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Abstract

Potential strategies for temporal neural processing in the brain and their implications for the design
of artificial neural networks are considered. Current connectionist thinking holds that neurons send
signals to each other by changes in their average rate of discharge. This implies that there is one
output signal per neuron at any given time (scalar coding), and that all neuronal specificity is
achieved solely by patterns of synaptic connections. However, information can be carried by
temporal codes, in temporal patterns of neural discharges and by relative times of arrival of
individual spikes. Temporal coding permits multiplexing of information in the time domain, which
potentially increases the flexibility of neural networks. A broadcast model of information
transmission is contrasted with the current notion of highly specific connectivity. Evidence for
temporal coding in somatoception, audition, electroception, gustation, olfaction and vision is
reviewed, and possible neural architectures for temporal information processing are discussed.



1. The role of timing in the brain

The human brain is by far the most capable, the most versatile, and the most complex information-
processing system known to science. For those concerned with problems of artificial intelligence
there has long been the dream that once its functional principles are well understood, the design
and construction of adaptive devices more powerful than any yet seen could follow in a
straightforward manner. Despite great advances, the neurosciences are still far from understanding
the nature of the "neural code" underlying the detailed workings of the brain. i.e. exactly which
information-processing operations are involved.

If we choose to view the brain in informational terms, as an adaptive signalling system embedded
within an external environment, then the issue of which aspects of neural activity constitute the
"signals" in the system is absolutely critical to understanding its functioning. It is a question which
must be answered before all others, because all functional assumptions, interpretations, and
models depend upon the appropriate choice of what processes neurons use to convey information.
The role of the time patterns of neural discharges in the transmission and processing of information
in the nervous system has been debated since the pulsatile nature of nervous transmission was
recognized less than a century ago. Because external stimuli can be physically well-characterized
and controlled, the encoding of sensory information has always played a pivotal role in more
general conceptions of neural coding.

2. Coding by average discharge rate

With the advent of single cell recording techniques in neurophysiology, it was generally assumed
that neural information is encoded solely in the average neural discharge rates of neurons (Adrian
1928). This notion of a average discharge rate code, sometimes called the Frequency Coding
principle1, has persisted and forms the basis for virtually all neural net design (Feldman 1990) and
almost all neuroscientific investigations concerned with information processing (Barlow 1972).

While there is much accumulated experimental evidence to support such a principle in many
systems, it does not necessarily follow that only average rate codes are used in the nervous coding.
From the advent of modern electrophysiology, there were always other conceptions of how sense
information could be transmitted (Troland 1921; Troland 1929; Wever & Bray 1937; Boring 1942;
Wever 1949). Many other types of codes produce signals which co-vary with average rates, and
these other coding schemes may actually contain much higher quality information than average
discharge rates. In the auditory nerve, for example, stimulus periodicities below a few kHz are
much more precisely represented by interspike interval statistics than by discharge rates (Goldstein
& Srulovicz 1977), but because both interval patterns and discharge rate patterns are observed
together, it is difficult to determine directly which kinds of codes are functionally operant.
However, since rate-coding has become the default assumption of practicing neuroscientists, the
burden of proof generally falls on the alternatives.

The principle of rate coding has a number of wide-ranging ramifications in the way that neural
networks, both wet and dry are conceptualized. A mean rate code entails some time window over
which spikes are counted, and depending upon the system, this window is usually thought to be
on the order of tens to hundreds of milliseconds or more. Long integration windows can present
problems in sensory systems where coherent, detailed percepts can be generated with short

1"Frequency" has two meanings, one associated with a rate of events, the other
associated with a particular periodicity of events. Frequency Coding implies the
former meaning.



stimulus durations (e.g. tachistoscopically presented images, tone bursts). The meaningful use of
an average discharge rate is also stretched when only a handful of spikes are discharged within an
integration window, as often occurs in cortical neurons.

Rate coding goes hand in hand with the doctrine of "specific nerve energies," as it was laid out by
Müller and Helmholtz (see discussion in (Boring 1933; Boring 1942)). The principle asserts that
specific sensory modalities have specific types of sense receptors. Consequently it is by virtue of
connection to a given type of receptor that a given neuron is interpreted to be sending a signal
related to a particular quality (a visual signal as opposed to a smell). Helmholtz through his study
of the cochlea elevated this principle to also include quality differences within a sense modality.
Thus, in Helmholtz's view, because particular auditory nerve fibers are connected to receptors at
specific places on the cochlear partition, and hence have different frequency sensitivities, they
signal different pure tone pitches by virtue of their connectivity. Coding exclusively by average
discharge rate necessitates this kind of "labelled line" or "place" coding because there is no other
means internal to the spike train itself for conveying what kind of signal it is (e.g. a taste vs. a
sound; the semantics of the message). While the doctrine of specific nerve energies does not
mandate that average rate be the signal encoded in the spike train (e.g. see the discussion of
Troland's resonance-frequency theory of hearing (Boring 1942)), it has generally been taken on
faith that sensory coding could be accomplished solely by rate-place codes. Unless temporal
patterns are immediately obvious and impossible to ignore, looking elsewhere into coding
alternatives has generally been regarded by neuroscientists as wasted effort.

In tandem with exclusive use of rate codes, it has often been assumed that there is no usable
temporal structure in spike trains, i.e. spike trains can be functionally described as a Poisson
process with one independent parameter, the mean rate of arrivals. As a result, in many higher-
level models of neuronal networks, the temporal dynamics of spike generation are ignored in favor
of mean rates or discharge probabilities. One far reaching consequence of these high level
functional descriptions is that the neural output signal in any given time period is conceived as a
scalar quantity. This effectively rules out the multiplexing of signals in the time domain, which
would require a finer grained representation of time and a different (e.g. Fourier) interpretation of
the signal. Since only one output signal can be sent from each neural element, multiple input
signals converging on a given element must be converted into one output signal. An analogy could
be made to a telegraph network which recieves messages from a hundred stations, but can only
transmit one message to all of its hundred connecting stations. Each additional signal must compete
with all others at each node. In contrast, a station which has several frequency bands available can
process meaningful information in one or two bands and relay the other messages unchanged.

Even the assumption that all postsynaptic neurons receive the same message can be called into
question, since conduction blocks in different branches of axon trees can filter the spike trains that
arrive at the respective synapses (Bittner 1968; Raymond & Lettvin 1978; Waxman 1978;
Raymond 1979; Wasserman 1992). Instead of one informationally-passive output line fanning out
to send the same signal to all postsynaptic elements, a branching structure is created which
sequentially filters the signals. Thus the shift from scalars to multidimensional signalling and the
inclusion of axonal operations can drastically the functional topology of the network, and with it
the flexibility of infomation processing.

Largely because of the ordering in cortical maps of retinotopic positions, cochleotopic positions,
and somatotopic positions, it has long been assumed that the cortex is a spatial pattern processor.
This view of cortical structures was crystallized in a set of far-reaching and of provocative papers
by David Marr (Marr 1970; McNaughton & Nadel 1990; Marr 1991). In these papers Marr
proposed general information processing mechanisms for the major cortical structures in the brain:
the cerebral cortex, the hippocampus ("archicortex") and the cerebellar cortex.



While it seems abundantly clear that spatially ordered maps are functionally very important, there is
no inherent reason why the cortex must be only  a spatial processor, why it cannot also be
structured so as to effect time-space transformations (Pitts & McCulloch 1947). Alternative time-
place architectures, such as those first articulated by Licklider (Licklider 1951) and Braitenberg
(Braitenberg 1961; Braitenberg 1967) take advantage of spatial orderings to perform computations
in the time domain. After a long period of relative neglect, the recent discoveries of neuronal
synchronies in the visual cortex have brought various time-place models back into more general
consideration (e.g. (Reitboeck et al  1988; Pabst et al  1989; Baldi & Meir 1990; Singer 1990)), but
these models are still more the exception than the rule.

From the belief that the cortex is exclusively a spatial processor it follows that all information
which is not place coded in sensory peripheries (e.g. time patterns in somatosensory and auditory
systems) must eventually converted into the common language of the cortex, spatial excitation
patterns. Thus whatever time patterns might exist in sensory peripheries, so this line of thinking
runs, there must be a temporal feature detectors which will realize time-to-place transformations
somewhere in the pathway. This transformation allows temporal features to be processed along
with other place-coded forms of information by a common cortical architecture. An alternative,
however, is to use a cortical spatio-temporal processing architecture capable of handling both types
of information, taking advantage of temporal order in its spatially organized input channels when it
is available. In this way all information might not need to be transformed into spatial excitation
patterns and a mixture of spatial and temporal coding could then be utilized at all levels.

In summary, because of the twin postulates of specific connectivity and coding by discharge rate ,
almost all connectionist networks assume that time can be completely ignored, i.e. that all
processing operates on spatial rather than spatio-temporal patterns of excitation (Barlow 1972;
Arbib 1989; Feldman 1990; Churchland 1992). These two assumptions together with variable
synaptic weighting form the basis of virtually all neural network models now in currency (e.g.
(Rosenblatt 1958; Selfridge 1958; Kabrisky 1966; Grossberg 1980; Hopfield 1982; Edelman
1987; Marr 1991) to list a few). The only exceptions have been adaptive time-delay networks
((MacKay 1962; Tank & Hopfield 1987; Mozer 1993)), whose temporal processing capabilities are
only now  beginning to be appreciated and developed more fully.

Although spatially-based neural nets have proven useful in an enormous array of applications, it
does not immediately follow that the brain must code by average discharge rate scalars and process
information by discharge rate integration. Since neural nets are finite state automata, given enough
elements and processing steps, they can replicate any observed natural regularities or behavioral
patterns. While this is extremely useful from a modelling perspective, the protean nature of the
simulation also present pitfalls to the unwary. When we see that a complex and mysterious natural
function can be realized with a computer program or neural net,. lacking viable alternative
explanations, it is easy to be seduced into believing that this is the way that nature does it. Thus
observations must always be used to test the validity of models, not the other way around.

Related to the difficulties of average rate coding mentioned above, there are some inconsistencies
between the view of the cortex as a spatial pattern processor and the observed behavior of its
elements. Some researchers have noted that the discharge statistics for cortical pyramidal cells are
more consistent with coincidence detection than rate integration as the operational primitive for
cortical information processing (Abeles 1982a; Abeles 1982b; Windhorst 1988; Abeles 1990;
Softky & Koch 1992)). In this light, it is conceivable that new kinds of neural net architectures
based on temporal coincidence operations will be needed before we finally have artificial networks
that function at all like those of our brains.



A. Average discharge  rate code
integration windows

C. Multiplexed interspike  interval code (2 intervals)

B. Simple interspike interval code

E. Simple time-of-arrival (latency) code

I. Inter-burst interval code

H. Burst length code

G. Synchrony code (joint, multi- neuron time-of-arrival code)

5 5 5 5 3 9

reference times

Figure 1. Some possible neural pulse codes.

D. Higher-order pattern code

signal state A → behavior A signal state B→ behavior B

low discharge rate

F. Time-of-arrival pattern code

L1 L2 L3 L4 L5 L6L1 L2 L3

L1



3. Possible alternatives to average rate codes

Other kinds of neural coding schemes besides those based on average discharge rates are possible,
and diverse examples of neural timing patterns have been found in nautre (Perkell & Bullock
1968). In general any property of a spike train which covaries with some property of a stimulus
can be used to transmit information about that stimulus. While a given spike train over some time
interval has but one average discharge rate, there are a very large number of temporal patterns that
are possible with the same number of spikes. Some of these codes are potentially more efficient at
conveying information than average discharge rates (MacKay & McCulloch 1952). Still more
codes are possible if the joint discharge patterns of multiple neurons are considered.

The many different coding schemes in the time domain range from simple interspike interval codes
to more complex temporal pattern codes, latency and history-dependent codes. Examples of many
codes are shown in Figure 1. The spike trains on the left contain patterns that would be recognized
as encoded "signals" while those on the right for the most part are examples of patterns that would
either be interpreted as different signals or as the absence of signals. A synchrony code between
two neurons is shown as a simple example of a population code, a coding scheme which requires
the joint activity of multiple neurons to transmit information. In the late 1960's and early 1970's
there were a number of significant efforts to systematically describe a wide array of possible neural
codes (Bullock 1967; Morrell 1967; Mountcastle 1967; Perkell & Bullock 1968; Uttal 1973). A
large catalog of hypothetical and observed coding schemes can be found in the appendix of Perkel
& Bullock, 1968.

3.1 Signs and codes

It is useful to make the distinction between signs and codes (Uttal 1973), which is really the
distinction between an observed regularity of nature and an observed regularity which is involved
in some identifiable functional role. Signs are the correlates of stimulus qualities. Codes are the
functional organizations that actually utilize a particular set of signs to effect a perceptual
discrimination. Thus all codes employ signs, but not all signs are necessarily involved in codes
(functionally they would be "epiphenomena"). The problems of identifying when a natually-
occurring physiological process realizes a "coding relation" or subserves "information processing"
is a fundamental problem for theoretical biology (Pattee 1969; Cariani 1989).

To show that a given pattern of activity is a sign one must 1) show that the requisite information
needed to effect a particular sensory discrimination or behavior is present in the characteristic
patterns of neural activity that constitute the sign, and 2) that the particular sensory discrimination
or behavior occurs when the sign is present and does not occur when it is not present. To show
that a given pattern of activity is a code rather than a sign one must further show that the particular
sign is sufficient by itself to cause the sensory discrimination or behavior to take place. This is a
test of whether the system as a whole functionally relies on the particular form of the sign to make
the perceptual or behavioral discrimination. In general it is much easier to ascertain whether the
requisite information needed to encode a particular stimulus property is present in the discharge
patterns of a given neural population than it is to determine whether the rest of the brain actually
utilizes information encoded in that form to modify its behavior. One notable exception to this rule
is the use of electrical stimulation: in several cases (e.g. (Young 1977; Eddington et al  1978;
Covey 1980; Emmers 1981; Di Lorenzo & Hecht 1993; Mountcastle 1993) it has been shown that
a particular time patterns of electrical stimulation evoke behavior similar to that of a natural
stimulus. All of these cases are strongly suggestive of temporal coding mechanisms. For electrical
stimulation both conditions (1) and (2) are likely to be met if it can be assured that the electrical
stimulation is in fact inducing the particular pattern of neural activity that constitutes the sign and



that the electrical activity is not evoking the behavior through some other set of nonspecific
mechanisms or side effects that would not be present under natural stimulation.

3.2 Scalar vs. multidimensional signalling

It should be emphasized that these coding schemes are not mutually exclusive; they are
complementary. Because of the non-exclusive nature of many of these coding schemes evidence in
favor of one code is not necessarily evidence against another code. Thus the existence of
neurophysiological data correlating a given stimulus property with average discharge rates is not
necessarily inconsistent with the existence of a temporal code for that property. Indeed, in many
cases it can be the case that the accumulated, coarser-grained observations of average discharge
rates can be explained by complex, underlying time patterns of excitation and inhibition.

This complementarity of signalling modes also permits multiplexing. A given neuron conveying a
spike train may synapse upon many other neurons so that a given spike train could be interpreted
by one group of neurons in one way (e.g. by reading off the average rate of discharge), by a
second group in a completely different way (e.g. by distinguishing particular temporal patterns),
and by a third group in yet a third way (e.g. by examining the time of arrival of the first spike in a
burst). In such a case the spike train would be conveying several signals at once; many kinds of
information would be multiplexed in the single spike train. Thus depending upon the nature and
diversity of the receiving neural assemblies, a spike train can convey several semi-independent
signals at the same time. One of the advantages of temporal codes over mean rate codes is this
capacity to convey higher dimensional signals rather than one, scalar signal (the mean rate).

Multidimensional signalling can also enhance the reliability of information transmission through the
simulatanous use of different kinds of codes. Informational redundancy thus can be achieved not
only by sending the same information over different lines using the same code, but also by sending
the same information using different codes. Central processors could receive information about
stimulus intensity not only by mean discharge rates in afferent channels, but also by the latencies of
incoming spikes and the regularities of interspike interval patterns in those channels.

3.3 A space of possible neural codes

What determines how a given spike train is to be interpreted? Is a particular spike train signalling
the presence of a pungent odor or a tap on one's back? A high-pitched tone or part of a visual
scene? The type of information conveyed can be differentiated by 1) where  it came from (which
neurons produced it -- the place principle), 2) what  characteristic form it takes (characteristic
modality- or quality-specific temporal patterns), and 3) when it arrived relative to some reference
time (characteristic latency). Conceptually, all neural pulse codes can be classified according to
three sets of properties: those relating to the differential connectivity of neurons ("place" or spatial
pattern codes), those relating to temporal patterns within spike trains, and those relating to precise
time-of-arrival of spikes. Each general type of code can be based on the activity of single neurons
or on patterns of activity of populations of neurons. These three different dimensions of pulse
codes can be depicted in the form of a triangular space of possibilities. (Figure 2). Each vertex is
an archetype for each coding type: connectivity or place coding, temporal pattern coding, and
arrival time coding. Connectivity is described in terms of the pattern of synaptic connections in a
given system of interest and the relative effectiveness of each synapse in eliciting discharges in
each post-synaptic target (a set of "synaptic weights"). A temporal pattern can be described by a
Fourier spectrum, a set of magnitude and phases for the various frequencies present in the spike
train. Here a single interspike interval is a quantum of frequency information. An arrival time is
described in terms of the time relative to some reference time, often called a latency. A pure place



code need not convey any information in the temporal structure of spike trains or in precise times
of arrival. Similarly, a pure temporal pattern code need not rely on specific neural connectivities or
on the specific arrival times of the temporal patterns. And a code which relies on the latency of an
event (e.g. a burst of spikes) need not rely on which neurons convey the event nor on the particular
temporal patterning of the event (e.g. the temporal microstructure of the burst). Thus the three
coding archetypes are orthogonal to each other; hence they are not mutually exclusive, but
complementary, and can be combined in various ways. In general the term "temporal coding"
includes both temporal pattern codes and time-of-arrival codes, i.e. any code which does not rely
on particular neurons with specific connectivities to convey a message .

Temporal pattern:
Interspike interval codes
Complex pattern codes

Time-of-arrival:
Latency codes
Inter-neuronal

synchrony codes

Connectivity:
Place,  labelled-line

or spatial-pattern
codes

Latency-place codes

Interval-place

codes in which spatial
pattern, temporal pattern
and time-of-arrival all play

functional roles

Temporal
pattern-latency

Gated temporal
patterns

Local synchrony codes

Spatio-temporal
pattern

Figure 2. A space of possible neural codes

Associated with each kind of code are the processing elements best suited to produce and interpret
it. A set of information processing elements should be capable of both generating the coded form
(encoding) and interpreting signals sent in the coded form (decoding).

Generally speaking, rate codes can be generated and interpreted by populations of elements having
long integrative time constants, place codes by populations of elements having very specific
connectivities and a broad range of synaptic efficacies, temporal pattern codes by populations of
elements with highly tuned intrinsic temporal resonances (e.g. recurrent conduction times or
recovery kinetics), and time-of-arrival codes by populations of elements with sharply differentiated
temporal windows (e.g. coincidence detectors, adaptive control of conduction times).



3.4 The many ways to send a message

To make these distinctions more concrete, we could imagine ourselves in an isolated room with a
panel of 10 lights and 10 telegraph keys before us. Another group of people are sitting in a
similarly outfitted room far removed from ours. Each telegraph key is connected in 1-to-1 fashion
to a particular light in the other room and depressing a key causes the corresponding light in the
other room to flash momentarily. The lights can be either on or off at each instant, and the faster
they flicker the brighter they appear. With this setup there are many ways that a signalling system
could be set up so that messages could be passed from one room to another.

The two groups could decide that particular lights were reserved for signalling special events and
that any pattern or number of flashes would signal that this event had occurred. This would be a
binary, "labelled line" scheme. It be could decided that the rate of flashes (or the perceived
brightness) of each light would signal the measured intensity of a different sensory property. One
light would signal temperature, another loudness, another degree of bitterness, and so on. If the
lights were arranged systematically to signal different properties arranged in a continuum (e.g. light
wavelength, sound frequency) the pattern of lights could convey a spectrum. The rate of flashing
of each light would signal the relative intensity of a stimulus parameter within some specified
range. In all of these schemes the particular connectivity between the telegraph keys in one room
and the lights in another would be critical, but the timing of the lights would be irrelevant. These
codes are all therefore purely place codes. Depending upon the complexity of the light patterns,
each group would require a device for reading the spatial brightness patterns and deciding what the
message was. The longer the time that the device could read each light, the more flashes that could
be sent, and the finer would be the resolution of stimulus intensities. Optimally this device would
have a long time to count the number of flashes. In a large network consisting of many such
groups care would need to be exercised to guarantee that all of the wiring connections remained
stable over time.

The groups could devise a code for sending messages in the temporal patterns of the light flashes.
Particular rhythms of lights would signal different events. The simplest such scheme would assign
particular intervals between flashes to particular stimulus parameters, and different stimulus
properties could be represented by intervals spanning different time scales. Alternately, more
elaborate patterns of flashes could be sent in which the kind of information would be encoded in
one part of the pattern and its magnitude in another. These would all be purely temporal pattern
codes, and these codes would be unaffected by rearranging the wiring between the two rooms or
by changing the transmission time between the two rooms. Thus it would be irrelevant which
lights carried the rhythms or exactly when the flashes arrived, so long as the appropriate pattern
was conveyed. Rather than a spatial pattern analyzer, the groups would instead need a device that
could recognize rhythms to correctly decode incoming messages. Here it would help to have
processing elements that themselves had intrinsic temporal properties. Because the identity of the
signal channel is contained in the signal itself (as in radio), this scheme is highly adapted for
broadcasting messages in a large network of interacting groups.

The two groups could also send messages by the time of arrival of  flashes relative to a reference
event. One group would send an initial message, and the second group would send a return
message at some prearranged time after the first message. The return time of the second message
(its latency) would signal the nature of the event which had occurred. A flash returning 9 seconds
after the initial message might mean rain, 10 seconds snow, 11 seconds sunny weather. The
number of lights flashing at the appointed time could signal an intensity, so that the temperature
could be conveyed by the number of flashes returning at 50 seconds, the humidity the number at
51 seconds, and so on. Such a code would be impervious to rearrangements of the wires, although



a change in the transmission time between the two stations would completely alter the message
which was received. Here each group would need some kind of resettable clock. This scheme
would be useful in large networks where the transmission times between groups are stable and
heterogeneous (they are different distances apart or conduction velocities differ), where the
response return time (or reverberation time) could signal which stations are replying.

Combinations of these codes could also be arranged. Groups could decide that a temporal pattern
of flashes in one light might mean something different from the same pattern in another light
(interval-place code). Or that a pattern of flashes in one light must be accompanied by another
pattern in another light, so that a complex spatiotemporal pattern is conveyed (spatiotemporal
pattern code). If the transmission velocities of the wires are different, then a message could depend
upon both the time of arrival of a flash and which light was activated (latency-place). Similarly, a
temporal pattern arriving at one time after a reference event might connote something different from
that same pattern arriving much later (gated-temporal pattern code).

3.5 Sensory representations

A sensory map is formed by an ensemble of elements which represent information using
combinations of two or more codes whose parameters are systematically ordered in some way.
Usually this is cast in terms of a spatially-coded parameter ("place") vs. some other parameter (e.g.
average rate, latency, preferred delay). Four sensory maps are schematized in Figure 3; obviously
other (e.g. spatially-distributed "mosaics") representations are possible. Although the coding
schemes are cast in terms of auditory representations, all of these strategies are possible in any
spatially ordered array of sensory neurons where there is some time structure present in individual
channels. For many modalities, the one dimensional tonotopic axis would become a two-
dimensional map. Thus tonotopic position would be homologous to somatotopic position in
somatoception and retinotopic position in vision.

The rate-place scheme ( Fig. 3A) is the most familiar -- a central representation is formed by
spatially organized differences in firing rates. The role of the sensory cortex in these schemes is to
recognize complex spatial patterns relay these recognitions to higher centers, and finally, via motor
cortex, to motor outputs. Three general difficulties for rate-place coding as the sole representational
vehicle are the dynamic range problem, the pattern recognition problem, and the multiple object
problem.

The "contrast degradation" problem arises because the discharge rates of primary sensory neurons
tend to saturate at higher stimulus levels and the spatial excitaton patterns become broader. Spatial
excitation patterns therefore should be less well delineated (lower "contrast") for moderate and high
levels than at levels just above threshold, where discharge rates increase more rapidly with
increasing intensity. However, for psychophysical discrimations (e.g. pitch), the opposite is
usually the case -- moving from threshold to moderate levels, discrimination steadily improves and
levels off. While peripheral compensatory mechanisms (e.g. cochlear efferents), ranges of
thresholds (e.g. different spontaneous rate classes), and particular connectivities for threshold
classes may theoretically allow the entire dynamic range
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Figure 3. Four general neural schemes for encoding acoustic spectra. Left: hypothetical spike
trains of the auditory nerve. Right: central auditory  representation. A. Place-based coding
scheme using average discharge rates.  B. Place-based coding scheme using synchronization
between spatially adjacent channesl. C. Latency-place representation. Vertical bars in the
relative latency map indicate range of latencies in each frequency channel. Shorter latencies
with smaller variances signal higher intensities. D. Global temporal pattern coding through
population interspike interval statistics. These schemes are not mutually exclusive, and could
be potentially combined within neural processing structures.



to be encoded by mean rates, signal-to-noise ratios still change in the wrong direction with level
unless very specific compensatory connectivity patterns are assumed.

The pattern recognition problem arises because extremely subtle and complex spatial patterns must
be extracted to account for percepts such as periodicity pitch or visual texture discriminaton. A 200
Hz click train, for example, elicits the same pitch as a 200 Hz tone, even if the lower frequency
components of the click train are masked with low frequency noise (so that one cannot hear them
separately). although the click train consists of many harmonics spaced equally in frequency and
covering the entire frequency map. Frequency separations by themselves are not what the putative
central spatial processor uses because shifting all freuqencies by a constant amount results pitches
not equal to the frequency spacings. However the central processor operates, it must perform
analysis on frequency ratios. Thus to deduce the 200 Hz fundamental from a spatial frequency
map, it is necessary to simultaneously extract and compare all of the frequency ratios of the peaks
of excitation and to compute what the common fundamental frequency would be. This would
demand an extremely powerful, subtle, and elaborate spatial processor.

While it appears that sufficiently large connectionist networks can handle any one pattern
recognition task by brute force, it is not yet clear whether these networks could simultaneously
handle all of the many simultanous pattern recognition tasks required of a single cortical field. And
as the number of independent perceptual qualities to be discriminated increases, the problem of
associating combinations of qualities increases combinatorically.

Yet a third difficulty for pure rate-place coding involves segregating multiple objects represented in
the map, what von der Malsberg has called the "superposition catastrophe." This problem is
especially apparent when there are multiple "transparent" auditory or visual objects in the auditory
(Handel 1989)(Bregman 1990) or visual scene (Bruce & Green 1985). Each element in the
processing array responds to parts of one or the other object or even combinations of parts from
both objects.In order to segregate and recognize the objects, it is necessary (possibly through an
iterative process) to determine which elements go together to encode a given object. As the number
of objects increases (visual surfaces, voices in a cocktail party), the problem becomes
combinatorically more difficult. One can postulate an extensive library of stored spatial pattern
templates, but this also involves very elaborate representation, storage, and retrieval mechanisms.
If the channels have internal temporal structure, however, channels with similar temporal structures
(temporal patterns, synchronicities, or common movements) can be grouped together, and objects
can then be separated and recognized.

The localized time-place scheme (Fig. 3B) utilizes local correlations within a spatial map to sharpen
the central spatial map. Since synchronization tends to improve as levels increase, the signal-to-
noise ratio improves with level and the dynamic range problem is ameliorated somewhat. While the
complexities of recognizing complex spatial patterns are not reduced by this scheme, the scheme
does permit the possibility of segregating multiple objects in the time domain by grouping channels
by common synchronies.

Latency-place representations (Fig. 3C) use the relative time-of-arrival in different spatial locations
in order to encode intensity and other qualities. The contrast degradation problem is ameliorated
because for virtually all stimuli, latencies shorten with increasing level. This makes latency
distributions attractive candidates for the encoding of stimulus intensities over extremely wide
ranges (Stevens 1971). As absolute latencies decrease, so do the variances of latency distributions.
Latency differences can be amplified more centrally by lateral inhibition, since earlier impulses can
excite inhibitory units which can deliver inhibition to surrounding regions before those regions
receive their (relatively delayed) excitatory inputs (manuscript ref). Latency variances can be
detected by using temporal summation properties of cells with many convergent inputs, since
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Figure 4. How ratios of temporal pattern primitives can encode a multidimensional perceptual space
(e.g. color, taste, smell, timbre). While a simple interspike interval code is illustrated here, more
complex temporal pattern primitives could be used to form a central temporal spectrum. The
perceptual space or psychophysical spectrum has the same dimensionality as the number of
independent temporal pattern primitives. In this scheme, relative numbers of intervals determine
perceptual quality (e.g. color or timbre) whereas the proportion of characteristic intervals determines
perceptual salience (e.g. color saturation).

excitatory inputs all arriving nearly simultaneously (small latency variances) produce more transient
depolarization than those arriving at different times (large latency variances). The precision of
latency estimation can be improved by increasing the number of convergent inputs. Latency-place



mechanisms appear to be involved in a wide variety of sensory processes: electroception, vision
(motion perception, Pulfrich illusion), and stimulus localization in auditory, somatosensory,
olfactory and gustatory systems (see below).

Coding by temporal pattern distributions over a population of neurons is yet another possibility
(Fig. 3D). Interspike intervals are perhaps the simplest temporal patterns, but distributions of more
elaborate pattern types could also be employed to encode perceptual qualities. If the responses of
sensory receptors follow the fine time structure of a stimulus, then periodicities in the stimulus
waveform will also be found in the spike trains of primary sensory neurons. The resulting
distribution of intervals across a neural population essentially forms an autocorrelation-like
representation of the stimulus, which contains the same information as would be present in a
power spectrum. Temporal pattern codes are generally not faced with the contrast degradation
problem because higher stimulus levels impress upon more primary sensory neurons the temporal
form of the stimulus. As in latency coding, the variability of spike initiation times is reduced with
increasing level, and since the absolute timing of intervals related to threshold crossings of the
stimulus waveform is more precise, then interspike intervals will more precisely reflect intervals
between peaks in the stimulus waveform. In addition, as intensity increases, stimulus time patterns
are impressed upon more of the population and the relative proportion of temporally structured
activity increases.

3.6 Neural codes and perceptual qualities

One of the central goals of neuroscience is to understand the relationship of neural activity to
human perceptual and behavioral capacities (Boring 1933; Boring 1942; Teuber 1959; Uttal 1973;
Uttal 1988) and ultimately to the structure and texture of human experience itself (Boring 1933).
What is the relationship between a particular coding scheme and the perceptual space of distinctions
that it subserves? Any

perceptual distinction must be realized through the differential activity patterns of the nervous
system. Thus each dimension of perceptual quality should be related to a dimension of neural
activity. Since codes have been defined as sign systems which have functional roles, every code at
the level of the entire organism should make a perceptual difference. Since codes themselves have
structure, it should be possible, given an understanding of the nature of the codes employed, to
correlate spaces of perceptual distinctions with spaces of neurally encoded distinctions.

Ratio codes and central spectra are relatively simple strategies for constructing a space of perceptual
qualities through the activity of a population of neurons (Figure 4). One needs only three types of
receptors to encode a continuous two dimensional space of qualities (e.g. a space of colors). This
is accomplished by taking ratios between the respective degrees of excitations produced by the
three receptors. Usually the degree of excitation is taken simply as the average discharge rates
associated with the respective receptors and their primary sensory afferents, but characteristic
temporal patterns can also serve the same role. If the receptors themselves have different time
courses of activations or their associated primary afferent fibers have different conduction
velocities, then different characteristic time patterns and latencies are produced by the receptor
populations in proportion to their excitation. Once a set of temporal pattern or latency primitives is
established, a space of perceptual qualities can be constructed by taking the ratios between them at
some higher station. The number of distinguishable temporal pattern primitives thus determines the
dimensionality of the quality space.



One of the intriguing properties of temporal codes is that the tuning of resonances in elements in a
network can in effect introduce new temporal pattern primitives into that network, in effect
increasing the dimensionality of the quality space being encoded. On an abstract level, this process
of dimensional increase is related to the addition of new observables to a scientific model, hence to
systems-theoretic definitions of emergence (Rosen 1985; Cariani 1989; Pattee 1989; Ferenandez et
al  1991; Helighen 1991; Kampis 1991b; Kampis 1991a; Cariani 1992a; Cariani 1992b; Cariani
1993).

4. Evidence for temporal codes in sensory systems

In virtually every sensory system there is some evidence for the role of temporal discharge patterns
for conveying complex stimulus qualities: olfaction (Gesteland et al  1968; Macrides & Chorover
1972), gustation (Covey 1980; Di Lorenzo & Swartzbaum 1982), nocioception (Emmers 1981),
somatoception (Keidel et al  1960; Mountcastle et al  1969; Morley et al  1990; Rowe 1990),
electroception (Bullock 1982; Carr et al  1986a; Carr et al  1986b; Hopkins 1988; Heiligenberg
1991; Carr 1993), vision (Chung et al  1970; Festinger et al  1971; Kozak & Reitboeck 1974;
Richmond et al  1987; Kozak et al  1989; Bialek et al  1991; McClurkin et al  1991a; McClurkin et
al  1991b; Wasserman 1992).

It is not necessarily surprising that this should be the case. In sensory systems with receptors
capable of following the stimulating waveform (i.e. audition, vibration perception), action
potentials are created at threshold crossings and hence their timings directly reflect stimulus
periodicities. In sensory systems where there are no periodicities to be followed (e.g. the chemical
senses) or those whose frequencies are too high to follow (e.g. color vision), different classes of
receptors can have different time courses of activation and recovery. In these systems characteristic
temporal patterns can arise through the interplay of receptor activation times and lateral inhibitory
interactions. The lateral inhibitory interactions are driven by latency differences. Those channels
most sensitive to the stimulus will have shorter latencies, so that excitation will precede lateral
inhibition. Those channels which are least sensitive will have the longest latencies, and lateral
inhibition will precede excitation. The time course of lateral inhibition can also interact with the
activation kinetics of different receptor types to produce temporal patterns which contain
information concerning the ratios of excitations of the different receptors. From this perspective,
the noted structural similarity of the olfactory bulb and the retina (Shepherd 1970; Szentagothai &
Arbib 1972) may be due to their common functions in the generation of characteristic stimulus-
dependent temporal relationships between the various neural elements. Once temporal pattern
primitives are established, a space of perceptual qualities within each modality can be established
by taking the ratios between them (via temporal correlation).

4.1 Somatoception: vibration perception

The perception of vibration is one of several cutaneous qualities that also include temperature,
pressure, and pain. Human beings can distinguish between different vibratory frequencies in the
range of 5-1000 Hz (Morley et al 1990). In the somatosensory system there is considerable
accumulated evidence that temporal patterns of mechanical vibration of the skin are encoded in
corresponding temporal patterns of primary somatosensory afferents (Mountcastle et al 1969;
Morley et al 1990; Johnson & Hsiao 1992; Mountcastle 1993). Tactile primary sensory nerve
fibers consist of three classes, rapidly-adapting (RA) fibers, slowly-adapting (SA) fibers, and
fibers associated with Pacinian corpuscle (PC) receptors. Of these three classes, two are
responsive to vibratory stimuli. RA fibers are excited by vibration frequencies in the 5-100 Hz
range, while PC fibers are excited in the 30-1000 Hz range, and together these two classes of
fibers are thought to cover the human range of vibration perception.



Because all fibers of a given class (RA, SA, PC) have similar frequency tunings, a simple place
code for vibration frequency in which each fiber conveys information about a different narrow
frequency band appears unlikely. The only other obvious spatial mechanism for encoding the
frequencies of vibratory patterns would be an across-neuron pattern code which estimated vibration
frequencies by comparing discharge rates between RA and PC afferents. Low vibration
frequencies should recruit relatively more RA fibers, evoking higher discharge rates in each fiber,
while higher vibration frequencies should  recruit relatively more PC fibers, thereby evoking
higher discharge rates in that population. One of the consequences of ratio coding, however, is that
the amplitude of a one frequency stimulus should change the perceived frequency of the stimulus
as the recruitment of one group of fibers saturates and the other slowly increases. (Morley et al
1990) used 30 Hz and 150 Hz vibratory stimuli with different amplitues to test the ratio coding
hypothesis psychophysically, and their findings do not appear to be consistent with a ratio code.
Further evidence in favor of temporal codes as opposed to ratio pattern codes for flutter perception
is that different frequencies of electrical microstimulation of the hand "elicit changes in the
subjective sense of frequency" (Mountcastle 1993).

The temporal patterns of the vibratory stimulus are evident in the temporal discharge patterns of
units at all stations in the ascending somatosensory pathway: primary sensory fibers, dorsal
column nuclei units, and somatosensory cortex neurons (Mountcastle 1993). While patterns of
first-order (successive) interspike intervals are gradually disrupted by jitter and intervening spikes
as the pathway is ascended, all-order (nonsuccessive) interspike intervals related to  stimulus
periodicities persist into the somatosensory cortex. From Mountcastle's experiments in alert
monkeys, it appears that differences in all-order interspike intervals (rather than differences in
discharge rates) are used to discriminate between two vibration frequencies. From the
neurophysiological evidence for temporal coding and psychophysical evidence against ratio codes,
it therefore currently appears "that temporal patterning of impulse activity remains the major
candidate code for pitch perception, at least over a substantial part of the vibrotactile frequency
bandwidth" (Morley et al 1990).

4.2 Audition

In the auditory system, neural time codes are thought to be involved in both auditory localization
and in the encoding of sound qualities such as pitch, timbre, and phonemic identity. The literature
on the timing of neural discharges in the auditory system is extensive, so only a fraction of the
many phenomena involved can be discussed here.

In many vertebrates, interaural time differences are used effectively to estimate the azimuthal
position of sound sources. A general mechanism for utilizing interaural time differences for
localization uses two neural pathways, one from each ear (Jeffress 1948). Each path originates in a
specific frequency region of the cochlea and the spikes in each of these frequency channels have
precise and reliable latencies (relatively low jitter) relative to the stimulus. The two pathways
converge on an array of coincidence detectors in the brainstem, and a range of relative delays
between the two pathways are supplied by varying the length of one of the pathways (and hence its
conduction time). Those coincidence detectors with the relative delay between the two pathways
will discharge the most, hence interaural time differences are converted by means of a latency code
into a spatial pattern of excitations (place code). In addition to the spatial patterns which are
generated, the time patterns of coincidences are preserved, so that the outputs of such coincidence
arrays will also contain time patterns which are common to both ears. These time patterns may be
responsible for the binaural "periodicity pitches" heard when continuous noise presented to one ear



is delayed by a few milliseconds and presented to the other ear. Similarly, when two harmonically-
related pure tones having a common fundamental are presented to separate ears, the low pitch of
the fundamental can be heard.

Auditory localization by means of time differences is most highly developed in barn owls and bats,
two kinds of flying animals which hunt prey in darkness. Acoustic echolocation ("sonar"), used by
bats and some aquatic mammals, involves the measurement of time delays between an emitted
sound and its returning echo, and can support very elaborate representations of distant three
dimensional surfaces (Simmons 1990). Comparing relative times of arrival of a stimulus to
receptors positioned at different body points is a general strategy which can be utilized by many
other diverse sense modalities such as touch, taste, and smell (von Bekesy 1963; von Bekesy
1964a; Bower 1974).

The ability of temporal discharge patterns to convey information concerning pitch and other
qualities, has long been appreciated by physiologists and theorists of the auditory system (Troland
1929; Wever & Bray 1937; Wever 1949; Kiang et al  1965; Rose et al  1967; Brugge et al  1969;
Rose et al  1971; Goldstein & Srulovicz 1977; Evans 1978; Delgutte 1980). It has been argued that
the quality and robustness of interspike interval information for representing stimulus components
below 4-5 kHz is superior to rate-place representations and is more consistent with human levels of
performance (Srulovicz & Goldstein 1977; Srulovicz & Goldstein 1983; Javel et al  1988).
Although most auditory theorists, in the tradition of Helmholtz, have retained a spatial, spectral
pattern approach to central (i.e. cortical) representations of complex stimuli, purely spectral pattern
theories must invoke very sophisticated central processors to recognize periodicity pitches, pitch
shifts, musical intervals (e.g. octave relations), and spectral shapes over a large range of stimulus
intensities and background conditions. Interestingly, these phenomena are described very simply in
terms of all-order interspike interval distributions of the auditory nerve, which are essentially the
autocorrelation functions of response spike trains.Thus stimulus periodicities can be the form of
temporal autocorrelations in addition to the spatially-encoded spectral representations.

The phenomenon of "periodicity pitch" has long been a testing ground for various psychophysical
models and neural coding schemes. With very few exceptions, periodic waveforms evoke low
pitches (50-500 Hz) associated with their fundamental frequencies (F0). These pitches have been
variously called "periodicity pitch", "virtual pitch", "repetition pitch", "the pitch of the missing
fundamental", or "musical pitch."(Small 1970; de Boer 1976; Evans 1978; Nordmark 1978). Such
pitches are reliably heard even if there is no energy present at F0 or if the frequency region of the
fundamental is masked with noise (Licklider 1954). Periodicity pitches can be produced by
broadband stimuli, such as click trains and amplitude modulated noise, with frequency components
too close together to be resolved by neural rate-place mechanism (and especially at higher levels or
in noise). These stimuli with their unresolved spectral patterns, however, produce amplitude
modulations in many frequency channels, and these modulations create clear interspike interval
patterns in many parts of the auditory nerve array. Modern temporal theories for periodicity pitch
have combined interspike interval distributions from many frequency regions of the auditory nerve
to produce pooled interspike interval distributions from which the pitch is then extracted (Licklider
1951; Licklider 1956; Licklider 1959; Moore 1982; Van Noorden 1982; Lyon 1984; Lyon 1991;
Ghitza 1992);(Lazzaro & Mead 1989; Meddis & Hewitt 1991b; Meddis & Hewitt 1991a)).



1

10

C
h

ar
ac

te
ri

st
ic

 f
re

q
u

en
cy

  (
kH

z)

Peristimulus time (ms)
0 5 10 15 20 25

Stimulus waveform

Frequency (kHz)

T
h

re
sh

o
ld

 le
ve

l (
d

B
 S

P
L

)

0

100

.1 1 10

Stimulus

Cochlea

Tuning curves
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to a single formant vowel with a fundamental frequency F0 of 80 Hz and a formant frequency F1
of 640 Hz presented 100 times at 60 dB SPL.  A strong low pitch is heard at the fundamental
frequency. The period of the fundamental 1/F0 and that of the formant frequency 1/F1 are
indicated over the waveform. Peristimulus time histograms indicate relative spike probabilities as
a function of time relative to the onset of the stimulus. Bottom: Population interval histogram
obtained by summing together all-order interspike intervals from 79 auditory nerve fibers.
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These global temporal models for periodicity pitch were tested by the author and Bertrand Delgutte
by recording the temporal discharge patterns of more than a thousand single auditory nerve fibers
in Dial-anesthetized cats (Cariani & Delgutte 1992a; Delgutte & Cariani 1992; Cariani & Delgutte
1993). The all-order interspike interval distributions of individual fibers of many characteristic
frequencies were summed together to construct an estimate of the population interval distribution
for the entire auditory nerve array. A diverse set of stimuli with variable fundamental frequencies
were constructed to investigate many complex pitch phenomena.
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Figure 6: Above: Auditory nerve population autocorrelation histograms (all-order
interspike intervals) for 5-formant synthetic vowels. Each histogram represents
data from 50-90 auditory nerve fibers (~100,000 spikes) distributed over many
characteristic frequencies. Histograms for the most similar vowels, [ae] (act)  and
[α] (father), have correlations coefficients of 0.82, while all other inter-histogram
correlations are below 0.14. Bottom left: Stimulus autocorrelation function for
vowel {ae].

In order to convey the pervasive nature of the temporal patterning in the auditory nerve array, a
"neurogram" of several auditory nerve fibers is shown in Figure 5. To the left is the stimulus and
the cochlea, which through its mechanical properties implements band-pass filtering in which a
given "place" in the spiral structure is preferentially tuned to a given frequency. As a consequence
the auditory nerve fibers innervating hair cells at a given place are similarly tuned (i.e. lower sound
pressures are needed at the "characteristic frequency" to generate additional discharges than at other
frequencies). The tuning curves of six fibers are shown. The stimulus is a periodic waveform with
a fundamental period of 12.5 ms (F0=80 Hz) and one resonance period at 1.6 msec (F1=640 Hz, a
"single formant vowel"). Inspecting the corresponding peristimulus time histograms of each fiber
at right, one can see that the time patterns in the different frequency channels are different. Several
discharge periodicities can be readily seen in the individual channels, related to the stimulus
fundamental period 1/F0 and the formant period 1/F1, as indicated above. Thus many intervals
corresponding to stimulus periodicities 1/F0 and 1/F1 are present in the time structure of the
discharges in the array of fibers, and these periodicities can be seen in the population interval
distribution (Figure 5, bottom center). For this stimulus the most common interspike interval
(1/F0=12.5 msec) corresponds with the perceived pitch period of the stimulus (12.5 msec).

For the vast majority of periodic complex stimuli presented (click trains, vowels, AM and QFM
tones, AM noise, equi-amplitude harmonic tone complexes, Shepard-Risset "continuously
ascending pitch staircases)  it was found that 1) the pitch heard by human listeners corresponded to
the most common interspike interval in the auditory nerve (the aggregate interval distribution), and



2) that the salience of the pitch heard corresponded to peak-to-background ratio in the population
interval distribution. Thus it was found physiologically what had been predicted in global temporal
models (Meddis & Hewitt 1991b; Meddis & Hewitt 1991a) , that the aggregate interspike interval
distribution of the auditory nerve can account for a great deal of the psychophysics of periodicity
pitch: the pitch of harmonic tone complexes with “missing fundamentals”, the pitches of click
trains, amplitude modulated noise, pitch shift and pitch ambiguity as found with inharmonic AM
tones, and pitch dominance of lower harmonics over higher ones.

It has also been known that interspike intervals of single auditory nerve fibers can convey spectral
information suitable for recognizing speech (Delgutte 1980; Voigt et al  1982) (Srulovicz &
Goldstein 1977; Srulovicz & Goldstein 1983; Secker-Walker & Searle 1990). but it has only been
more recently that global temporal models have been developed for this purpose (Lyon 1984;
Ghitza 1988; Ghitza 1992). Aggregate interspike interval distributions in a simulated auditory
nerve array have been shown to yield high quality, noise-resistant spectral representations
sufficient for speech recognition (Ghitza 1992). Physiological experiments have similarly shown
that the population interval distribution of the auditory nerve is sufficient to discriminate vowels
and in many cases to identify the two single vowels present in a concurrently presented vowel pair
(Cariani & Delgutte 1993). The interval distributions characteristic of several 5-formant synthetic
vowels are shown in Figure 6. Here only intervals shorter than 5 msec are needed to identify a
vowel, and the response population interspike interval distributions resemble the autocorrelation
functions of  their respective vowel stimuli. Thus it appears that a common temporal code for pitch
and vowel identity exists in the auditory periphery.

4.3 Electroception

Several groups of fish have evolved the capacity to sense changes in electric fields in their
immediate vicinity. Some fish passively sense changing nearby electric fields, some generate their
own weak, electric fields and sense the pattern of field potentials over their body surface, and some
use these generating and sensing capacities for social communication (Bullock 1982; Carr et al
1986a; Carr et al 1986b; Hopkins 1988; Heiligenberg 1991). The mechanisms by which
electroceptive fishes construct a spatial representation from very small differences in field potentials
involve comparisons of spike latencies from different parts of the fish's body (Carr et al 1986a;
Carr et al 1986b). The pathways by which spikes are conveyed from the electroceptors to more
central structures which do the time comparisons utilize electrical synapses (gap junctions) which
produce less jitter than chemical ones.

"In gymnotoform fish, T-type receptor afferents mark the timing of the zero crossing, or phase, of a sinusoidal
signal by firing a single spike at a fixed latency within each cycle of the signal. This information is coded for many
points on the body surface, and it is relayed in the same form and in somatotopic order, by the spherical cells of the
electrosensory lateral line lobe, to lamina 6 of the torus semicircularis in the midbrain. A network within lamina 6
compares the arrival times of spike from pairs of points on the body surface, and "small cells" at a location in
lamina 6 representing a given point A on the body surface modulate their rate of firing in accordance with the
difference between the timing of the signal in A and some other area, B. The firing of these small cells is irregular
and longer locked to individual cycles of the sinusoidal signal." (Heiligenberg 1991)

Thus, in electroception it is believed that a latency-place code is converted to a place code in which
various combinations of body points are represented, although the functional organization of this
place-based electroceptive map for external space is still not well understood.



4.4 The chemical senses

In the chemical senses of taste and smell, hypotheses for neural coding have generally assumed
labelled line or across-pattern theories of sensory quality. Simple place coding hypotheses have
encountered several difficulties. Each receptor responds to many different types of stimuli, each
receptor apparently responds to a different stimulus set, and these sets do not appear to be ordered
in any obvious way in order to code some perceptual dimension. This makes labelled line codes
extremely unlikely -- one would need a neuron for each combination of molecular species present,
and stimulus generalization would be quite problematic. "Across-pattern" codes might be
hypothesized: combinations of ideosyncratic receptors are adaptively wired together so that specific
combinations signal particular stimulus qualities. However, in both gustatory and olfactory
systems the receptors turn over, and this poses problems for place- or connectivity-based coding of
taste and odor qualities.

"The cells making up the taste bud have limited life spans. Radioactive labelling shows that they die and are replaced
by new cells...As a cell goes through its life cycle, it appears to move from the edge to the center of the taste bud.
Since the nerve fibers do not move, receptor cells are presumably innervated by different nerve fibers as they change
location. This poses a problem for stable quality perception. The population of receptor cells that synapse with a
single fiber at various times should have the same sensitivities in order to ensure that a stimulus always evokes the
same neural signal."(Bartoshuk 1988)

"Perhaps the most intriguing aspect of the constant turnover of olfactory receptor neurons is the ability of olfactory
receptor neurons to achieve perceptual constancy. There is good evidence for a number of species of an ability to
make consistent responses to a given odorant over periods of time that rival (and even surpass) the lifespan of the
receptor neuron. If this is the case then the olfactory system must be able to produce a consistent response to a given
odorant even though most, if not all, receptor neurons have been replaced and the newly formed cells have made
synaptic contacts within the olfactory bulb." (Mair 1986)

One solution for this problem of perceptual constancy might be through temporal pattern coding of
tastes and smells. Both receptor systems have a number of structural features that could give rise to
different time course of receptor activation and both systems have lateral inhibitory connections
(Bartoshuk 1988; Cain 1988) that could generate patterned phase relations between different types
of neurons. Here a relatively small number of temporal pattern primitives could encode
independent perceptual dimensions, and their relative ratios would form the continuum of
perceptual qualities that are experienced (see the discussion of color coding below).

Despite nearly complete omission in the standard textbooks and reviews (e.g. (Bartoshuk 1988) )
there is considerable evidence in favor of a temporal pattern code for taste (Di Lorenzo & Hecht
1993):

"In the study of the neural code for gustation in the central nervous system, the temporal patterns of responses to
taste are most often ignored. Typical measures of taste responses account for the overall amount of neural activity
evoked by a tastant but do not reflect the temporal arrangement of spikes during the response. These measures would
be adequate descriptors if the total number of spikes associated with a given response were equally distributed within
the response interval; however, that is almost never the case. Instead, most taste responses are characterized by
variations in the rate of firing. The time course and magnitude of these variations defines the temporal pattern of a
response. Given numerous reports that different taste stimuli appear to evoke distinctive temporal patterns of
response in a number of taste-related neural structures and that similar-tasting stimuli evoke similar temporal
patterns of response (Fishman 1957; Scott & Erickson 1971; Ogawa et al  1973; Ogawa et al  1974; Perotto &
Scott 1976; Funakoshi & Ninomiya 1977; Covey 1980; Scott & Perotto 1980; Nagai & Ueda 1981; Di Lorenzo &
Swartzbaum 1982; Pritchard & Scott 1982b; Pritchard & Scott 1982a; Bradley et al  1983; Yamamoto et al  1984;



Travers & Norgren 1989), it is not surprising that several investigators have suggested that this feature of the neural
response may contain important, if not essential, information about taste stimuli."

Perhaps the most direct evidence that temporal neural patterns have functional significance and
underlie the perception of tastes come from electrical stimulation experiments (Covey 1980; Di
Lorenzo & Hecht 1993). In the mammalian gustatory system, three primary sensory nerves convey
information from the taste buds to the nucleus of the solitary tract (NTS), which is the first nucleus
in the ascending gustatory pathway. The three primary sensory nerves are the chorda
tympani/greater superficial petrosal, glossopharygneal, and vagus, which are, respectively,
branches of cranial nerves VII, IX, and X. In these experiments the responses of neurons in the
NTS of a rat, are recorded when particular tastants are applied to the tongue. The temporal
response patterns of the NTS neurons are then digitized and fed into a stimulating electrode situated
in either the chorda tympani or the NTS of another rat and the behavior of the rat is observed. The
control is application of a pulse train of equally spaced pulses with the same average pulse rate.
Since rats have highly stereotyped orofacial behavioral responses to different tastants ("acceptance"
or "rejection" licking behaviors or a neutral "jaw snap"), the behavioral responses serve as a
reliable indication of how the rat perceived the electrical stimulus. When a given temporal pattern
normally associated with a perception of sweetness and evoking an "acceptance" licking behavior
was used to electrically stimulate the chorda tympani (Covey 1980) or the NTS (Di Lorenzo &
Hecht 1993), rats exhibited all of the behavioral signs associated with a sweet tastant.
Analogously, rejection behaviors were elicited by bitter tastants and their corresponding temporal
patterns of electrical stimulation. When the control temporal patterns, uniform pulse trains, were
used for electrical stimulation, no such behaviors were observed. (It has been found that electrical
stimulation of individual taste buds can evoke particular tastes (von Bekesy 1964b) and that
different buds have different electrical frequency response curves, but this is prior to the lateral
inhibitory interactions that may be in part generating the temporal patterns observed by (Covey
1980), so that the two sets of results are not necessarily contradictory). Since electrical stimulation
indiscriminately stimulates all neurons in a region without regard to their connectivities, thereby
removing spatial cues, these experiments are strong evidence that temporal discharge patterns by
themselves are capable of conveying gustatory quality.

Despite relatively little attention given to analysis of temporal response patterns in the olfactory
system, some early experiments gave indications that the responses could be temporally complex
and highly dependent on the history of stimulation (Gesteland et al 1968). Although electrical
stimulation experiments with recorded spike trains have not yet been attempted in the olfactory
system, there is a fair amount of evidence for temporal discharge patterns characteristic of
particular odor types (Macrides & Chorover 1972; Macrides 1977; Meredith & Moulton 1978;
Meredith 1981)

One difficulty with a temporal pattern theory of odor quality has been that the observed temporal
patterns can change with changing stimulus concentrations and may be somewhat dependent upon
cycles of air inhalation (sniffing). The discussion is complicated by the difficulty of the
experiments themselves and weaknesses in many of the methods commonly used to search for
temporal patterns. The relative underdevelopment of temporal coding hypotheses and the analytical
methods needed for their validation/falsification is a serious and pervasive problem in research in
all sensory systems, including audition. As a consequence, one must be extremely careful not to
rule out whole coding schemes on the basis of incomplete analyses in the existing literature.

In general, temporal pattern hypotheses in olfaction have not conceptualized in terms of time
patterns in individual spike trains, but as changes in firing rates over time. A typical way that unit
responses are analyzed (in olfaction and elsewhere) is to sum together response spike trains of
many stimulus presentations to form a peristimulus time (PST) histogram. PST histograms are



then analyzed for time patterns. If the temporal patterns in question are not rigidly locked to the
stimulus, then much of the timing information that might be present is destroyed. This method also
presents problems if the time patterns in individual spike trains are interleaved (as (Emmers 1981)
reportedly found for nocioception) or not synchronized to inhalation cycles. It may be, for
example, that the crudeness of the analytical methods only allows temporal patterns to be seen
when neural populations have been synchronized. When stimuli are presented asynchronously
with respect to inhalations, the temporal patterns may be interleaved or jittered with respect to each
other (perhaps depending upon the immediate history of the unit (Gesteland et al 1968)) and
therefore would not be visible in the PST histograms.

4.5 Pain

In a series of papers and a monograph (Emmers 1969; Emmers 1970; Emmers 1976; Emmers
1981), Raimond Emmers has reported a complex spike interval code for pain and several other
sense modalities: touch, temperature, nocioception, and taste. The code, which he observed at the
level of the thalamus, consists of an initial burst followed by a modality specific interval, then by
several other intervals of a different, characteristic duration (as in Figure 1D). Under natural
stimulation, he found these patterns interleaved with each other, so the analytical methods typically
used by investigators would almost certainly miss them. Applying electrical stimulation, he was
able to evoke the behavioral signs for pain when the correct temporal patterns were induced. When
external pain stimuli were applied, he was able to achieve analgesic effects with electrical
stimulation that disrupted these characteristic patterns. Unfortunately, his work has been largely
ignored, he has retired, and there have been no reported replications or followups to this interesting
work.

4.6 Vision

Historically vision has been regarded as the archetypal sensory modality, and one where time plays
little or no role. Outside of the Gestaltists and the Gibsonians, vision has usually been
conceptualized in static terms, where layers of successive "feature detectors" operate on localized
spatial retinal patterns, and the retinal image is progressively reconstructed at higher and higher
levels of abstraction (e.g. (Marr 1982); see discussion in (Uttal 1988)). Motion, however, appears
to be essential for vision (Ditchburn & Ginsborg 1952), and moving images would be expected to
set up coherent time patterns in ON and OFF units of the retina. While temporal structure in the
optic nerve is much less well understood than that in the auditory nerve, it is known that retinal
ganglion cells, unlike the auditory nerve, exhibit temporally correlated discharges (Mastronarde
1989), so that cross-neuron time patterns are a possible coding mechanism (see especially the work
of (Bialek et al 1991) on the use of temporal correlations in insect vision). There is also some
psychophysical evidence that several aspects of vision (color, texture, form) may utilize temporal
codes, although no comprehensive temporal theory of vision based on these principles has been yet
proposed.

One of the advantages of temporal coding is that it permits the multiplexing of visual information.
In the late 1960's, Jerry Lettvin and co-workers (Chung et al 1970) found that information
concerning conditions of illumination could be transmitted the interspike interval statistics in the
dimming fibers of the frog's optic nerve (see also (Wasserman 1992)). They observed different
sets of interspike intervals which corresponded to different levels, types and time courses of
illumination, and combinations of various intervals occurred together depending upon light level
and other factors. Thus their experiments serve as an example of the multiplexing of visual
information in interspike interval distributions of the frog optic nerve.

More recent investigations in primate visual systems have found evidence for multiplexing of
information concerning visual form and color (Richmond et al 1987; Richmond et al  1989;
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McClurkin et al 1991a; McClurkin et al 1991b). In these experiments images consisting of a set of
black and white squares aranged in different configurations (i.e. 2-D spatial isoluminant, Walsh
patterns) are presented to an awake monkey and the temporal discharge patterns of visual neurons
are recorded. Temporal patterns in the response spike trains are then extracted using using principal



component analysis and the informational content of the temporal patterns is assessed (i.e. how
well can the stimulus that was presented be predicted from temporal or average rate patterns of
discharge. In all regions of the visual system studied, lateral geniculate, primary visual cortex, and
inferior temporal cortex, the response time patterns contained considerably more information than
the average discharge rates. More recent work suggests the same is true for color (McClurkin et al
1993). Other investigators analyzing spike trains in single units of the visual cortex have found
joint interval patterns ("precisely replicating" spike triplets) present in numbers significantly greater
than random process models would predict. (Strehler & Lestienne 1986; Lestienne & Strehler
1987).

There is a substantial literature on the psychophysics and physiology of "subjective color" -- colors
induced by achromatic temporal patterns (the Prevost-Fechner-Benham effect or Benham's Top
(Benham 1894; Benham 1895)). Several patterns which evoke these colors are shown in Figure
7A. In these patterns, weakly saturated colors are seen around the edges of the black areas. For the
colors to be seen there must be a particular phase relationship between the three different sectors of
the disk (black, white, line pattern). Any color can be induced by the appropriate temporal pattern
of luminance changes, as shown in Figure 7B (Festinger et al 1971), and television shuttering
devices have been built to evoke colors with with appropriately flickered black and white images
(the Butterfield Color Encoder) (Sheppard 1968). Perhaps even more strikingly, when the
characteristic temporal patterns are induced via electrical stimulation of the retina, humans see
phosphenes of the corresponding color (Young, 1975). Since electrical stimulation presumably
excites all retinal cells to fire in the same temporal pattern, this is strong evidence in favor of a
temporal code for color. Physiological studies of the optic nerve (Kozak & Reitboeck 1974; Kozak
et al 1989) , lateral geniculate (Young & De Valois 1977) and visual cortex (Richmond et al 1989)
show characteristic temporal patterns when colored stimuli are presented. Underlying the
traditionally cited response patterns of color opponency  (as manifest in discharge rates) may be
relative timings of various excitatory and inhibitory events (van Esch et al  1988). From this
perspective, the Benham top induces the appropriate temporal responses characteristic of each color
in the retinal ganglion cells, by inducing the temporal patterns that would normally be produced by
lateral  interactions between different types of (inhibitory and excitatory) retinal cells (von
Campenhausen 1969; Festinger et al 1971; von Campenhausen 1973; Jarvis 1976; Adamczak
1981; Zrenner 1983; Tritsch 1992; von Campenhausen et al  1992). It is thus conceivable that the
distribution of interspike intervals or some higher order time pattern in a particular patch of visual
cortex determines the color perceived in the corresponding visual region. Since each patch is
connected to other patches by horizontal connections, time patterns in one patch can interact with
those of other patches, and the color perceived in one stimulus region can be influenced by those in
surrounding regions.

Temporal coding may also apply to visual texture, since characteristic texture percepts can also be
reliably induced by particular flicker patterns (Wilson 1960; Fiorentini & MacKay 1965; Perkell &
Bullock 1968; Young et al  1975; Richmond et al 1989). There are also a host of temporal illusions
in motion perception and binocular depth perception (Pulfrich effect) that point to a role for neural
discharge latencies in the coding of motion and binocular disparity.

That particular temporal patterns can mimic the effects of particular colors and spatial patterns is
very suggestive of the presence of generalized time-place cortical transformations that could also
potentially underlie many other illusions such as periodicity pitch. As the Gestaltists held, the
cortex may be the site of complex interactions between dynamic, two-dimensional spatiotemporal
patterns mediated by horizontal connections (Siegel & Read 1993), and flicker stimuli may serve to
mimic some of the two-dimensional "standing wave" patterns that would be evoked by regular,
textured stimuli.
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5. Processing strategies for discriminating temporal patterns

One of the barriers to more serious consideration of temporal coding alternatives has been the
relative underdevelopment of information processing strategies which can handle time patterns.
The remainder of this paper will outline some of the possibilities for the general kinds of
computations that could be performed using temporal information and the kinds of neural
architectures that could conceivably realize these computations. While this is an initial, highly
speculative excursion, eventually, one would want to specify the models more precisely and test
them against known anatomical constraints and physiological behaviors.

What kinds of representations could be computed? One of the great advantages of temporal codes
is that correlations between patterns can be implemented by the convergence of axons carrying the
patterns onto coincidence detectors (Figure 9)(Longuet-Higgins 1989). If there are a range of
relative delays available in a neural subpopulation, either through conduction delays or intrinsic
oscillatory periods, then all lags in the cross-correlation function can be computed by that
subpopulation by temporal coincidence. This is markedly simpler than a similar computation using
spatially-coded patterns.

If all of the the delays are present within a given sensory channel (e.g. an auditory frequency
channel or a retinal position channel), then the time patterns in the channel can be correlated with
themselves to form an autocorrelation function. As discussed above, global temporal
autocorrelations in the auditory nerve are effective for representing pitch (Licklider 1951; Licklider
1955; Licklider 1959; Lyon 1984; Lazzaro & Mead 1989; Meddis & Hewitt 1991b; Meddis &
Hewitt 1991a; Slaney & Lyon 1991; Cariani & Delgutte 1992a; Cariani & Delgutte 1992b; Delgutte
& Cariani 1992; Slaney & Lyon 1993) and speech (Palmer 1988; Meddis & Hewitt 1990; Ghitza
1992; Palmer 1992; Cariani & Delgutte 1993).

In the auditory system if a global interspike interval distribution can be computed over an entire
auditory map and analyzed, then the percepts of periodicity pitch, musical intervals, and spectral
shapes can all be subsumed into one general processing scheme. Because intervals intrinsically
carry harmonic structure (e.g. octave relations), many form invariances  (musical intervals, fusion
of chords) naturally fall out of such a representation. Interestingly, in vision, autocorrelation
functions which operate on spatial intervals have proven effective in modelling texture perception
(Uttal 1975; Uttal 1988). Since auto- and cross-correlations on place-based excitation patterns have
been proposed for universal information processing operations (Reichardt 1961; Kabrisky 1967;
von der Malsburg & Schneider 1986), such universality would also be a property of similar
functions implemented in the time domain.

Where might such functions be computed? Since the computation of all perceptual Gestalts involve
assembling information across large portions of a sensory map, a high degree of connectivity
across tonotopic regions ("lateral" or "horizontal" connections) must be present in the anatomical
substrate. In the auditory case, the computation suberving a percept such as periodicity pitch or
vowel identity requires the merging of information from all parts of the frequency map. The
primary auditory cortical fields are the first stations in the ascending auditory pathway which
generally meet this requirement, since the cerebral cortex contains many horizontal fiber systems
coursing through the apical dendrites of its principal (pyramidal) cells (Ramon y Cajal 1894/1990;
Lorente de No & Fulton 1933/1949; Gilbert 1983; Imig & Morel 1983; Braitenberg 1986; Ts'o et
al  1986; Braitenberg & Schüz 1991; Gilbert & Wiesel 1992). Lesion and ablation studies in
animals and humans also suggest that the auditory cortex may be necessary for discrimination of
complex acoustic patterns, such as speech and periodicity pitch (Dewson III 1964; Symmes 1966;
Whitfield 1980), though not for discrimination of simple tones (Elliot & Trahoitis 1972).



How much temporal information reaches the cortex from sensory peripheries?  Unfortunately, in
no sensory system has the form and quality of temporal information available to the primary
sensory cortices yet been properly characterized.  Even in the auditory system, where the temporal
patterns present in the auditory nerve have been well described, the time patterns present in primary
auditory cortices are poorly understood. Spike latencies for stimulus onsets can be quite precise,
with jitters comparable to those found in the auditory nerve (Phillips et al  1991). There is evidence
that stimulus periodicities up to several hundred Hz (Goldstein et al  1959; Kiang & Goldstein
1959; Steinschneider et al  1980; Schreiner et al  1983; Phillips 1989; Mäkelä et al  1990; Langner
1992) and perhaps up to 1 kHz (de Ribaupierre et al  1972).are present in primary auditory cortex,
so that periodicity pitch could potentially be temporally coded at the cortical level. These periodicity
limits should be taken as lower ones, because the recording and analytical methods used (gross
potentials, synchronization indices, first order intervals, post-stimulus time histograms) are not
powerful enough to detect jittered, desynchronized, or complex temporal patterns. Until more
powerful analytical methods are utilized (e.g. autocorrelation, power spectra, joint interval
statistics), more elusive temporal patternings (such as those found elsewhere: (Covey 1980;
Emmers 1981; Lestienne & Strehler 1987; Richmond et al 1989; Bialek et al 1991; Mountcastle
1993) ) cannot be ruled out.

How might global correlation functions be computed in the cerebral cortex? Temporal information
could be stored in the resonance patterns of networks with recurrent connections (Greene 1962;
McCulloch 1969). Alternately, information could be stored in temporal correlations using
adaptively tuned delay lines, coincidence detectors, and/or sets of filters (MacKay 1962; Longuet-
Higgins 1969; Longuet-Higgins 1987; Longuet-Higgins 1989). Adaptively tuned conduction
blocks in axon trees could potentially parse out particular periodicities from spike trains, thereby
implementing temporal pattern recognition in a single neuron (Chung et al 1970; Raymond &
Lettvin 1978; Pratt 1990). Learning could be built into various timing nets by adaptively altering
conduction times (MacKay 1962) or by strengthening synapses corresponding to particular sets of
existing delays, or by tuning membrane properties of pacemaker neurons (Torras i Genis 1985).
Currently time delays are being incorporated into discrete neural networks to recognize warped
symbol sequences and time-varying patterns (Tank & Hopfield 1987; Mozer 1993). Of these
general alternatives, the three possible temporal processing architectures depicted in Figure 8 will
be discussed in greater depth.

6. Temporal processing in a single axon tree

An elegant theory of the single neuron as a multiplexing temporal processing element has been
proposed which utilizes the temporal properties of axonal conduuction to perform temporal
analysis on spike trains (Chung et al 1970; Raymond & Lettvin 1978; Waxman 1978; Pratt 1990;
Wasserman 1992). Since the beginnings of single neuron electrophysiology, it has been known
that not all action potentials travelling down the axon trunk invade all terminal branches, and that
the times between successive discharges (interspike intervals) can determine whether or not a given
action potential will be propagated down a given axon branch. In some invertebrate motor systems
conduction failures or "blocks" have been demonstrated to play important functional roles. In the
crayfish, spike trains with different interspike interval compositions travel down different branches
of an axon tree to independently control different muscles of the claw (Bittner 1968; Perkell &
Bullock 1968).

Conduction blocks are related to the time that it takes for thresholds to return to normal after an
action potential. (Raymond 1979) found that a many kinds of axons showed triphasic threshold
recovery curves in which each action potential is followed in turn by a refractory phase, a
"superexcitability phase", and a depression phase. During superexcitability, the membrane is
slightly easier to re-excite than when it is at rest. In different axons, axon branches, and cell



bodies, superexcitability culminates at different recovery times, milliseconds to seconds after the
last action potential. The axon is therefore more sensitive to spike trains with intervals that coincide
with the superexcitability peak, selecting particular temporal patterns from incoming spike trains to
be propagated further on. Different axon branches with different threshold recovery time courses
could "parse" incoming spike trains in different ways, so that particular interspike interval
distributions could excite different sets of postsynaptic neurons (or muscles, as in the crayfish).
The timing and strength of superexcitability phases in axon branches have also been observed to be
activity-dependent and independently modifiable (Carley & Raymond, 1987), so that the effective
connectivity between neurons might be adaptively modified by mechanisms which do not directly
involve changes in synaptic efficacy. Artificial neural networks using pulse-interval temporal
parsing trees based on these concepts have been investigated by (Pratt 1990).

Since general anesthetics disrupt the superexcitable recovery phase, it is conceivable that their
concomittant effects on consciousness might be due to the removal of conduction blocks which
normally play the role of "decoding" temporal patterns (Butterworth IV et al  1989). Thus when
general anesthetics are applied, membrane tunings are lost, the temporal coherence of neural
activity is disrupted, and the functional integrity of the network is destroyed.

7. Temporal autocorrelation architectures

Perhaps the best articulated neural architecture for processing temporally structured information is
still J. C.R. Licklider's autocorrelation-based periodicity-to-place scheme ((Licklider 1951;
Licklider 1959)). This architecture was originally developed to account for periodicity pitch in the
auditory system, and forms the basis for a number of current autocorrelation-based models
(Meddis & Hewitt 1991b; Slaney & Lyon 1991; Slaney & Lyon 1993), physiological
studies(Cariani & Delgutte 1992b), and analog VLSI implementations for pitch (Lazzaro & Mead
1989). The scheme utilizes the temporal structuring of discharges present in the auditory nerve by
performing an autocorrelation analysis in each channel. In Licklider's formulation this was realized
through conduction delays and coincidence detectors, but it could also be achieved using cellular
"intrinsic oscillations," where cells discharge more frequently and/or more coherently in response
to particular stimulus periodicities(Møller 1974; Frisina et al  1990; Kim et al  1990). Within each
frequency channel is a set of delays corresponding to a set of "periodicity" channels.  This creates a
two-dimensional periodicity vs. "place" map. By summing the outputs from corresponding
periodicity channels in different frequency bands, the pitch of a stimulus could be computed by
taking the periodicity band with the highest summed activity. This processing architecture thus has
the advantage of readily explaining periodicity pitch, the phase insensitivity of the auditory system,
and the fusion of place and temporal representations into a unified percept (Licklider 1951;
Licklider 1954; Goldstein et al 1959; Kiang & Goldstein 1959; Licklider 1959; Simmons 1990;
Simmons et al  1990).

 On the other hand, such a network requires specific anatomical structures -- precisely tuned delays
or cellular oscillations ranging from 2-15 msec. Unfortunately, no obvious anatomical structures
subserving delay lines (like those found in the brainstem for the computation of interaural time
differences) have been found. Many cells with varied "intrinsic oscillations" are present in the
cochlear nucleus, but their tunings are relatively broad (an octave or more). This does not
correspond well with the stability and accuracy of periodicity pitch judgements (with errors of a
few percent). In contrast, as in the auditory nerve these cochlear nucleus units typically show many
interspike intervals corresponding precisely to the fundamental period of the stimulus.Thus at the
level of the cochlear nucleus, an interval code still appears more promising for periodicity pitch
than one based on average rates and periodicity detectors.
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If a temporal-to-place transformation were taking place, one would also expect such maps to be
present at higher stations. While there is some possibility that delay maps of bats ((Simmons 1990;
Simmons et al 1990; Suga 1990)) might be homologues to periodicity maps in other mammals, no
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maps spanning the full range of periodicity pitches (50-500 Hz) have been found thus far
(Schwartz & Tomlinson 1990; Sheich 1991).

8. Temporal cross-correlation architectures

From an anatomical and physiological point of view, the basic features of Braitenberg's time-based
architecture for computing auto- and cross-correlations in the cerebellum (Braitenberg 1961;
Braitenberg 1967; Freeman & Nicholson 1970) might be well suited for transposition to the
cerebral cortex. Here, pyramidal cells perform the role of detecting coincidences between direct
thalamic inputs and indirect (delayed) inputs from local interneurons, association fibers, and
commissural fibers (Figure 9A).  These latter inputs come from the massive set of horizontal fiber
systems that make up the superficial layers of the cortex. Depending upon the relative directions of
spike train propagation, an array of coincidence elements can compute correlations or  convolutions
(Figure 9B)(Longuet-Higgins 1989). Many relative delays could be supplied by many
mechanisms: 1) differences in the cortical distances between two pyramidal cells, 2) differences in
conduction

velocity of horizontal fibers 3) multiple synaptic delays 4) reverberating loops of different lengths
(a delay and its multiples), and 5) tuned intrinsic recovery kinetics of pyramidal cells.

The many intra- and inter-channel delays in the net permit a coincidence detector at each delay node
to compute the auto- or cross-correlation term for a specific lag. Thus a population of coincidence
elements embedded in a system of relative delays can compute global auto- and cross-correlation
functions. Local inhibitory neurons would play the role of penalizing non-coincidences, so that
unstructured inputs tend to inhibit the cell (Figure 10, top). Horizontal fiber systems of different
orientations Additional  connectivities between different regions having longer delays might be
supplied by dispersive, reciprocal, cortico-cortico and cortico-thalamic links.

Since the output of each coincidence detector also has temporal structure, global cross-correlation
operations could be iterated by passing the results of one layer of coincidence detections down (or
up) to another layer (Figure 11, cf. (Travis 1988)). Such iterations could provide a temporal sieve
through which predominant periodicities could be extracted. Various degrees of global interaction
can also be implemented. Depending upon the length and distribution of synapses on horizontal
fibers, local cross-correlations could be computed with short systems of horizontal fibers, while
more global cross-correlations could be computed with longer systems having more far-flung
synapses.

In audition, a temporal cross-correlation network would be capable of computing a global
correlation function similar to the population autocorrelation functions which can support the
discrimination of periodicity pitch and vowel identity. Many auditory form invariances which are
related to frequency ratios (the octave, chords, periodicity pitch, musical consonance) are directly
explained by the inherent harmonic structure of interspike intervals. Pairs of spike trains containing
intervals related by simple, low integer ratios (i.e. 1:2 octave, 2:3 fifth, 3:4 fourth) will be more
highly correlated than those whose intervals have some other relationship. If the delays involved
are long enough, rhythm and higher order temporal structure can be analyzed with the same
correlative operations that would be utilized for periodicity pitch (Boomsliter & Creel 1962). The
analysis of longer-term temporal patterns would open the door to the analysis of the slower time
patterns associated the perceptual qualities of other sensory modalities: colors, tastes, smells,
pains, and vibratory textures. Longer reverberatory times would also allow slower temporal
patterns to circulate in the network, to be correlated with those which are entering at any given
moment. Memory-facilitated operations would thus consist of the "broadcast" of characteristic
temporal sequences throughout various networks, thereby increasing the correlations of incoming
temporal patterns that were similar in some respect to the memory generated sequence.



Temporal cross-correlational operations could conceivably also play a role in vision. Texture
discrimination is similar to the discrimination of different musical chords in that both can be
described in terms of either power spectra (of spatial frequencies) or autocorrelation functions (of
spatial intervals).

"A current interpretation of the role of frequency channels in vision is that local, but not global, Fourier analysis is
performed. On this view patches of the visual image are analyzed into about half a dozen frequency bands at about
twenty different orientations. There would be several thousand such patches in the whole visual field, and they would
subtend a fraction of a degree in the fovea, and several degrees in the periphery. The result of the analysis would
correspond to coefficients of some hundred sinusoids and cosinusoids of differing frequency and orientation for each
patch, and the range of frequencies covered would vary with eccentricity and size of the patch. This scheme is a
tentative one, but it is consistent with much of the psychophysical and neurophysiological evidence....In vision, the
comparable advantage may be that the spatial frequency components represent a description of 'texture' which applies
to the whole of each patch. This would be a step beyond a point-by-point description, just as the cochlea goes
beyond a moment-by-moment of sound pressure." (Woodhouse & Barlow 1982).

An autocorrelation-based alternative to an array of spatial frequency detectors is to represent the
distributions of spatial intervals in various directions for each retinotopic point. If one can compute
a local spatial  interval distribution (spatial autocorrelation function) for several orientations, then
one has a processing scheme which explains a large part of the psychophysics of the discrimination
of texture and the recognition of dotted forms (Uttal 1975; Uttal 1988). However, spatial distances
can be transformed into temporal patterns by either a scanning process (Pitts & McCulloch 1947),
by saccades (Reitboeck et al 1988), or by propagation through horizontal fiber systems which
cross retinotopic maps at various angles (Figure 10, bottom)(Pabst et al 1989). Lateral inhibitory
connections at lower stages of visual processing could also serve the same purpose. Thus instead
of arrays of spatial frequency detectors (which, like the "periodicity detectors" in the cochlear
nucleus have overly broad tuning) the spatial intervals might be encoded in the time patterns of
discharges at each retinotopic point.

One advantage of this strategy is that the harmonic structure of the resulting time intervals can then
be used to compute ratios of spatial intervals. While musical chords are perceptually characterized
by ratios of sound frequencies and remain similar when all frequencies are shifted upward by a
constant factor, textures are perceptually characterized by ratios of spatial frequencies and remain
recognizably similar under different magnifications. Invariance of form under different
magnifications is of obvious importance to the recognition of objects which are seen at different
distances. In this context, it is of interest to note that in auditory frequency maps, being roughly
logarithmic, a constant distance or conduction time corresponds to a constant frequency ratio, and
in the visual cortex, being also roughly logarithmic (Schwartz 1980; De Valois 1990), a constant
distance or conduction time corresponds to a constant spatial ratio. This conceptual ground,
concerning perceptual invariances and "the exchangeability of time and space," was, of course,
originally covered long ago (Pitts & McCulloch 1947): "Octaves span equal cortical distances, as
on the keyboard of a piano.").

Two existing texture discrimination models (Reitboeck et al 1988; Pabst et al 1989) convert spatial
intervals into time (interspike) intervals. These models use precise neural synchronicities to bind
perceptual elements together into wholes (so as to explain the findings of Gray & Singer (Singer
1990)), but absolute synchronicities
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may not be necessary if local interval distributions can be cross-correlated in networks with many
possible delays. Since spatial autocorrelation functions could be directly implemented in running
interspike interval distributions of each cortical patch, spatial frequency representations potentially
subserving many  form invariances (e.g. translation, rotation, magnification) (Reitboeck &
Altmann 1984; Gardenier et al  1986; Vol et al  1989) may be realizable in the time domain by
asynchronous delay/coincidence mechanisms.

The asynchronous neural delay nets proposed here could perform discriminative functions by
selectively strengthening synapses representing different sets of relative lags. In such a scheme
adaptive synaptic modification effectively chooses which delays (hence, which correlations) are
relevant to detect a given temporal pattern. In this context cortical "assimilation" of stimulus
rhythms during conditioning (John 1967) may reflect an ongoing strengthening of specific sets of
interneural delays in the wake of a temporally patterned input. Since characteristic temporal patterns
are the output of such an array, synaptic modification in coincidence nets can also serve to
adaptively generate temporally structured outputs. Since the hippocampus and the cerebellum are
also organized along the same general cortical plan (horizontal fiber systems, principal cells with
oriented dendritic trees, local inhibitory interneurons), analogous asynchronous adaptive timing
operations could also perhaps be envisioned for those structures as well.



9. Higher order resonances

Ultimately, one would want to embed adaptive timing nets tuned for particular sensory tasks in a
larger framework in which all specialized nets are connected to each other via recurrent pathways.
Cortical anatomy shows a plentiful abundance of such recurrences (Ramon y Cajal 1894/1990;
McCulloch 1947). Each recurrent pathway has its own reverberation time, and cortical physiology
shows an abundance of reverberations and slow oscillations(Chang 1959; Gerard 1959; Walter
1959b; Walter 1959a; Basar 1990). The particular reverberation times between a particular cortical
region and each of all other regions might produce characteristic sequences of returning signals. A
temporally-structured message is broadcast to other nodes, facilitating the processing of similarly
structured temporal patterns in the other nodes, and evoking a response from every other node
which has its own characteristic pattern and return time. By this organization, complex, global
resonances would be set up in the network which could be switched, depending upon the history
of the network and its inputs (Greene 1962). It is then not such a leap to connect this perspective
with theories of interacting cognitive nodes in which each node has its own time course of
activation and extinction (MacKay 1987).The notion of dynamic organization as a set of global
resonance patterns is an old one common to both theories of life and of neural networks: (Lotka
1924/1956; McCulloch & Pitts 1943; McCulloch 1969; Eigen 1974))(Rashevsky 1948; Hebb
1949; Maturana 1970; Katchalsky et al  1972; Maturana & Varela 1973; Powers 1973; Varela
1979; Pattee 1982; Kampis 1991b; Rosen 1991). In the words of Ernst Mach:

"What is true of the pendulum is true of every vibrating body. A tuning fork, when it sounds, also vibrates. It
vibrates more rapidly when its sound is higher; more slowly when it is deeper. The standard A of our musical scale
is produced by about four-hundred and fifty vibrations per second.
"...We strike as many [differently tuned] forks as we will, the fork tuned to A is perfectly indifferent to their notes; it
is deaf, in fact, to all except its own; and if you strike three, four, five, or any number whatsoever, of forks all at the
same time, so as to make the shocks which come from them ever so great, the A fork will not join in the vibrations
unless another fork A in the collection struck. It picks out, in other words, from all the notes sounded, that which
accords with it.
"The same is true of all bodies which can yield notes. Tumblers resound when a piano is played, on the striking of
certain notes, and so do window panes. Nor is the phenomenon without analogy in different provinces. Take a dog
that answers to the name "Nero." He lies under your table. You speak of Domitian, Vespasian, and Marcus Aurelius
Antonius, you call upon all the Roman Emperors that occur to you, but the dog does not stir, although a slight
tremor of his ear tells you of a faint response of his consciousness. But the moment you call "Nero" he jumps
joyfully towards you. The tuning fork is like your dog. It answers to the name A."(Mach 1865)
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