weakly to a deterministic measure µ∗(ξ) with finite moments. Note that

this assumption can be satisfied in a stochastic setting, where each element of ξ is an i.i.d. random
variable drawn from µ∗(ξ), or in a deterministic setting [e.g., ξi =

√
2(i mod 2), in which case

µ∗(ξ) = 1
2δ(ξ) + 1

2δ(ξ −
√

2).]

We use an online learning algorithm to extract the non-Gaussian component ξ from the data stream
{yk}k≥1. Let xk be the estimate of ξ at step k. Starting from an initial estimate x0, the algorithm
update xk by

x̃k = xk + τk√
n
f( 1√

n
yTk xk)yk − τk

n φ(xk)

xk+1 =
√
n

‖x̃k‖ x̃k,
(2)

where f(·) is a given twice differentiable function and φ(·) is an element-wise nonlinear mapping
introduced to enforce prior information about ξ, e.g., sparsity. The scaling factor 1√

n
in the above

equations makes sure that each component xk,i of the estimate is of size O(1) in the large n limit.

The above online learning scheme can be viewed as a projected stochastic gradient algorithm for
solving an optimization problem

min
‖x‖=n

− 1

K

K∑
k=1

F ( 1√
n
yTk x) +

1

n

n∑
i=1

Φ(xi), (3)

where F (x) =
∫
f(x) dx and

Φ(x) =

∫
φ(x) dx (4)

is a regularization function. In (2), we update xk using an instantaneous noisy estimation
1√
n
f( 1√

n
yTk xk)yk, in place of the true gradient 1

K
√
n

∑K
k=1 f( 1√

n
yTk xk)yk, once a new sample yk

is received.

In practice, one can use f(x) = ±x3 or f(x) = ± tanh(x) to extract symmetric non-Gaussian
signals (for which E c3k = 0 and E c4k 6= 3) and use f(x) = ±x2 to extract asymmetric non-Gaussian
signals. The algorithm in (2) with f(x) = x3 can also be regarded as implementing a low-rank tensor
decomposition related to the empirical kurtosis tensor of yk [10, 11].

For the nonlinear mapping φ(x), the choice of φ(x) = βx for some β > 0 corresponds to using an
L2 norm in the regularization term Φ(x). If the feature vector is known to be sparse, we can set
φ(x) = β sgn(x), which is equivalent to adding an L1-regularization term.

3 Main convergence result

We provide an exact characterization of the dynamics of the online learning algorithm (2) when the
ambient dimension n goes to infinity. First, we define the joint empirical measure of the feature
vector ξ and its estimate xk as

µnt (ξ, x) =
1

n

n∑
i=1

δ(ξ − ξi, x− xk,i) (5)

with t defined by k = btnc. Here we rescale (i.e., “accelerate”) the time by a factor of n.

The joint empirical measure defined above carries a lot of information about the performance of the
algorithm. For example, as both ξ and xk have the same norm

√
n by definition, the normalized

correlation between ξ and xk defined by

Qnt =
1

n
ξTxk
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can be computed as Qnt = Eµn
t
[ξx], i.e., the expectation of ξx taken with respect to the empirical

measure. More generally, any separable performance metric Hn
t = 1

n

∑n
i=1 h(ξi, xk,i) with some

function h(·, ·) can be expressed as an expectation with respect to the empirical measure µnt , i.e.,
Hn
t = Eµn

t
h(ξ, x).

Directly computing Qnt via the expectation Eµn
t
[ξx] is challenging, as µnt is a random probability

measure. We bypass this difficulty by investigating the limiting behavior of the joint empirical
measure µnt defined in (5). Our main contribution is to show that, as n → ∞, the sequence of
random probability measures {µnt }n converges weakly to a deterministic measure µt. Note that
the limiting value of Qnt can then be computed from the limiting measure µnt via the identity
limn→∞Qnt = Eµt

[ξx].

Let Pt(x, ξ) be the density function of the limiting measure µt(ξ, x) at time t. We show that it is
characterized as the unique solution of the following nonlinear PDE:

∂
∂tPt(ξ, x) = − ∂

∂x

[
Γ(x, ξ,Qt, Rt)Pt(ξ, x)

]
+ 1

2Λ(Qt)
∂2

∂x2Pt(ξ, x) (6)
with

Qt =

∫∫
R2

ξxPt(ξ, x) dx dξ (7)

Rt =

∫∫
R2

xφ(x)Pt(ξ, x) dxdξ (8)

where the two functions Λ(Q) and Γ(x, ξ,Q,R) are defined as

Λ(Q) = τ2
〈
f2
(
cQ+ e

√
1−Q2

)〉
(9)

Γ(x, ξ,Q,R) = x
[
QG(Q) + τR− 1

2Λ(Q)
]
− ξG(Q)− τφ(x) (10)

where
G(Q) = −τ

〈
f
(
cQ+ e

√
1−Q2

)
c
〉

+ τQ
〈
f ′
(
cQ+ e

√
1−Q2

)〉
. (11)

In the above equations, e and c denote two independent random variables, with e ∼ N (0, 1) and
c ∼ Pc, the non-Gaussian distribution of ck introduced in (2); the notation 〈·〉 denotes the expectation
over e and c; and f(·) and φ(·) are the two functions used in the online learning algorithm (2).

When φ(x) = 0 (and therefore Rt = 0), we can derive a simple ODE for Qt from (6) and (7):

d

dt
Qt = (Q2

t − 1)G(Qt)−
1

2
QtΛ(Qt).

Example 1 As a concrete example, we consider the case when ck is drawn from a symmetric
non-Gaussian distribution. Due to symmetry, E c3k = 0. Write E c4k = m4 and E c6k = m6. We use
f(x) = x3 in (2) to detect the feature vector ξ. Substituting this specific f(x) into (9) and (11), we
obtain

G(Q) = τQ3(m4 − 3) (12)

Λ(Q) = τ2
[
15 + 15Q4(1−Q2)(m4 − 3) +Q6(m6 − 15)

]
(13)

and Γ(x, ξ,Q,R) can be computed by substituting (12) and (13) into (10). Moreover, for the case
φ(x) = 0, we derive a simple ODE for qt = Q2

t as

dqt
dt

= −2τtq
2
t (1− qt)(m4 − 3)− τ2

t qt

[
15q2

t (1− qt)(m4 − 3) + q3
t (m6 − 15) + 15

]
. (14)

Numerical verifications of the ODE results are shown in Figure 1(a). In our experiment, the ambient
dimension is set to n = 5000 and we plot the averaged results as well as error bars (corresponding to
one standard deviation) over 10 independent trials. Two different initial values of q0 = Q2

0 are used.
In both cases, the asymptotic theoretical predictions match the numerical results very well.

The ODE in (14) can be solved analytically. Next we briefly discuss its stability. The right-hand side
of (14) is plotted in Figure 1(b) as a function of qt. It is clear that the ODE (14) always admits a

4
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Figure 1: (a) Comparison between the analytical prediction given by the ODE in (14) with numerical
simulations of the online ICA algorithm. We consider two different initial values for the algorithm.
The top one, which starts from a better initial guess, converges to an informative estimation, whereas
the bottom one, with a worse initial guess, converges to a non-informative solution. (b) The stability
of the ODE in (14). We draw g(q) = 1

τ
dq
dt for different value of τ = 0.02, 0.04, 0.06, 0.08 from top

to bottom.

solution qt = 0, which corresponding to a trivial, non-informative solution. Moreover, this trivial
solution is always a stable fixed point. When the stepsize τ > τc for some constant τc, qt = 0 is also
the unique stable fixed point. When τ < τc however, two additional solutions of the ODE emerge.
One is a stable fixed point denoted by q∗s and the other is an unstable fixed point denoted by q∗u,
with q∗u < q∗s . Thus, in order to reach an informative solution, one must initialize the algorithm
with Q2

0 > q∗u. This insight agrees with a previous stability analysis done in [26], where the authors
investigated the dynamics near qt = 0 via a small qt expansion.

Example 2 In this experiment, we verify the accuracy of the asymptotic predictions given by the
PDE (6). The settings are similar to those in Example 1. In addition, we assume that the feature
vector ξ is sparse, consisting of ρn nonzero elements, each of which is equal to 1/

√
ρ. Figure 2

shows the asymptotic conditional density Pt(x|ξ) for ξ = 0 and ξ = 1/
√
ρ at two different times.

These theoretical predictions are obtained by solving the PDE (6) numerically. Also shown in the
figure are the empirical conditional densities associated with one realization of the ICA algorithm.
Again, we observe that the theoretical predictions and numerical results have excellent agreement.

To demonstrate the usefulness of the PDE analysis in providing detailed information about the
performance of the algorithm, we show in Figure 3 the performance of sparse support recovery using
a simple hard-thresholding scheme on the estimates provided by the algorithm. By changing the
threshold values, one can have trade-offs between the true positive and false positive rates. As we can
see from the figure, this precise trade-off can be accurately predicted by our PDE analysis.

4 Insights given by the PDE analysis

In this section, we present some insights that can be gained from our high-dimensional analysis. To
simplify the PDE in (6), we can assume that the two functions Qt and Rt in (7) and (8) are given to
us in an oracle way. Under this assumption, the PDE (6) describes the limiting empirical measure of
the following stochastic process

zk+1,i = zk,i + 1
nΓ(zk,i, ξi, Qk/n, Rk/n) +

√
Λ(Qk/n)

n wk,i, i = 1, 2, . . . n (15)

where wk,i is a sequence of independent standard Gaussian random variables. Unlike the original
online learning update equation (2) where different coordinates of xk are coupled, the above process
is uncoupled. Each component zk,i for i = 1, 2, . . . , n evolves independently when conditioned on
Qt and Rt. The continuous-time limit of (15) is described by a stochastic differential equation (SDE)

dZt = Γ(Zt, ξ,Qt, Rt) dt+
√

Λ(Qt) dBt,

5
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Figure 2: (a) A demonstration of the accuracy of our PDE analysis. See the discussions in Example
2 for details. (b) Effective 1-D cost functions.
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Figure 3: Trade-offs between the true positive and false positive rates in sparse support recovery. In
our experiment, n = 104, and the sparsity level is set to ρ = 0.3. The theoretical results obtained by
our PDE analysis can accurately predict the actual performance at any run-time of the algorithm.

where Bt is the standard Brownian motion.

We next have a closer look at the equation (15). Given a scalar ξ, Qt and Rt, we can define a
time-varying 1-D regularized quadratic optimization problem minx∈REt(x, ξ) with the effective
potential

Et(x, ξ) = 1
2dt(x− btξ)

2 + τΦ(x), (16)

where dt = QtG(Qt) − 1
2Λ(Qt) + τRt , bt = G(Qt)/dt and Φ(x) is the regularization term

defined in (4). Then, the stochastic process (15) can be viewed as a stochastic gradient descent
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for solving this 1-D problem with a step-size equal to 1/n. One can verify that the exact gradient

of (16) is −Γ(x, ξ,Qt, Rt). The third term
√

Λ(Qk)
n wk in (15) adds stochastic noise to the true

gradient. Interestingly, although the original optimization problem (3) is non-convex, its 1-D effective
optimization problem is always convex for convex regularizers Φ(x) (e.g., Φ(x) = β |x|.) This
provides an intuitive explanation for the practical success of online ICA.

To visualize this 1-D effective optimization problem, we plot in Figure 2(b) the effective potential
Et(x, ξ) at t = 0 and t = 100, respectively. From Figure (2), we can see that the L1 norm always
introduces a bias in the estimation for all non-zero ξi, as the minimum point in the effective 1-D
cost function is always shifted towards the origin. It is hopeful that the insights gained from the
1-D effective optimization problem can guide the design of a better regularization function Φ(x)
to achieve smaller estimation errors without sacrificing the convergence speed. This may prove an
interesting line of future work.

This uncoupling phenomenon is a typical consequence of mean-field dynamics, e.g., the Sherrington-
Kirkpatrick model [27] in statistical physics. Similar phenomena are observed or proved in other high
dimensional algorithms especially those related to approximate message passing (AMP) [28–30].
However, for these algorithms using batch updating rules with the Onsager reaction term, the limiting
densities of iterands are Gaussian. Thus the evolution of such densities can be characterized by
tracking a few scalar parameters in discrete time. For our case, the limiting densities are typically
non-Gaussian and they cannot be parametrized by finitely many scalars. Thus the PDE limit (6) is
required.

Appendix: A Formal derivation of the PDE

In this appendix, we present a formal derivation of the PDE (6). We first note that (xk, ξk)k with
ξk = ξ forms an exchangeable Markov chain on R2n driven by the random variable ck ∼ Pc and the
Gaussian random vector ak . The drift coefficient Γ(x, ξ,Q,R) and the diffusion coefficient Λ(Q)
in the PDE (6) are determined, respectively, by the conditional mean and variance of the increment
xk+1,i − xk,i, conditioned upon the previous state vector xk and ξk.

Let the increment of the gradient-descent step in the learning rule (2) be

∆̃k,i = x̃k,i − xk,i = τk√
n
f( 1√

n
yTk xk)yk,i − τk

n φ(xk,i) (17)

where x̃k,i is the ith component of the output x̃k. Let Ek denote the conditional expectation with
respect to ck and ak given xk and ξk.

We first compute Ek
[
∆̃k,i

]
and Ek

[
∆̃2
k,i

]
. From (1) and (17) we have

Ek
[
∆̃k,i

]
= τk√

n
Ek
[
f(Qnkck + ẽk,i + 1√

n
ak,ixk,i)(

1√
n
ξick + ak,i)

]
− τk

n φ(xk,i),

where Qnk = 1
nξ

Txk and ẽk,i = 1√
n

(
aTk xk − ak,ixk,i

)
. We use the Taylor expansion of f around

Qnkck + ẽk,i up to the first order and get

Ek
[
f(Qnkck + ẽk,i + 1√

n
ak,ixk,i)(

1√
n
ξick + ak,i)

]
= Ek

[
f(Qnkck + ẽk,i)(

1√
n
ξick + ak,i)

]
+ 1√

n
xk,iEk

[
f ′(Qnkck + ẽk,i)(

1√
n
ξick + ak,i)ak,i

]
+ δk,i,

where δk,i includes all higher order terms. As n → ∞, the random variable Qnk converges to a
deterministic quantity Qk. Moreover, ẽk,i and ak,i are both zero-mean Gaussian with the covariance

matrix

[
1−Q2

k +O( 1
n ) − 1√

n
ξk,iQk

− 1√
n
ξk,iQk 1 +O( 1

n )

]
. We thus have

Ek
[
f ′(Qnkck + ẽk,i)(

1√
n
ξick + ak,i)ak,i

]
=

〈
f ′(Qkc+

√
1−Q2

ke)

〉
+ o(1)

7



and

Ek
[
f(Qnkck + ẽk,i)(

1√
n
ξick + ak,i)

]
=

〈
f(Qkc+

√
1−Q2

ke−
ξi√
n
Qka)( 1√

n
ξic+ a)

〉
= 1√

n
ξi

[〈
cf(Qkc+

√
1−Q2

ke)

〉
−Qk

〈
f ′(Qkc+

√
1−Q2

ke)

〉]
+ o( 1√

n
),

where in the last line, we use the Taylor expansion again to expand f around Qkc+
√

1−Q2
ke and

the bracket 〈·〉 denotes the average over two independent random variables c ∼ Pc and e ∼ N (0, 1).
Thus, we have

Ek
[
∆̃k,i

]
=

1

n

[
−ξiG(Qk) + τkxk,i

〈
f ′(Qkc+

√
1−Q2

ke)

〉
− τkφ(xk,i)

]
+ o( 1

n ),

where the function G(Q) is defined in (11).

To compute the (conditional) variance, we have

Ek
[
∆̃2
k,i

]
=

τ2
k

n Ek
[
f2(Qnk + ẽk,i)

]
+ o( 1

n ) =
τ2
k

n

〈
f2(Qkc+

√
1−Q2

ke)

〉
+ o( 1

n ).

Next, we deal with the normalization step. Again, we use the Taylor expansion for the term∥∥ 1
n x̃k

∥∥−1
=

∥∥∥∥ 1
n

(
xk + ∆̃k

)∥∥∥∥−1

up to the first order, which yields

xk+1 = xk − 1
nxk

(
xTk ∆̃k + 1

2∆̃
T

k ∆̃k

)
+ ∆̃k + δk,

where δk includes all higher order terms. Note that 1
nx

T
k ∆̃k ≈ 1

n

∑n
i=1 xk,iEk

[
∆̃k,i

]
, 1
n∆̃

T

k ∆̃k ≈
1
n

∑n
i=1 Ek

[
∆̃2
k,i

]
and 1

nx
T
k φ(x) = Rnk → Rk, we have

Ek
[
xk+1,i − xk,i

]
= 1

nΓ(xk,i, ξi, Qk, Rk) + o( 1
n ).

Finally, the normalization step does not change the variance term, and thus

Ek
[(
xk+1,i − xk,i

)2]
= Ek

[
∆̃2
k,i

]
+ o( 1

n ) = 1
nΛ(Qk) + o( 1

n ).

The above computation of Ek(xk+1,i − xk,i) and Ek(xk+1,i − xk,i)2 connects the dynamics (2) to
(15). In fact, both (2) and (15) have the same limiting empirical measure described by (6).

A rigorous proof of our asymptotic result is built on the weak convergence approach for measure-
valued processes. Details will be presented in an upcoming paper. Here we only provide a sketch
of the general proof strategy: First, we prove the tightness of the measure-valued stochastic process
(µnt )0≤t≤T on D([0, T ],M(R2)), where D denotes the space of càdlàg processes taking values from
the space of probability measures. This then implies that any sequence of the measure-valued process
{(µnt )0≤t≤T }n (indexed by n) must have a weakly converging subsequence. Second, we prove any
converging (sub)sequence must converge weakly to a solution of the weak form of the PDE (6).
Third, we prove the uniqueness of the solution of the weak form of the PDE (6) by constructing a
contraction mapping. Combining these three statements, we can then conclude that any sequence
must converge to this unique solution.
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