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Introduction
We propose a convolutional neural network with a layer of lateral recurrent connections to 
predict the observed full temporal responses of a neuronal population. The bottom-up 
receptive fields are obtained through transfer learning from an intermediate layer of a 
standard Imagenet-trained DenseNet-121 and the recurrent kernels are learned to fit 
measured neuronal responses, producing high predictive performance. We performed two 
standard neurophysiological V1 experiments on the hidden units and found that the hidden 
units exhibit quintessential contextual modulation effects observed in V1, namely 
longitudinal facilitation and lateral suppression of oriented bars as in association field 
(Kapadia et. al., 1999), as well as contextual modulation resulting in dynamic reduction in 
orientation bandwidths and spatial frequency bandwidths over time (Ringach et. al., 1997, 
2002). Notably, we find that the early layers of a recurrent CNN trained for object 
recognition on the Ecoset dataset (Spoerer et. al., 2020) does not replicate these features 
in its recurrent connections, implying that the neural data prediction objective leads to 
more realistic learned kernels. 

Our results demonstrate that deep learning models with appropriately structured recurrent 
circuits, trained end-to-end for neural response prediction, can be meaningfully analyzed 
and reproduce neurophysiological phenomena, therefore potentially providing a 
computational approach to investigate the mechanisms and circuits of early visual cortex.

Methods and Results Discussion
We recorded spiking activity from 34 neurons in V1, V2 and V4 simultaneously, during a passive fixation task in which 2,250 images 
were presented for 500 ms in each of 8-10 trials. We discretized the temporal response of the neurons with average spike counts  in 
50ms time bins, starting 30ms after the inital presentation of the image (Fig 1A).

The recurrent neural network model (Fig 1B) adopts a transfer learning approach, taking as bottom-up input the response of an 
intermediate layer of a DenseNet-121 to the input image, condensed into 32 hidden units by a 1x1 feedforward convolution, which are 
processed by a 3x3 lateral recurrent kernel over a number of time steps. The recurrent layer updates according to the equation in Figure 
1C, as in (Liang et. al., 2015), and at each timestep, a learned readout compute the predicted output for each modeled neuron, which we 
train to predict the neural response via a standard Poisson loss (Cadena et. al., 2019) averaged over time. Performance is fairly high 
and degrades slightly over time (Fig 1D/E).

We run two physiological experiments on the recurrent hidden layer units of our model, and the first layer of the object 
recognition-trained recurrent CNN from Spoerer et. al., 2020. The first (Fig 2) probes the nature of surround modulation, finding that after 
recurrent processing, units cluster into longitudinally- and laterally- facilitated groups (the former corresponding to the association field as 
in Kapadia et. al., 1997). The second (Fig 3) probes the dynamics of tuning across time to sine-wave gratings of varying spatial 
frequency and orientation. Our model shows sharpening of tuning to both features across time, matching real neural data from Bredfeldt 
et. al. 2002 and Ringach et. al., 1997, while the object recognition model does not.
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Figure 2: Surround 
modulation 
experiment. 
A: example stimuli, 
base (top), 
longitudinal (middle) 
and lateral (bottom) 
surrounds. 
B: distributions of 
the difference 
between the 
responses to 
longitudinal and 
lateral surround 
stimuli in the first 
(top) and last 
(bottom) time steps, 
for our neural data 
prediction model 
(left) and the object 
recognition model 
(right).

Figure 3: Spatial frequency and orientation tuning across time. A: example sine-wave grating stimuli 
(top) and tuning to both features in the first (middle) and last (bottom) time bins of a single model unit. 
B: average half-height bandwidth of tuning to orientation (top) and frequency (bottom) of our neural 
data prediction model’s units (left) and the object recognition model’s units (right) across time, 
showing a sharpening effect in our model.

Figure 1: Data, model, and performance. A: example discretized temporal response of one neuron. 
B: diagram of the predictive CNN model’s architecture. C: update equation of the recurrent 
convolutional layer. D and E: performance across time (measured by Pearson correlation with the real 
neural response on a test set) averaged across neurons (top) and not (bottom).

We find that a recurrent CNN model trained end-to-end to predict neural response in early visual 
cortex both succeeds at that task and learns recurrent circuits that recreate known dynamic tuning 
properties of cortical cells, similar to previous work in retina (Tanuka et. al., 2019). In addition, we 
show that a model trained on object recognition alone does not recreate those properties to the 
same extent, implying that they are not universal properties of functional visual systems, but more 
unique to the brain. This suggests that deep learning models can be used to infer certain properties 
of neural circuits, and that the neural data prediction objective is vital for that purpose.


