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Abstract
This paper introduces hyperspherical prototype
networks, which unify regression and classifi-
cation by prototypes on hyperspherical output
spaces. Rather than defining prototypes as the
mean output vector over training examples per
class, we propose hyperspheres as output spaces
to define class prototypes a priori with large mar-
gin separation. By doing so, we do not require any
prototype updating, we can handle any training
size, and the output dimensionality is no longer
constrained to the number of classes. Further-
more, hyperspherical prototype networks gener-
alize to regression, by optimizing outputs as an
interpolation between two prototypes on the hy-
persphere. Since both tasks are now defined by
the same loss function, they can be jointly op-
timized for multi-task problems. Experimental
evaluation shows the benefits of hyperspherical
prototype networks for classification, regression,
and their combination.

1. Introduction
This paper presents a class of deep networks that employ
hyperspheres as output spaces with an a priori defined or-
ganizations. Standard classification (with softmax cross-
entropy) and regression (with squared loss) are effective,
but train in a fully parametric manner, ignoring known in-
ductive biases, such as large margin separation, simplicity,
and knowledge about source data (Mitchell, 1980). More-
over, they require output spaces with a fixed output size,
either equal to the number of classes (classification) or a
single dimension (regression). In this work, we propose
networks with output spaces that can incorporate inductive
biases prior to learning and have the ability to handle any
output dimensionality.

Our approach is similar in spirit to recent prototype-based
networks for classification, which employ a metric output

1ISIS Lab, University of Amsterdam 2UvA-Bosch Delta Lab,
University of Amsterdam. Correspondence to: Pascal Mettes
<P.S.M.Mettes@uva.nl>.

Copyright 2019 by the author(s).

(a) Classification. (b) Regression.

Figure 1. This paper demonstrates that for (a) classification and (b)
regression, output spaces do not need to be learned, they can be
composed a priori when employing hyperspherical output spaces.
This results in effective deep networks with flexible output spaces,
integrated inductive biases, and the ability to optimize both tasks
in the same output space without further tuning.

space and divide this space into Voronoi cells around a pro-
totype per class, defined as the mean location of the training
examples (Guerriero et al., 2018; Hasnat et al., 2017; Jetley
et al., 2015; Snell et al., 2017; Wen et al., 2016). While
intuitive, this definition alters the true prototype location
with each mini-batch update, which means that it requires
constant re-estimation. As such, current solutions either
employ coarse prototype approximations or are limited to
few-shot settings. In this paper, we question this prototype
definition and propose an alternative.

For classification, our notion is simple: when relying on
hyperspheres as output spaces, prototypes do not need to be
inferred from data. By placing prototypes as uniformly as
possible on the hypershere, we obtain prototypes with large
margin separation, as visualized in Fig. 1a. We outline evolu-
tionary algorithms to position prototypes on the hypersphere
prior to training. We furthermore extend the evolutionary al-
gorithms to incorporate privileged information about classes
to obtain output spaces with semantic class structures. Train-
ing and inference is in turn done through cosine similarities
between examples and their class prototypes.

Prototypes that are a priori positioned on hyperspherical
outputs extend beyond classification to regression, where
we maintain two prototypes, denoting the regression bounds.
The idea is to perform optimization through a relative cosine
similarity of the output predictions and the two prototype
bounds, as visualized in Fig. 1b. This extends standard
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Hyperspherical Prototype Networks

regression to higher-dimensional outputs, which provides
additional degrees of freedom not possible with standard
regression and obtains better results. Furthermore, since we
optimize both tasks with a squared cosine similarity loss,
classification and regression can be performed jointly in the
same output space, without the need to tune and weight the
different tasks.

Experimentally, we find that hyperspherical prototype net-
works are effective for classification, especially when output
spaces are compact and privileged information is incorpo-
rated. Furthermore, they obtain preferable results over stan-
dard approaches for regression and multi-task learning. The
optimization and inference of our approach come with mini-
mal code adjustments.

2. Model
2.1. Hyperspherical prototype classification

For classification, we are given N training examples
{(xi, yi)}Ni=1, where xi 2 RI and yi 2 C denote the
inputs and class labels of the ith training example,
C = {1, ..,K} denotes the set of K class labels, and
I denotes the input dimensionality. Prior to learning,
the D-dimensional output space is subdivided approx-
imately uniformly by prototypes P = {p1, ...,pK},
where each prototype pk 2 SD�1 denotes a point on
the hypersphere. Here, we first provide the optimization
for hyperspherical prototype networks given a priori
provided prototypes. Then we outline how to compute
the hyperspherical prototypes in a data-independent manner.

Loss function and optimization. For a single training
example (xi, yi), let zi = f�(xi) denote the D-dimensional
output vector given a network f�(·). Because we fix the
organization of the output space, as opposed to learning it,
we propose to train a classification network by minimizing
the angle between the output vector and the prototype pyi

for ground truth label yi, so that the classification loss Lc to
minimize is given as:

Lc =

NX

i=1

(1� cos ✓
zi,pyi

)

2,

=

NX

i=1

(1� |zi · pyi |
||zi|| ||pyi ||

)

2.

(1)

The loss function aims to maximize the cosine similarity
between the output vectors of the training examples and
their corresponding class prototypes. Figure 2 provides
two illustrations in a 3D output space for a training example
(orange), which moves towards the hyperspherical prototype
of its respective class (blue) given the cosine similarity. The
higher the cosine similarity, the smaller the squared loss
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Figure 2. Visualization of hyperspherical prototype networks dur-
ing training for classification. The main idea of our approach
is for output predictions (orange) to move angularly towards the
ground truth prototype (blue), using a squared cosine similarity
loss between the output and class prototype (cos ✓zi,pyi

).

in the above formulation. We note that unlike common
classification losses in deep networks, our loss function is
only concerned with the mapping from training examples to
a pre-defined layout of the output space; neither the space
itself nor the prototypes within the output space need to be
learned or updated.

Since the class prototypes do not require updating, our net-
work optimization only requires a backpropagation step with
respect to the training examples. Let ✓i be shorthand for
✓
zi,pyi

. Then the partial derivative of the loss function of
Eq. 1 with respect to zi is given as:

d

zi
(1� cos ✓i)

2
= 2 · (1� cos ✓i) ·

d

zi
(1� cos ✓i), (2)

by the chain rule, with:

d

zi
(1� cos ✓i) =

cos ✓i · zi
||zi||2

� pyi

||zi|| · ||pyi ||
. (3)

The remaining layers in the network are backpropagated in
the conventional manner given the error backpropagation of
the training examples of Eq. 2.

Hyperspherical prototype networks minimize the angle be-
tween output vectors and fixed class prototypes. As such,
for a new data point x̃, prediction is performed by comput-
ing the cosine similarity to all class prototypes and selecting
the class with the highest similarity:

c⇤ = argmax

c2C

�
cos ✓f�(x̃),pc

�
. (4)

Obtaining hyperspherical prototypes. The optimization
hinges on the presence of class prototypes that divide the
output space prior to learning. For D output dimensions
and K classes, this amounts to a spherical code problem of
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optimally separating K classes on the D-dimensional unit-
hypersphere SD�1 (Saff & Kuijlaars, 1997). For D = 2,
this can be easily solved by splitting the unit-circle S1 into
equal slices, separated by an angle of 2⇡

K . Then, for each
angle  , the 2D coordinates are obtained as (cos , sin ).

For D � 3, no such optimal separation algorithm exists.
This is known as the Tammes problem (Tammes, 1930), for
which exact solutions only exist for optimally distributing a
handful of points on S2 and none for S3 and up (Musin &
Tarasov, 2015). To obtain hyperspherical prototypes for any
output dimension and number of classes, we first observe
that the optimal set of prototypes, P ⇤, is the one where the
largest cosine similarity between two class prototypes pi,
pj from the set is minimized:

P ⇤
= argmin

P 02P

✓
max

(k,l,k 6=l)2C
cos ✓(p0

k,p
0
l)

◆
, (5)

where P contains all sets of K vectors on SD�1. To obtain
a set of prototypes on the hypersphere that adheres to Eq. 5,
we outline an evolutionary algorithm for large margin
separation. For a set of prototypes P , the evolutionary
algorithm has a fitness function g(P ), which returns the
minimum cosine distance between the prototype pairs in
the individual. For every new generation (300 in total),
we sample parents (30% from population of 3,000) using
fitness proportionate selection and offsprings are produced
using single-point row crossover (each parent pair produces
300 offsprings). Before insertion into the population, each
new individual undergoes uniform mutation (each feature
is replaced by uniform sample with p = 0.01). The final
population size is decreased back to the original size by
sampling individuals for survival, proportional to g(P ).

Prototypes with privileged information. The evolu-
tionary algorithm results in a set of prototypes separated
on the hypersphere in a data-independent manner. Without
any prior knowledge, each class will be randomly assigned
to an individual prototype. Here, we show how privileged
information about classes enables class prototypes with
semantic consistency. Intuitively, all classes should be far
away from all other classes, but more so for dissimilar
classes than similar classes. For example, the prototype
angle between cat and tiger should be smaller than the
angle between cat and bulldozer.

To incorporate our intuition about class semantics through
privileged information (Vapnik & Izmailov, 2015) we adapt
our evolutionary algorithm to exploit word2vec (Mikolov
et al., 2013) representations of the class names. We note
that the names of the classes generally come for free. To
encourage finding hyperspherical prototypes that incorpo-
rate semantic information, we add a similarity score to the
fitness function of the algorithm. This similarity score de-
scribes how similar the neighbourhoods of classes in a set
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Figure 3. Visualization of hyperspherical prototype networks dur-
ing training for regression. The main idea is for output predictions
(orange) to move angularly towards the turquoise circle, which
corresponds to the ground truth regression value, depending on a
squared cosine loss which depends on the upper bound (cos ✓zi,pu )
and the ground truth value (ri).

of prototypes are to the neighbourhoods in the word2vec
representations. For every class prototype pi, sorting based
on the cosine similarity induces a ranking of ‘closeness’ to
each prototype pj . We compute the distance between the
word2vec order wij and the ranks induced by the prototype
order pij as: dr(w, p) =

P
i,j |rank(wij)� rank(pij)|.

The similarity score is defined to be the inverse of dr(w, p)
and is added to the fitness function with a weight parame-
ter � = 10 that balances the importance of the semantics
and the separation. Since the best ordering is given by the
word2vec representations, we rely on Principal Component
Analysis to reduce these to the desired number of dimen-
sions and use the resulting representations to initialize our
population. This evolutionary algorithm results in a set of
prototypes on the hypersphere with large margin separation
and with a semantic structure from prior knowledge.

2.2. Hyperspherical prototype regression

While current prototype-based works focus exclusively on
classification, we show here that regression can be natu-
rally handled in hyperspherical prototype networks as well.
In a regression setup, we are given N training examples
{(xi, yi)}Ni=1, where yi 2 R now denotes a real-valued
regression value. The upper and lower bounds on the re-
gression task are denoted as vu and vl respectively and are
typically the maximum and minimum regression values of
the training examples. To perform regression with hyper-
spherical prototypes, we first observe that training exam-
ples should no longer point towards a specific prototype as
done in classification. Rather, we maintain two prototypes:
pu 2 SD�1 which denotes the regression upper bound and
pl 2 SD�1 which denotes the lower bound. Their specific
direction is irrelevant, as long as the two prototypes are dia-
metrically opposed, i.e. cos ✓

pl,pu = �1. The idea behind
hyperspherical prototype regression is to perform an interpo-
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lation between the lower and upper prototypes. We propose
the following hyperspherical regression loss function:

Lr =

NX

i=1

(ri � cos ✓
zi,pu)

2, (6)

ri = 2 · yi � vl
vu � vl

� 1. (7)

Eq. 6 outlines a squared loss function between two values.
The first value denotes the ground truth regression value,
normalized based on the upper and lower bounds. The sec-
ond value denotes the cosine similarity between the output
vector of the training example and the upper bound proto-
type. The intuition behind the loss function is shown in
Fig. 3 for a 3D output space, which shows two artificial
training examples with a ground truth regression value ri is
zero. Due to the symmetric nature of the cosine similarity
with respect to the upper bound prototype, any output of the
training example on the turquoise circle is equally correct.
As such, the loss function of Eq. 6 adjusts the angle of the
output prediction either away or towards the upper bound
prototype, based on the difference between the expected and
measured cosine similarity to the upper bound.

Our approach to regression differs from standard regres-
sion, which computes and backpropagates a loss directly on
one-dimensional outputs. In the context of this work, this
corresponds to an optimization on the line from pl to pu.
Our approach generalizes regression to higher dimensional
output spaces. While we still aim for an interpolation be-
tween two points on the line, the ability to project to higher
dimensional outputs provides additional degrees of freedom
to help the regression optimization. As shown in the experi-
ments, this generalization results in a better and more robust
performance than mean squared error.

2.3. Joint regression and classification

In hyperspherical prototype networks, classification and
regression are optimized in the same manner based on a
squared cosine similarity loss. We show that both tasks can
be optimized not only with the same base network, as is
common in multi-task learning (Caruana, 1997), but can
even be done in the same output space. To do so, all that
is required is to place the upper and lower polar bounds
for regression in opposite direction along one axis. The
other axes can then be used to maximally separate the class
polar prototypes for classification. Optimization is as simple
as summing the losses of Eq. 1 and 6. Unlike multi-task
learning on standard losses for classification and regression,
our approach requires no hyperparameters to balance the
tasks, as the proposed losses are inherently in the same
range and have identical behaviour. This allows us to solve
multiple tasks at the same time in the same space without
any task-specific tuning.

3. Experimental evaluation
3.1. Classification

We start our experiments by investigating classification.
Here, we evaluate the hyperspherical prototypes with large
margin separation, we investigate the effect of privileged
information when constructing hyperspherical prototypes,
and we compare with existing prototype approaches.

Implementation details. For all our experiments,
stochastic gradient descent is used as the optimizer, with
a learning rate of 0.01, momentum of 0.9, weight decay
of 1e-4, batch size of 128, no gradient clipping, and no
pre-training. All networks are trained for 250 epochs, where
after 100 and 200 epochs, the learning rate is reduced by
one order of magnitude. For data augmentation, we perform
random cropping and random horizontal flips.

Evaluating hyperspherical prototypes. We first
evaluate the effect of hyperspherical prototypes with large
margin separation using evolutionary algorithms. We
perform this experiment on CIFAR-100 and ImageNet-200.
CIFAR-100 consists of 60,000 images of size 32x32
from 100 classes. ImageNet-200 is a subset of ImageNet,
consisting of 110,000 images of size 64x64 from 200
classes (Li et al.). For both datasets, 10,000 examples are
used for testing. ImageNet-200 provides a challenging
and diverse classification task, while still being condensed
enough to enable broad experimentation across multiple
network architectures, output dimensions, and hyper-
spherical prototypes. We compare to two baselines. The
first consists of one-hot vectors on the C-dimensional
simplex for C classes, as proposed in (Chintala et al., 2017).
This baseline adheres to the class encoding in softmax
cross-entropy optimization on the simplex. The second
baseline consists of word2vec vectors for each class based
on their name (Mikolov et al., 2013). This experiment is
performed for three output dimensionalities {10, 25, 100}.

The results with a ResNet-32 network (He et al., 2016) are
shown in Table 1. For both CIFAR-100 and ImageNet-
200, the hyperspherical prototypes obtain the highest scores
when the output size is equal to the number of classes. The
baseline with standard one-hot vectors on the simplex can
not handle fewer output dimensions. Our approach can, and
maintains most of the accuracy when using only a quarter
of the output space. For CIFAR-100, the hyperspherical
prototypes perform ten to over fifteen percent points better
than the baseline with word2vec prototypes. On ImageNet-
200, the behavior is similar. When using even fewer output
dimensions, the relative accuracy of our approach increases
further. These results show that hyperspherical prototype
networks can handle any output dimensionality and outper-
form prototype alternatives.
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CIFAR-100 ImageNet-200
Dimensions 10 25 100 25 50 200

One-hot - - 60.9 - - 32.9
Word2vec 29.0 45.4 56.1 21.2 27.7 30.0
This paper 49.5 60.9 64.1 36.6 42.8 44.9

Table 1. Accuracy (%) of our hyperspherical prototypes compared
to baseline prototypes within the same framework on CIFAR-100
and ImageNet-200, using ResNet-32 as architecture. Hyperspheri-
cal prototypes with large margin separation can handle any output
dimensionality, unlike standard one-hot class encodings, while
obtaining the best scores across dimensionality and dataset.

CIFAR-100 ImageNet-200
Dimensions 10 25 100 25 50 200

One-hot - - 72.2 - - 60.4
Word2vec 36.6 61.0 71.9 35.9 46.0 56.6
This paper 60.9 67.1 72.3 55.6 56.3 59.3

Table 2. Accuracy (%) of our hyperspherical prototypes compared
to baseline prototypes within the same framework on CIFAR-100
and ImageNet-200, using DenseNet-121 as architecture. Akin
to the results for ResNet-32, hyperspherical prototypes yield a
favorable accuracy across dimensionality and dataset, highlighting
their effectiveness.

We also investigate the effectiveness of our approach with a
deeper and more recent DenseNet-121 architecture (Huang
et al., 2017). Different to the experiments on ResNet-32,
we observe that the baseline prototypes now obtain results
similar to our approach when the number of output
dimensions equal the number of classes, which can be
explained by the significant increase in model depth and
connectivity. Interestingly, we observe that when using
smaller output spaces, our approach retains even more of
the classification performance relatively and absolutely.
This does not hold for the word2vec prototypes, as is also
the case with ResNet-32. Overall, the experiments show
that hyperspherical prototype networks are effective across
multiple datasets and network architectures, especially
when using compact output spaces.

Prototypes with privileged information. Second,
we evaluate the effect of incorporating privileged informa-
tion from class names when obtaining the hyperspherical
prototypes. With privileged information, a semantic class
structure can be enforced in the output space. We envision
that such a semantic class structure makes optimization
easier and is beneficial when learning from fewer output
dimensions. To that end, we investigate classification on
CIFAR-100 using restricted output dimensions. We rely
on a ResNet-32 architecture with a wide range of output
dimensions.

CIFAR-100
Dimensions 3 5 10 25 50 100

This paper 4.9 24.4 49.5 60.9 63.0 64.1
+ Privileged info 8.8 30.3 53.4 61.5 64.2 64.4

Table 3. Accuracy (%) of hyperspherical prototype networks with-
out and with semantic class structures from privileged information
on CIFAR-100 using ResNet-32 as network architecture. Incor-
porating class semantics into hyperspherical prototypes results in
better classification accuracy, especially when output spaces are
low-dimensional.

In Table 3, we provide the results of our approach both
without and with privileged information on CIFAR-100.
The further the output space is reduced, the better the
relative accuracy of the hyperspherical prototypes with
semantic class structure. When using only five or ten output
dimensions, incorporating class semantics through privi-
leged information improves results by four to six percent
points. Across all output dimensionalities, we observe a
preference for a semantic class structure, highlighting its
effectiveness in hyperspherical prototype networks.

Comparison to other prototype networks. Third,
we compare to the standard in prototype-based networks,
where prototypes are defined as the class means and the
Euclidean distance is used (Guerriero et al., 2018; Jetley
et al., 2015; Snell et al., 2017; Wen et al., 2016). We have
opted to compare to the work of Guerriero et al. (2018),
since it can handle any number of training examples
and any output dimensionality, akin to our approach.
For the classification comparison we follow (Guerriero
et al., 2018) and report on CIFAR-100. We have run the
baseline graciously provided by the authors with the same
hyperparameter settings and network architecture as used in
our paper, be it that we report all their settings for prototype
computations: mean condensation, mean decay, and online
mean updates.

In Fig. 4, we provide the test accuracy as a function of
the training epochs on CIFAR-100. Overall, our approach
provides multiple benefits over (Guerriero et al., 2018):

1. The convergence of hyperspherical prototype networks
is faster and reaches better results than the baselines.
Fig. 4 shows that our approach obtains a higher test
accuracy than the baselines after few training epochs.
During the first 100 epochs, our approach performs
between 5 and 10 percent points better than the baseline
and the final improvement is 2 to 4 percent points.

2. The test accuracy of hyperspherical prototype networks
is smoother than the baseline. Fig. 4 shows how our ap-
proach obtains a test accuracy that gradually improves
over the training epochs and clearly converges, while
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Figure 4. Classification comparison of hyperspherical prototype
networks to (Guerriero et al., 2018). Our approach outperforms the
baseline across all their settings when using the same hyperparame-
ter settings and network architecture, highlighting its effectiveness,
while our approach alleviates the need to compute and update the
class prototypes themselves.

the test accuracy of the baseline behaves more erratic
between training epochs.

3. The optimization of hyperspherical prototype networks
is computationally easier and more efficient. After a
feed forward step through the network, each training
example only needs to compute the cosine similarity
with respect to their respective class prototypes. The
baseline needs to compute a distance to all classes, fol-
lowed by a softmax. Furthermore, the class prototypes
require constant updating, while our prototypes remain
fixed. Lastly, hyperspherical prototype networks are
easier to implement and require only a few lines of
code given pre-computed prototypes, which does not
hold for other prototype-based networks.

Overall, we conclude that hyperspherical prototype net-
works provide a fast, effective, and easy approach to
prototype-based deep networks.

3.2. Regression

Next, we evaluate hyperspherical prototype networks for
regression. We evaluate on the challenging task of pre-
dicting the creation year of paintings. We focus on paint-
ings from the 20

th century available as part of the Om-
niArt dataset (Strezoski & Worring, 2017). This results in
a dataset of 15,000 training examples and 8,353 test exam-
ples. We employ a ResNet-16 architecture (He et al., 2016)
trained akin to the classification setup. The Mean Absolute
Error is adopted for evaluation. We compare to a squared
loss regression baseline, where we normalize and clamp the

Figure 5. Mean absolute error (in years) for predicting the creation
year of paintings from the OmniArt dataset (Strezoski & Worring,
2017). Our approach outperforms standard squared loss regres-
sion with statistical significance using both SGD and Adam as
optimizers.

outputs between 0 and 1 using the upper and lower bounds
to provide a fair comparison. For the baseline, we also in-
clude variants where the output layer has more dimensions,
with an additional layer to a one-dimensional output.

Figure 5 provides an overview of the regression accuracy
of our approach compared to the baseline. When using
Stochastic Gradient Descent as the optimizer, the squared
loss regression baselines all fail to converge, resulting in
high error rates. Our approach using SGD does converge and
obtains improved results. Given the large difference in ac-
curacy, we also reran all experiments using Adam (Kingma
& Ba, 2014). With this setting, the baselines perform better.
However, our approach also improves in regression accu-
racy. We find that, using Adam, our approach with a two-
dimensional output significantly outperforms the baseline
with a two-dimensional plus an additional one-dimensional
layer (p = 0.02 for a two sample t-test, H0 = both samples
have same mean). This also holds for the comparison with
three dimensions (p = 0.01). With our approach, we ob-
serve that using three dimensions over two results in slightly
better accuracy, but not significantly (p = 0.9). We con-
clude that hyperspherical prototype networks provide an
effective and robust solution for regression.

3.3. Joint classification and regression

Finally, we investigate the possibility and potential of
optimizing classification and regression tasks jointly in
the same output space. Since both tasks are modeled as
squared cosine similarity losses, an output space can be
structured for both tasks by assigning different tasks to
different subspaces of the hypersphere. We first investigate



Hyperspherical Prototype Networks

0

20

40

60

80

100

120

140

160

180
R

o
ta

ti
on

2

3

4

5

7

D
ig

it

"seven""five" "two"

Figure 6. Joint regression and classification in the same output
space on a rotated MNIST subset as a proof of concept. The same
output space is shown twice for ease of visualization. On the left,
the examples are linearly interpolated along the z-axis. On the
right, the examples are grouped based on their class assignment
on the (x, y)-plane. Since both regression and classification are
modeled as a squared cosine similarity loss, the output space can
be disentangled into multiple tasks and visualized accordingly.

a simple problem for which we can visualize the output
space with only three dimensions. For this, we utilize
MNIST, focusing jointly on class prediction and image
rotation estimation. After that, we focus our attention
again on the OmniArt dataset (Strezoski & Worring, 2017),
where we evaluate the challenging task of jointly predicting
creation year (regression) and art style (classification) on
high-dimensional hyperspheres.

Rotated MNIST. For the first proof of concept, we
use MNIST, where we aim to both classify the digits and
regress on the rotation of the examples. We use the digits
2, 3, 4, 5, and 7 and apply a random rotation between 0
and 180 degrees to each example. The other digits were
not of interest given the rotational range. We employ a
3-dimensional output space, where the classes are optimally
separated along the (x, y)-plane and the regression bounds
are projected along the z-axis. A simple network is used
with two convolutional and two fully connected layers.

Fig. 6 shows the same output space twice, once color coded
for regression (left) once for classification (right). The
figure shows how in one output space, both image rotations
and image classes can be modeled. Along the z-axis,
images are gradually rotated, while the (x, y)-plane is split
into maximally separated slices representing the image
classes. This proof of concept clearly shows that both tasks
can be modeled jointly in the same output space and we
will use this outcome to investigate joint classification and
regression in higher-dimensional output spaces.

Predicting creation year and art style. For the fi-
nal joint regression and classification experiment, we aim to

Creation year Art style
SGD (MAE #) (Accuracy ")

Multi-task baseline N/A 40.4
This paper 71.1 51.6

Creation year Art style
Adam (MAE #) (Accuracy ")

Multi-task baseline 336.2 48.8
This paper 75.3 51.3

Table 4. Regression error (MAE) and classification accuracy (%)
for joint creation year and art style prediction on OmniArt. For
both optimizers, our approach is preferred for the multi-task opti-
mization, since no tuning between the tasks is required.

regress on the creation year on the OmniArt dataset, akin to
our regression-only experiment, as well as classify the art
style. There are in total 46 art style categories, which denote
the school to which the artwork belongs. Example styles in
the dataset include the Dutch and French art schools.

We have trained for joint creation year and art style predic-
tion using a ResNet-16 architecture, akin to the regression-
only experiment. We experiment using both SGD and Adam
as optimizers, since the baseline regression has shown to
be unstable for SGD. We compare to a standard multi-task
baseline, which uses the same network and hyperparameter
settings, but with squared loss for regression and softmax
cross-entropy for classification.

The results are shown in Table 4 for both creation year
(mean absolute error) and art style (classification accuracy).
When using SGD as the optimizer, our approach learns to
optimize for both tasks and improves over an independent
optimization in the same output space for both tasks (47.3
accuracy for style prediction alone). The baseline however
fails to yield any regression scores due to exploding gradi-
ents, while art style yields subpar results. For Adam, we
again observe that our approach is preferred over the base-
line. Noteworthy is the high error for creation year for the
baseline. Upon closer inspection, we found that the loss for
the baseline multi-task approach was dominated by the clas-
sification loss. As such, the regression loss contributed only
marginally, resulting in high regression errors during infer-
ence, hence the need for additional tuning in the baseline
setting. In hyperspherical prototype networks, both tasks
are modelled with the same squared cosine similarity loss,
which means that a tuning of different tasks is not required
in a multi-task setting.

4. Related work
Our approach relates to prototype-based networks, which
have recently gained traction under various names, including
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proxies (Movshovitz-Attias et al., 2017), means (Guerriero
et al., 2018), prototypical concepts (Jetley et al., 2015), and
prototypes (Snell et al., 2017). In general, these works
adhere to the Nearest Mean Classifier paradigm (Mensink
et al., 2013) by assigning training examples to a vector in
the output space of the network, which is defined to be the
mean vector of the training examples. A few works have
also investigated multiple prototypes per class (Movshovitz-
Attias et al., 2017; Yang et al., 2018). Prototype-based
networks result in a simple output layout (Wen et al., 2016)
and generalize quickly to new classes (Guerriero et al., 2018;
Snell et al., 2017; Yang et al., 2018).

While promising, the training of prototype networks is cur-
rently faced with a chicken-or-egg dilemma. Training exam-
ples are mapped to class prototypes, while class prototypes
are defined as the mean of the training examples. Because
the projection from input to output changes continuously
during network training, the true location of the prototypes
changes with each mini-batch update. Obtaining the true
location of the prototypes is expensive, as it requires a pass
over the complete dataset. As such, prototype networks
currently either focus on the few-shot regime (Boney & Ilin,
2017; Snell et al., 2017), or on approximating the prototypes,
e.g. by alternating the example mapping and prototype learn-
ing (Hasnat et al., 2017) or by updating the prototypes online
as a function of the mini-batches (Guerriero et al., 2018).
We propose to bypass the prototype learning altogether by
structuring the output space prior to training. By defining
prototypes as points on the hypersphere, we are able to
separate them with large margins a priori through evolu-
tionary algorithms. The network optimization simplifies to
minimizing a cosine distance between training examples
and their corresponding prototype, alleviating the need to
continuously obtain and learn prototypes. We also note that
we generalize beyond classification to regression using the
same optimization and loss function.

The work of Perrot and Habard (Perrot & Habrard, 2015)
relates to our approach by employing pre-defined proto-
types in Euclidean space in the context of metric learning,
while we employ prototypes with large margin separation
on the unit hypersphere for classification and regression
in deep networks. Bojanowski and Joulin (Bojanowski &
Joulin, 2017) showed that unsupervised learning is possible
by projecting examples to random prototypes on the unit
hypersphere and updating prototype assignments. Here, we
similarly investigate hyperspherical prototypes, but do so
in a supervised setting, without the need to perform any
prototype updating. Recent work of Liu et al. (Liu et al.,
2018) similarly aims for large margin polar separation of
class vectors in the output space by adding the separation as
a regularization to a softmax-based deep network. Here, we
take this notion further by fixing highly separated prototypes
prior to learning, rather than steering them during training,

while enabling the use of prototypes in regression.

Several related works have previously investigated the merit
of optimizing based on angles over distances in deep net-
works. Liu et al. (2016), for example, aim to improve the
separation in softmax cross-entropy by increasing the an-
gular margin between classes. In similar fashion, several
works project network outputs to the hypersphere for clas-
sification through `2 normalization, which forces softmax
cross-entropy to optimize for angular separation (Hasnat
et al., 2017; Liu et al., 2017a; Wang et al., 2018; Zheng et al.,
2018). The work of (Gidaris & Komodakis, 2018) shows
that using cosine similarity in the output helps generaliza-
tion to new classes. The potential of angular similarities has
also been investigated in other layers of deep networks (Liu
et al., 2017b; Luo et al., 2017). In this work, we also fo-
cus on angular separation in deep networks, but do so from
another perspective, namely in a prototype-based setting.

5. Conclusions
This paper proposes hyperspherical prototype networks for
classification and regression. The key insight is that class
prototypes should not be a function of the training examples,
as is currently the standard, because it creates a chicken-
or-egg dilemma during training. Indeed, when network
weights are altered for training examples to move towards
class prototypes in the output space, the class prototype
locations alter too. We propose to treat the output space as
a hypersphere instead, which enables us to distribute pro-
totypes with large margin separation without the need for
any training data and specification prior to learning. Due
to the general nature of hyperspherical prototype networks,
we introduce extensions to deal with privileged information
about class semantics, continuous output values, and joint
task optimization in one and the same output space. Em-
pirically, we have learned that hyperspherical prototypes
are effective, fast to train, and easy to implement, resulting
in flexible deep networks that can handle regression and
classification tasks in compact output spaces.
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