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Abstract— In analyzing information streamed by sensory
organs, our brains face challenges similar to those solved
in statistical signal processing. This suggests that biologically
plausible implementations of online signal processing algo-
rithms may model neural computation. Here, we focus on
such workhorses of signal processing as Principal Component
Analysis (PCA) and whitening which maximize information
transmission in the presence of noise. We adopt the similarity
matching framework, recently developed for principal subspace
extraction, but modify the existing objective functions by adding
a decorrelating term. From the modified objective functions,
we derive online PCA and whitening algorithms which are
implementable by neural networks with local learning rules,
i.e. synaptic weight updates that depend on the activity of only
pre- and postsynaptic neurons. Our theory offers a principled
model of neural computations and makes testable predictions
such as the dropout of underutilized neurons.

I. INTRODUCTION

Principal Component Analysis (PCA) plays an important
role in statistical signal processing by denoising data, identi-
fying important features, and simplifying further processing.
Mathematically, PCA computes the eigenvectors correspond-
ing to the top eigenvalues of the data covariance matrix and
projects data onto them. PCA algorithms exist for both the
offline setting, where a whole dataset is available to the
algorithm from the outset, and the online setting, where input
data samples are presented to the algorithm sequentially, one
at a time, and the corresponding output is computed prior to
the presentation of the next input [1], [2], [3]. Given this, we
expect that PCA algorithms, especially in the online setting,
model some aspects of biological neural computation.

The first principal component of streamed data can be
computed by a highly simplified model of a single neuron.
Suppose that each input data sample is represented by the
activity vector of upstream neurons at a corresponding time
point. By summing these activities with the weights of
corresponding synapses a neuron projects each data sam-
ple onto the vector of synaptic weights and transmits the
projection to downstream neurons via its output activity.
If synaptic weights are updated after each data sample
presentation according to the Oja learning rule, a neuron
computes the top eigenvector of the covariance matrix and
outputs the first principle component [4], [5]. Here, we ignore
temporal correlations in activity and assume that the dataset
is presented as a sequence of static “snapshots” streamed in
an arbitrary order.
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The Oja learning rule has two major attractions for mod-
eling neural computation. First, it can be derived, along
with the weighted summation of inputs, from a principled
objective function, by alternating minimization of a sum
of squared representation errors with respect to activity
and synaptic weights [6]. Second, Oja learning is Hebbian,
meaning that the weight update depends on the activity of
only pre- and postsynaptic neurons, and hence biologically
plausible.

In order to extract multiple principal components from
streamed data, researchers attempted to construct networks
of multiple neurons, the activity of each representing a
different principal component. However, most attempts have
given up one of the two attractions of the single-neuron
Oja rule. Instead of deriving a local learning rule from a
principled objective function some researchers have simply
postulated it [7], [8], [9], [10], [11]. Others, by minimizing
the representation error, or its variants, derived single-layer
neural networks with biologically implausible features such
as nonlocal learning rules [12] or synapses that take part in
plasticity but not in neural dynamics [10].

Recently, we developed a novel theoretical framework,
named similarity matching, that preserves both attractions of
the single-neuron Oja rule in the multi-neuron case [13], [14],
[15], [16]. Similarity matching postulates that similar inputs
result in similar outputs and vice versa. Mathematically,
pairwise similarities are quantified by the inner products
of data vectors and matching is enforced by the classical
multidimensional scaling (CMDS) cost function [17]. We
formulated a family of optimization problems and solved
them in both offline and online settings. Importantly, the
derived online algorithms correspond to a family of biologi-
cally plausible neural networks with local, Hebbian and anti-
Hebbian, learning rules.

However, strictly speaking, the existing similarity match-
ing algorithms [13], [14], [15], [16], as well as many others
[8], [6], do not perform PCA. Rather, they extract the
principal subspace of the dataset, i.e. the space spanned
by the eigenvectors corresponding to the top eigenvalues
of the data covariance matrix, and project the data onto an
arbitrary basis spanning this subspace (not necessarily the top
eigenvectors per se). Yet, an algorithm to perform PCA is
desirable because unlike other principal subspace projections
its output is decorrelated.

Whitening, or equalization of variance across decorrelated
output channels, is desirable because in the presence of
Gaussian output noise and for limited output power, it
achieves maximum information transmission [18], [19], [20].
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In neuroscience, the center-surround structure of retinal gan-
glion cell receptive fields is thought to implement whitening
[21], [22].

In this paper, motivated by the optimal information trans-
mission, we derive algorithms and networks for PCA and
whitening in the similarity matching framework. The existing
similarity matching objective functions [13], [16] do not
necessarily perform PCA because they depend only on the
Grammian of the output and hence are invariant to orthogonal
rotations of the output. As PCA is unique among principal
subspace projections in that it produces a decorrelated output,
we break the symmetry of the objective functions by adding
a decorrelating term favoring PCA.

We formulate and solve three optimization problems,
each in online and offline settings. The solutions of the
first and the second problems perform PCA of the input
data. A common practice in PCA is to keep only a subset
of principal components, containing the useful signal, for
further processing. To this end, in the first problem, the
number of output principle components is set by the smaller
of the input and output numbers of channels. In the second
problem, the number of output principle components is
chosen adaptively, by hard-thresholding the eigenvalues of
the data covariance matrix. The optimal solution of the third
problem also chooses the number of output components
adaptively by hard-thresholding but, in addition, whitens the
output by equalizing the variance of orthogonal channels.

The paper is organized as follows. In Section II we formu-
late optimization problems in the offline setting and present
their solutions. In Section III we derive corresponding online
algorithms and demonstrate that they can be implemented
by biologically plausible neural circuits. The performance of
these online algorithms is evaluated numerically in Section
IV. In Section V we predict that underutilized neurons drop
out of the circuit. Section VI comments on decorrelating
interneuron activities.

II. PCA AND WHITENING IN THE OFFLINE SETTING

In this Section, we introduce and solve three novel opti-
mization problems in the offline setting:

Offline setting : Y ← arg min
Y

L (X,Y) , (1)

where the input, X = [x1, . . . ,xT ] is an n × T matrix
with T centered input data samples in Rn as its columns
and the output, Y = [y1, . . . ,yT ] is a k × T matrix with
corresponding outputs in Rk as its columns. In this Section,
we assume T ≥ n and T ≥ k for convenience, however our
results could be generalized easily.

A. Similarity matching cost function for PCA

To formulate similarity matching mathematically, we min-
imize the summed squared differences between all pairwise
similarities, the so-called CMDS cost function [17], [16]:

min
Y

∥∥X>X−Y>Y
∥∥2

F
. (2)

Optimal solutions of the CMDS cost function (2) are
projections of the input dataset X onto its principal subspace

[17], [13]. Suppose the eigen-decomposition of X>X =

VXΛXVX>, where ΛX = diag(λX1 , ..., λ
X
T ) with λX1 ≥

... ≥ λXT ≥ 0 are ordered eigenvalues of X>X. Then the
following is a solution of (2):

Y = UkΛY
k

1/2
VX

k

>
, (3)

where ΛY
k is a k×k diagonal matrix whose non-zero diago-

nals are {λX1 , ..., λXmin(k,n)}, VX
k consists of the columns

of VX corresponding to the top k eigenvalues, VX
k =[

vX
1 , . . . ,v

X
k

]
, and Uk is any k × k orthogonal matrix.

However, the solution of (2) is not unique: because the
objective function depends on the output only via its Gram-
mian, it is invariant to an orthogonal left-rotation of Y. This
degree of freedom corresponds to an arbitrary choice of an
orthogonal matrix Uk in (3).

To eliminate this degree of freedom we take advantage of
the fact that the only way to decorrelate the output, i.e. obtain
diagonal output covariance matrix, is to compute bona fide
principal components. Thus, we add to the objective the sum
squared of the off-diagonal elements of the output covariance
matrix, 1

T YY> = 1
T UkΛY

k U>k :

min
Y

[∥∥X>X−Y>Y
∥∥2

F
+ γ

∥∥off
(
YY>

)∥∥2

F

]
, (4)

where γ > 0 and the operator off() extracts off-diagonal
elements of a matrix by setting diagonal elements to 0.

Eq. (4) defines an objective function for PCA, where
data is projected onto top min(k, n) principal eigenvectors.
Indeed, for correlated solutions (3) γ

∥∥off
(
YY>

)∥∥2

F
is

positive, thus resulting in suboptimal values of the objective.
For uncorrelated solutions, γ

∥∥off
(
YY>

)∥∥2

F
vanishes and

therefore does not affect the value of the objective. Note that,
if k > n decorrelation implies that k − n output channels
are silent.

B. Objective function for adaptive PCA

One drawback of the PCA objective function (4) is that
the number of output dimensions must be chosen prior to the
presentation of the first data sample. In real-life situations,
and, especially, neuroscience context, the input signal-to-
noise ratio may not be known and the output dimensionality
must adapt automatically. Such adaptive dimensionality re-
duction solution may be obtained by solving the following
minimax problem [16]:

min
Y

max
Z

[∥∥X>X−Y>Y
∥∥2

F
−
∥∥Y>Y − Z>Z

∥∥2

F

+2αT Tr
(
Y>Y

)
− 2αT Tr

(
Z>Z

)]
, (5)

where we introduced an auxiliary variable Z =
[z1, . . . , zT ] ∈ RlxT .

The number of output dimensions, m = rank(Y), is deter-
mined by the trade off between the similarity matching and
the regularization terms. Whereas higher rank reduces the
matching error it adds to the regularizer, Tr

(
Y>Y

)
, because

the regularizer is a nuclear norm of the Grammian, Y>Y,
which is a convex relaxation of rank. Then, the number of
output dimensions, m, is the number of eigenvalues of the
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Fig. 1: Input-output functions of the three offline
solutions and neural network implementations of the
corresponding online algorithms. A-C. Input-output
functions of covariance eigenvalues. A. Thresholding
of top min(k, n) components. B. Adaptive hard-
thresholding. C. Whitening after thresholding. D-F.
Corresponding network architectures.

input data covariance matrix, C = 1
T XX>, greater than or

equal to α > 0. We assume that k ≥ m and l ≥ m.
Objective (5) is solved by projecting the input dataset

onto the m-dimensional principal subspace of input covari-
ance [16]. Specifically, suppose the eigen-decomposition of
X>X = VXΛXVX> where ΛX = diag(λX1 , ..., λ

X
T ) with

λX1 ≥ ... ≥ λXT ≥ 0 are ordered eigenvalues of X>X, as
before. Then, the optimal Y and Z are:

Y = Uk HTk(ΛX , αT )1/2 VX
k

>
,

Z = Ul STl(Λ
X , αT )1/2 VX

l

>
, (6)

where HTk(ΛX , αT ) =
diag

(
HT

(
λX1 , αT

)
, . . . ,HT

(
λXk , αT

))
, HT is the

hard-thresholding function, HT(a, b) = aΘ(a − b)
with Θ() being the step function: Θ(a − b) = 1 if
a ≥ b and Θ(a − b) = 0 if a < b, STl(Λ

X , αT ) =
diag

(
ST
(
λX1 , αT

)
, . . . ,ST

(
λXl , αT

))
, ST is the

soft-thresholding function, ST(a, b) = max(a − b, 0),
VX

p =
[
vX

1 , . . . ,v
X
p

]
and Up is any p × p orthogonal

matrix.
Similarly to the observation in the previous subsection, the

solution of (5) is not unique because the objective function
is invariant to orthogonal left-rotations of Y. To obtain PCA
as the unique optimal solution, as before, we add a term to
the objective function that penalizes off-diagonal elements
of the covariance matrix:

min
Y

max
Z

[∥∥X>X−Y>Y
∥∥2

F
−
∥∥Y>Y − Z>Z

∥∥2

F

+2αT Tr
(
Y>Y

)
− 2αT Tr

(
Z>Z

)
+ γ

∥∥off
(
YY>

)∥∥2

F

]
,

(7)

where γ > 0.
Eq. (4) defines an objective function for PCA, where

data is projected onto top m principal eigenvectors. Indeed,
for correlated solutions (6), γ

∥∥off
(
YY>

)∥∥2

F
is positive,

thus resulting in suboptimal values of the objective. For
uncorrelated solutions, γ

∥∥off
(
YY>

)∥∥2

F
vanishes and does

not affect the value of the objective. If the number of
eigenvalues of 1

T XX> greater than or equal to α is less

than the number of output channels, m < k, decorrelation
implies that some output channels will be silent.

C. Objective function for whitening

Next we consider an objective function that leads to equal-
ization of the ouptut covariance eigenvalues after threshold-
ing [16]:

min
Y

max
Z

Tr
(
−X>XY>Y + αTY>Y

+Y>YZ>Z− βTZ>Z
)
, (8)

where α > 0 controls the number of degrees of freedom
in the output, m, and β > 0 sets magnitude of output
eigenvalues. As before, we assume that k ≥ m and l ≥ m.

Objective (8) is optimized by projecting the input
dataset onto its principal subspace and equalizing the
non-zero eigenvalues [16]. Specifically, suppose the eigen-
decomposition of X>X = VXΛXVX>, where ΛX =
diag

(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT ≥ 0. Then, the

optimal Y and Z are:

Y = Uk

√
βT Θk(ΛX , αT ) VX

k

>
,

Z = Ul Σl Θl(Λ
X , αT ) VX

l

>
, (9)

where Σl = diag (σ1, . . . , σl) with σi arbitrary constants,
Θk(ΛX , αT ) = diag

(
Θ
(
λX1 − αT

)
, . . . ,Θ

(
λXk − αT

))
,

Vp =
[
vX

1 , . . . ,v
X
p

]
and Up is any p×p orthogonal matrix.

There are other optimal Z, see [16] for full expressions.
As before, the solution of (8) is not unique. Even though

eigenvalues are equalized, due to the freedom in choosing
Uk, the variances of output channels are not equal, generally.
An exception is the case where k = l = m. Then Y is
full-rank and 1

T YY> = βIk, implying that the output is
whitened. To obtain whitening as the unique optimal solution
for general k ≥ m and l ≥ m, following the arguments of the
previous subsections, we add a term to the objective function
that penalizes off-diagonal elements of the covariance matrix:

min
Y

max
Z

[
Tr
(
−X>XY>Y + αTY>Y + Y>YZ>Z

−βTZ>Z
)

+
γ

2

∥∥off
(
YY>

)∥∥2

F

]
, (10)



where γ > 0.
Eq. (10) defines an objective function for whitening,

which can be solved by projecting the input dataset onto
top m principal eigenvectors with variance in each chan-
nel normalized to β. Indeed, for correlated solutions (9),
(γ/2)

∥∥off
(
YY>

)∥∥2

F
is positive, thus resulting in subop-

timal values of the objective. For uncorrelated solutions,
(γ/2)

∥∥off
(
YY>

)∥∥2

F
vanishes and does not affect the value

of the objective. Note that, if the number of eigenvalues of
1
T XX> greater than or equal to α, is less than the number
of output channels, m < k, decorrelation implies that some
output channels will be silent.

III. ONLINE LEARNING RULES FOR DECORRELATED
OUTPUT

Unlike the offline setting where the whole input dataset
is available before an output is computed, neurons compute
output, yT , for each data sample presentation, xT , before
the next data sample is presented and past outputs cannot
be altered. Therefore, we formulate optimization problems
in the online setting where optimization must be performed
at every time step, T , on the objective which is a function
of inputs and outputs up to time, T :

Online setting : yT ← arg min
yT

L (X,Y) . (11)

In this Section, we solve the three optimization problems
in the online setting and map the steps of the online al-
gorithms onto the dynamics of neuronal activity and local
learning rules for synaptic weights. Our derivations follow
the methods described in detail [13], [16].

A. Online similarity matching for PCA
We start with an online version of the objective function

(4):

yT ← arg min
yT

[∥∥X>X−Y>Y
∥∥2

F
+ γ

∥∥off
(
YY>

)∥∥2

F

]
.

(12)

By expanding the squared Frobenius norms and keeping only
the terms that depend yT we get:

yT ← arg min
yT

[
−4x>T

(
T−1∑
t=1

xty
>
t

)
yT

+2y>T

(
T−1∑
t=1

yty
>
t +γ off

(
T−1∑
t=1

yty
>
t

))
yT

−2‖xT ‖2‖yT ‖2 + ‖yT ‖4 + γy>T off
(
yTy>T

)
yT

]
.

(13)

In the large-T limit, the first two terms grow linearly with T
and dominate over the last three terms which can be dropped.
The remaining objective is a positive definite quadratic
form of yT and the optimization problem is convex. At its
minimum, the following holds:(

T−1∑
t=1

yty
>
t + γ off

(
T−1∑
t=1

yty
>
t

))
yT =

(
T−1∑
t=1

ytx
>
t

)
xT .

(14)

We could solve for yT analytically via matrix inversion,
however, to obtain a neurally plausible algorithm, we solve
these equations by a weighted Jacobi iteration1:

yT ← (1− η) yT + η
(
WY X

T xT −WY Y
T yT

)
. (15)

where η is the weight parameter, and WY X
T and WY Y

T are
normalized input-output and output-output covariances,

WY X
T,ij =

T−1∑
t=1

yt,ixt,j

/T−1∑
t=1

y2
t,i,

WY Y
T,i,j 6=i = (1 + γ)

T−1∑
t=1

yt,iyt,j

/T−1∑
t=1

y2
t,i, WY Y

T,ii = 0.

(16)

Remarkably, iteration (15) can be implemented by neu-
ronal dynamics in a single-layer network, Figure 1D. In
this interpretation, WY X

T and WY Y
T represent the weights

of feedforward (xt → yt) and lateral (yt → yt) synaptic
connections, respectively. Interestingly, although the opti-
mization problems (2) and (12) are formulated only in terms
of input and output activities, we recovered expressions nat-
urally identified as feedforward and lateral synaptic weights.

At each data sample presentation, T , after the output yT

converges to a steady state, synaptic weights are updated
according to (16). By rewriting (16) in a recursive form, we
can eliminate the need to keep all past input and output in
memory and obtain a fully online algorithm. To this end,
let us define a scalar variable DY

T,i representing cumulative
activity of a neuron i up to time T − 1,

DY
T,i =

T−1∑
t=1

y2
t,i. (17)

Then, synaptic weight updates are:

DY
T+1,i ← DY

T,i + y2
T,i

WY X
T+1,ij ←WY X

T,ij +
(
yT,ixT,j − y2

T,iW
Y X
T,ij

)
/DY

T+1,i

WY Y
T+1,i,j 6=i ←WY Y

T,ij

+
(
(1 + γ)yT,iyT,j − y2

T,iW
Y Y
T,ij

)
/DY

T+1,i.
(18)

To summarize, equations (15) and (18) define a neural
network algorithm that solves the optimization problem (12)
for streaming data by alternating between two phases: neural
activity dynamics and synaptic updates. After a data sample
is presented at time T , the algorithm goes into the neuronal
activity phase (15), where neuron activities are updated until
convergence to a fixed point. Then, in the second phase of
the algorithm, synaptic weights are updated, according to
a local Hebbian rule (18) for feedforward connections, and
according to a local anti-Hebbian rule (due to the (−) sign
in equation (15)) for lateral connections. Interestingly, these
updates have the same form as the single-neuron Oja’s rule
[4], except that the learning rate is not a free parameter but
is determined by the cumulative neuronal activity 1/DY

T+1,i.

1See [13] for other possible iterative solutions and their convergence
properties



A similar network was derived in [13] from the objective
(12) without the decorrelating term, i.e. γ = 0. The addition
of the decorrelating term did not spoil the locality of learning
rules, nor did it change the network architecture. The only
difference is the strengthening of lateral synaptic weights
by a factor (1 + γ) (16). Lateral connections implement
competition between the output of neurons: without them,
k output neurons would independently recover the first
principal component [4]. Interestingly, the strengthening of
lateral synapses is sufficient to decorrelate neuronal output
and project the input to its principal eigenvectors, as opposed
to an arbitrary basis in the principal subspace, as was the case
in [13].

B. Online adaptive PCA

Next, we consider an online version of (5):

{yT , zT } ← arg min
yT

arg max
zT

[∥∥X>X−Y>Y
∥∥2

F

−
∥∥Y>Y − Z>Z− αT IT

∥∥2

F
+ γ

∥∥off
(
YY>

)∥∥2

F

]
. (19)

By expanding the norms and keeping only those terms that
depend on yT or zT and taking the large-T limit, we get:

{yT , zT } ← arg min
yT

arg max
zT

[
−4x>T

(
T−1∑
t=1

xty
>
t

)
yT

+2y>T

(
γ off

(
T−1∑
t=1

yty
>
t

)
+ αT Ik

)
yT

+4y>T

(
T−1∑
t=1

ytz
>
t

)
zT − 2z>T

(
T−1∑
t=1

ztz
>
t + αT Il

)
zT

]
.

(20)

This objective is a convex quadratic from in yT and concave
quadratic form in zT . The solution of this minimax problem
is a saddle-point of the objective function, which is found by
setting the gradient of the objective with respect to {yT , zT }
to zero [23]:(

γ off

(
T−1∑
t=1

yty
>
t

)
+ αT Ik

)
yT =

(
T−1∑
t=1

ytx
>
t

)
xT

−

(
T−1∑
t=1

ytz
>
t

)
zT ,(

T−1∑
t=1

ztz
>
t + αT Il

)
zT =

(
T−1∑
t=1

zty
>
t

)
yT .

(21)

We could solve these linear equations analytically, but to
obtain a neurally plausible algorithm, we solve them using
a weighted Jacobi iteration:

yT ← (1− η) yT + η
(
WY X

T xT −WY Z
T zT −WY Y

T yT

)
,

zT ← (1− η) zT + η
(
WZY

T yT −WZZ
T zT

)
, (22)

where η is the weight parameter and

WY X
T,ij =

1

αT

T−1∑
t=1

yt,ixt,j , WY Z
T,ij =

1

αT

T−1∑
t=1

yt,izt,j

WY Y
T,i,j 6=i =

γ

αT

T−1∑
t=1

yt,iyt,j , WY Y
T,ii = 0,

WZY
T,ij =

T−1∑
t=1

zt,iyt,j

/(
αT +

T−1∑
t=1

z2
t,i

)
,

WZZ
T,i,j 6=i =

T−1∑
t=1

zt,izt,j

/(
αT +

T−1∑
t=1

z2
t,i

)
, WZZ

T,ii = 0.

(23)

Iteration (22) can be implemented by neuronal dynamics
in a single-layer two-population network, Figure 1E. In this
interpretation, yT represents the activities of output neurons,
which we identify with principal neurons in neuroscience ter-
minology. Similarly, zT represents the activities of neurons
which connect only within the layer, which we identify with
interneurons in neuroscience terminology. Again, although
the optimization problems (5) and (19) did not contain
synaptic weights explicitly, we recovered expressions WY X

T ,
WY Y

T , WZY
T , WY Z

T and WZZ
T that are naturally identified

as the weights of synaptic connections in the network.
Finally, by rewriting (23) in a recursive form, we obtain

a fully online algorithm:

DY
T+1,i ← DY

T,i + α, DZ
T+1,i ← DZ

T,i + α+ z2
T,i

WY X
T+1,ij ←WY X

T,ij +
(
yT,ixT,j − αWY X

T,ij

)
/DY

T+1,i

WY Z
T+1,ij ←WY Z

T,ij +
(
yT,izT,j − αWY Z

T,ij

)
/DY

T+1,i

WY Y
T+1,ij 6=i ←WY Y

T,ij +
(
γyT,iyT,j − αWY Y

T,ij

)
/DY

T+1,i

WZY
T+1,ij ←WZY

T,ij

+
(
zT,iyT,j −

(
α+ z2

T,i

)
WZY

T,ij

)
/DZ

T+1,i

WZZ
T+1,i,j 6=i ←WZZ

T,ij

+
(
zT,izT,j −

(
α+ z2

T,i

)
WZZ

T,ij

)
/DZ

T+1,i.
(24)

To summarize, equations (22) and (24) define a neural
network algorithm that solves the optimization problem (19)
for streaming data by alternating between two phases: neural
activity dynamics and synaptic updates. After a data sample
is presented at time T , the algorithm goes into the neuronal
activity phase (22), where neuron activities are updated until
convergence to a fixed point. Then, in the second phase of the
algorithm, synaptic weights are updated, according to local
Hebbian rules (24) for WY X

T and WZY
T connections, and

according to local anti-Hebbian rules for WY Y
T , WY Z

T and
WZZ

T connections.
A similar network was derived in [16] from the objective

(19) without the decorrelating term, i.e. γ = 0. The addition
of the decorrelating term does not spoil the locality of
learning rules, however, it changes the network architecture
by adding anti-Hebbian lateral connections between principal
neurons. These new lateral synapses decorrelate neuronal
output, whereas in [16] the output was in general correlated.



In our discussion of the solutions to the offline objective
(7), we observed that when the number of output channels is
larger than the number of output eigenvalues, decorrelation
forces extra channels to be silent. In the online case, synaptic
weights to silent neurons will eventually decay to zero, as
can be seen from inspecting (24).

C. Online whitening

Finally, we consider the following minimax problem in
the online setting:

{yT , zT } ← arg min
yT

arg max
zT

Tr
(
−X>XY>Y + αTY>Y

+Y>YZ>Z− βTZ>Z
)

+
γ

2

∥∥off
(
YY>

)∥∥2

F
. (25)

By keeping only those terms that depend on yT or zT and
taking the large-T limit, we get:

{yT , zT } ← arg min
yT

arg max
zT

[
−2x>T

(
T−1∑
t=1

xty
>
t

)
yT

+y>T

(
γ off

(
T−1∑
t=1

yty
>
t

)
+ αT Ik

)
yT

+ 2y>T

(
T−1∑
t=1

ytz
>
t

)
zT − βTz>T zT

]
. (26)

As before, this objective is convex in yT and concave in zT .
The solution of this minimax problem is a saddle-point of
the objective function:(
γ off

(
T−1∑
t=1

yty
>
t

)
+ αT Ik

)
yT =

(
T−1∑
t=1

ytx
>
t

)
xT

−

(
T−1∑
t=1

ytz
>
t

)
zT ,

βTzT =

(
T−1∑
t=1

zty
>
t

)
yT .

(27)

To obtain a neurally plausible algorithm, we solve these
equations by a weighted Jacobi iteration:

yT ← (1− η) yT + η
(
WY X

T xT −WY Z
T zT −WY Y

T yT

)
,

zT ← (1− η) zT + ηWZY
T yT , (28)

where,

WY X
T,ij =

1

αT

T−1∑
t=1

yt,ixt,j , WY Z
T,ij =

1

αT

T−1∑
t=1

yt,izt,j ,

WY Y
T,i,j 6=i =

γ

αT

T−1∑
t=1

yt,iyt,j , WY Y
T,ii = 0,

WZY
T,ij =

1

βT

T−1∑
t=1

zt,iyt,j . (29)

Again, iteration (28) can be implemented by neuronal
dynamics in a single-layer two-population network, Figure
1F, where yT represents the activity of principal neurons

and zT represents the activities of interneurons. Once again,
although the optimization problems (8) and (25) did not
contain synaptic weights explicitly, we recovered expressions
WY X

T , WY Y
T , WZY

T and WY Z
T which are naturally identi-

fied as the weights of synaptic connections in the network.
Note that, unlike in (22), interneurons do not synapse with
each other.

Finally, by rewriting (29) in a recursive form, we obtain
a fully online algorithm:

DY
T+1,i ← DY

T,i + α, DZ
T+1,i ← DZ

T,i + β

WY X
T+1,ij ←WY X

T,ij +
(
yT,ixT,j − αWY X

T,ij

)
/DY

T+1,i

WY Z
T+1,ij ←WY Z

T,ij +
(
yT,izT,j − αWY Z

T,ij

)
/DY

T+1,i

WY Y
T+1,i,j 6=i ←WY Y

T,ij +
(
γyT,iyT,j − αWY Y

T,ij

)
/DY

T+1,i

WZY
T+1,ij ←WZY

T,ij +
(
zT,iyT,j − βWZY

T,ij

)
/DZ

T+1,i.
(30)

To summarize, equations (28) and (30) define a neural
network algorithm that solves the optimization problem (25)
for streaming data by alternating between two phases: neural
activity dynamics and synaptic updates. After a data sample
is presented at time T , the algorithm goes into the neuronal
activity phase (28), where neuron activities are updated until
convergence to a fixed point. Then, in the second phase of the
algorithm, synaptic weights are updated, according to local
Hebbian rules (30) for WY X

T and WZY
T connections, and

according to local anti-Hebbian rules for WY Y
T and WY Z

T

connections.
A similar network was derived in [16] from the cost (25)

without the decorrelating term, i.e. γ = 0. The addition
of the decorrelating term does not spoil the locality of
learning rules, however, it changes the network architecture
by adding anti-Hebbian lateral connections between principal
neurons. These new lateral synapses decorrelate neuronal
output, whereas in [16] output was decorrelated only if the
output was full rank, i.e. dimensionality of principal neural
activity was the same as the number of principal neurons.

In our discussion of the solution to the offline whitening
objective, (10), we observed that when the number of output
channels is larger than the number of output eigenvalues,
decorrelation forces extra channels to be silent. In the online
case, synaptic weights to silent neurons will eventually decay
to zero, as can be seen by inspecting (30).

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed algorithms on a synthetic dataset, which is generated
by an n = 64 dimensional colored Gaussian distribution
with a specified covariance matrix. The top 4 eigenvalues are
λ1..4 = {7, 6, 5, 4} and the remaining λ5..60 are sampled uni-
formly from the interval [0, 0.5]. Correlations are introduced
in the covariance matrix by generating random orthonormal
eigenvectors. For all three algorithms, we choose α = 1,
γ = {0, 0.5, 1}, and, for the whitening algorithm, we choose
β = 2. In the T → ∞ limit, the optimal non-zero offline
eigenvalues are {7, 6, 5, 4} for PCA and {2, 2, 2, 2} for
whitening. In all simulated networks, the number of principal



neurons, k = 10, and, for adaptive PCA and whitening
algorithms, the number of interneurons, l = 10. Synaptic
weight matrices were initialized randomly, and synaptic
update learning rates, 1/DY

0,i and 1/DZ
0,i were initialized to

0.01. Network dynamics is run with a weight η = 0.1 until
the relative change in yT and zT in one cycle is < 10−5.

We characterize the performance of our algorithms using
three different metrics. The first metric, eigenvalue error,
measures the deviation of the eignevalues of the output
covariance 1

T YY> at time T from their optimal offline
values, 10 log10

∑T
i=1(λ̄YT,i− λ̄Yoffline,i)

2 dB. Here λ̄YT,i is the
ith eigenvalue of 1

T YY> and λ̄Yoffline,i is its optimal value.
For all three algorithms, the eigenvalue error decreases with
time, Figure 2. Note, however, that adding the decorrelating
term, i.e. increasing γ leads to a slower decrease of the
eigenvalue error.

The second metric, subspace error, quantifies the
deviation of the learned subspace from the true principal
subspace. To form such metric, at each T , we calculate
the linear transformation that maps inputs, xT , to outputs,
yT = FTxT at the fixed points of the neural dynamics
stages of the three algorithms(15), (22), (28). For PCA
FT =

(
Ik + WY Y

T

)−1
WY X

T , for adaptive PCA FT =(
Ik + WY Y

T + WY Z
T

(
Il + WZZ

T

)−1
WZY

T

)−1

WY X
T ,

and for whitening FT =(
Ik + WY Y

T + WY Z
T WZY

T

)−1
WY X

T . Then, at each T , the

subspace error is 10 log10

∥∥∥F4,TF>4,T −VX
4,TVX

4,T
>
∥∥∥2

F
dB,

where F4,T is an n × 4 matrix whose columns are the top
4 right singular vectors of FT , F4,TF>4,T is the projection
matrix to the subspace spanned by these singular vectors,
VX

4,T is an n × 4 matrix whose columns are the principal
eigenvectors of the input covariance matrix C, VX

4,TVX
4,T
>

is the projection matrix to the principal subspace. Figure
2 shows that subspace error decreases quickly with time
for all algorithms, however, increasing γ leads to a loss of
performance for the adaptive PCA and whitening algorithms.

The third metric, decorrelation error, rep-
resents correlations among output channels:
10 log10

∥∥ 1
T off

(
YTY>T

)∥∥2

F
dB, Figure 2. For γ > 0

output channels decorrelate with the rate increasing with γ.
For γ = 0, the observed output correlation approaches

that for a random projection onto the principal subspace
(horizontal dashed black lines in Figure 2). The decorrelation
errors for random projections are averaged over a set of
100000 randomly generated k×k covariance matrices. Each
instance of such covariance matrix is constructed from the
eigenvalue decomposition, UΛU>, where diagonals of Λ
contain optimal offline eigenvalues in T → ∞ limit, and
k × k orthogonal matrices U are randomly sampled under
the Haar measure.

V. DROPOUT OF UNDERUTILIZED NEURONS

A decorrelation of principal neuron activities in adaptive
PCA and whitening circuits makes an interesting prediction.
If the number of principal neurons is greater than the typical
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Fig. 2: Performance of the three similarity matching neural networks - PCA
(A), adaptive PCA (B), and whitening (C) - as a function of the number of
synthetic data sample presentations (see text). Top: eigenvalue error; middle:
subspace error; bottom: decorrelation error (for definitions see text). Means
(solid lines) and STDs over 20 runs (shades) of the metrics are shown for
three different decorrelation parameters: γ = 0, or no decorrelation (red),
γ = 0.5 (green), γ = 1 (blue). Horizontal dashed black lines (bottom row)
show the correlation error for random covariance matrices (see text).

number of output eigenvalues then the extra neurons are
typically silent. Because the weight of synapses onto the
extra neurons is proportional to their activities (23), (29)
these synapses will be weak or non-existent. This suggests
that the extra neurons disconnect or drop out of the circuit
and, in a biological system, may be disposed off. An example
of this phenomenon for the adaptive PCA network is shown
in Figure 3. Note that our use of the term “dropout” is
different from random and intermittent silencing of neurons
to regularize learning in deep artificial neural networks [24].

A reverse process may also take place. If the number
of principal neurons is less than the typical number of
eigenvalues exceeding the threshold, in a biological system,
extra neurons may be added to the circuit via neurogenesis.

How does the PCA network behave if the input covariance
matrix has few non-zero eigenvalues, m < min(k, n)? As
above, the k−m principal are silent in the steady state after
each data presentation. However, if the weights of synapses
onto these principal neurons are initialized randomly, they
do not decay to zero according to (18). Therefore, these
silent neurons are active during the initial iterations of the
dynamics stage (15). Furthermore, the learning rates of the
silent neurons stay high and they can become active if the
input covariance acquires a new non-zero eigenvalue.

VI. DECORRELATION OF INTERNEURONS

Optimal downstream information transmission by princi-
pal neurons in adaptive PCA and whitening circuits does not
require decorrelation of interneuron activities. Yet, interneu-
ron decorrelation is easily achieved by adding a decorrelating
regularizer −ρ

∥∥off
(
ZZ>

)∥∥2

F
, where ρ > 0, to adaptive

PCA (5) and whitening (8) objectives. From the modified
objectives one can derive corresponding online algorithms



1 100

2

4

6

8

10
2

4

6

8

10
2 3 4 5 6 7 8 9 1 102 3 4 5 6 7 8 9

1

3

5

7

9

1 100

2

4

6

8

10

2 3 4 5 6 7 8 9

2

4

6

8

1 102 3 4 5 6 7 8 9

1

3

5

7

9
10

-7

0

7A

B

γ = 0

γ = 1

Neuron #

Neuron #

N
eu

ro
n 

#
N

eu
ro

n 
#

Neuron #

Neuron #

To
ta

l W
ei

gh
t M

ag
ni

tu
de

To
ta

l W
ei

gh
t M

ag
ni

tu
de

Fig. 3: Dropout of underutilized neurons in the adaptive PCA network.
Simulations of the adaptive PCA network without the decorrelation term,
γ = 0, demonstrating that all neurons are active and correlated (A) and with
the decorrelation term, γ = 1, demonstrating the silencing of extra neurons
whose synaptic weights decay to zero (B). Left: Summed squared weights
of synapses onto principal neurons at T = 10000, defined for the ith

neuron as
√∑n

j=1(W
Y X
ij )2 +

∑l
j=1(W

Y Z
ij )2 +

∑k
j=1,j 6=i(W

Y Y
ij )2.

Right: Output covariance matrices for principal neurons, 1
T
YTY>

T , at
T = 10000. Input data statistics and parameters same as in Section IV.

following the derivations presented in Section III. As before,
the steps of these algorithms can be mapped onto the
activity of single-layer two-population neural networks with
neurally plausible learning rules. In comparison with the
corresponding networks presented in Section III, the mod-
ified adaptive PCA network has stronger lateral connections
between interneurons and the modified whitening network
adds lateral connections between interneurons.

We note that, previously, interneurons have been added
to single-layer circuits for dimensionality reduction [25] and
sparse dictionary learning [26], [27]. In addition, for sparse
dictionary learning, two-layer circuits with local learning
rules have been proposed [28], [29], [30]. However, none
of these models included interneuron activities as dynamical
variables in objective functions as was done here and in [16].

VII. CONCLUSION

We developed an optimization theory for PCA and whiten-
ing neural networks by adding a decorrelating term to the
existing objective functions for projecting data onto princi-
pal subspace [13], [16] and deriving, from such objective
functions, online algorithms that map onto neural networks
with local learning rules. Our theory predicts the dropout
of underutilized neurons, due to the decay of their synaptic
weights.
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