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Abstract

Integrating generative models and discriminative mod-
els in a hybrid scheme has shown some success in recog-
nition tasks. In such scheme, generative models are used
to derive feature maps for outputting a set of fixed length
features that are used by discriminative models to perform
classification. In this paper, we present a method, called
posterior divergence, to derive feature maps from the log
likelihood function implied in the incremental expectation-
maximization algorithm. These feature maps evaluate a
sample in three complementary measures: (1) how much
the sample affects the model; (2) how well the sample fits
the model; (3) how uncertain the fit is. We prove that the
linear classification error rate using the outputs of the de-
rived feature maps is at least as low as that of plug-in esti-
mation. We present efficient algorithms for computing these
feature maps for semi-supervised learning and supervised
learning. We evaluate the proposed method on three typical
applications, i.e. scene recognition, face and non-face clas-
sification and protein sequence analysis, and demonstrate
improvements over related methods.

1. Introduction
Generative and discriminative models are two compli-

mentary paradigms of machine learning. Generative mod-
els are particularly useful in dealing with missing data and
discovering latent structures from given data in an unsu-
pervised manner, situated somewhere between clustering
and semi-supervised learning. They are also good at repre-
senting data such as images and variable-length sequences
(e.g. natural language sentences and protein sequences)
with fixed length features, for their flexibility. However,
the classification performance of generative models using
plug-in estimation (i.e. ŷ = sign(P(y = +1 | x, θ) − 1/2) is
generally inferior to discriminative models which are more
powerful in capturing decision boundaries among differ-
ent classes and more widely used in recognition tasks. At
present, several hybrid generative-discriminative schemes

have been proposed to combine the strengths of these two
classes of models in a number of applications, from scene
classification [3], object recognition [5], speech recogni-
tion [19] to biological sequence analysis [6, 21], resulting
in state-of-the-art performance.

These hybrid schemes sought to integrate the intra-class
information from generative models and the complementary
inter-class information from discriminative methods. Typi-
cally, a feature detector or a kernel similarity is derived from
the given generative model. That is, given a learned model
P(x | θ), we find a fixed number of feature maps (or mapping
functions) φi(x, θ) : x→ R for i = 1, · · · ,K. Then we ob-
tain the feature detector Φ(x, θ)= (φ1(x, θ), · · · ,φK(x, θ))T ,
and the kernel similarity K(x, x′; θ) = Φ(x, θ)TΦ(x′, θ). The
resulting features here are not visual features in the normal
sense (e.g. SIFT [13]) but are abstract ones with dimensions
defined by the feature maps and the number of dimensions
K determined by the generative model structure. There are
roughly two classes of hybrid methods: parameter based
methods and random variable based methods.

Parameter based methods were represented by Fisher
kernel (FK) [7] and Tangent vector of posterior log-odds
kernel (TK) [20]. These methods derive feature maps based
on differential operation of the log likelihood function of
generative models, i.e. φi(x, θ) = ∇θi log P(x | θi), and then
construct kernel based on these features and the Fisher in-
formation matrix I: K(x, x′; θ) = Φ(x, θ)T IΦ(x′, θ). As dis-
cussed in [7], embedding the kernel into the classifier is al-
most equivalent to using the feature maps directly in the
classifier because I is close to identity. Thus, these kernels
can effectively be treated as feature maps. These methods,
however, greatly depend on the parametrization of the gen-
erative models. In the case that the number of free model
parameters is less than the number of dimensions of sam-
ples, several samples may map to the same feature, resulting
in an ambiguous and less discriminative representation.

Random variable based methods start from considera-
tions in the free energy score space (FESS) [15]. These
methods also seek to derive feature maps based on the
log likelihood function of a model, as the parameter based
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methods. But they focus on the random variables, rather
than on the parameters in their derivation. The lower bound
of log likelihood (see Equation 1), according to the random
variables, is expanded and each resulting term becomes a
feature map. The feature map measures how well a sam-
ple fits a random variable. This method overcomes the diffi-
culty of the parameter based methods mentioned above, and
could produce informative features even when the model is
imperfect, or the parameters are less than the dimensions of
the samples. However, these methods are still fragile be-
cause its feature maps may degenerate, particularly when
some unorthodox EM algorithms are used. For example,
some hidden variables in [18] are shared by all the sam-
ples and thus their distributions cannot be factorized using
the samples. In this case, feature maps derived from vari-
ables using FESS could produce the same response for mul-
tiple samples and have no discriminative power. Section 5.2
provided details of one such example. Nevertheless, there
might still be useful information that can be extracted from
these random variables, using the method we now propose.

Here, we propose a new hybrid scheme that combine cri-
teria implicit in the random variable based methods and in
the parameter based methods. We motivate our approaches
by three measures to capture more discriminative informa-
tion in samples: (1) how much a sample affects the model;
(2) how well a sample fits the model; (3) how uncertain
the fitting is. The first measure, posterior divergence, as-
sesses the change in model parameters brought on by the
input sample xc, is also characteristic of the parameter based
methods. The second and third measures are addressed in
the inference step in the EM algorithm, i.e. during the in-
ference of hidden variables conditioned on every sample,
and are related to random variable based methods. We will
show that the three measures can be derived from an unified
formulation, and prove that the performance of proposed
method is at least as good as that of plug-in estimation.
Then, the method is evaluated on scene recognition with
PLSA [4], face and non-face classification with MCVQ [18]
and protein sequence analysis with HMM [16].

The remainder of this paper is organized as follows. We
introduce the background and state the problem in Section
2. The formulation of the method is given in Section 3. We
discuss the properties of the proposed method in Section 4.
Section 5 presents three validation experiments. Section 6
draws a conclusion.

2. Background
Current strategies [7, 20, 15] to derive feature maps are

based on the variational EM algorithm [9] that is devel-
oped for learning those generative models whose log like-
lihood functions are intractable to be integrated. It derives
a tractable lower bound for the intractable likelihood func-
tion so that we can perform the learning and inference on

the lower bound instead of the log likelihood.
For a generative model θ, let x ∈ RD be the observed ran-

dom variable; H= (h1, · · · , hM) be the set of hidden random
variables; i and m index samples and hidden variables re-
spectively; Qc(hm) denotes the approximate distribution of
the posterior distribution P(hm | xc). The variational method
derives a lower bound from Jensen’s inequality to approxi-
mate the log likelihood:

log P(x | θ) ≥ −KL(Q(H) ‖ P(x,H)) = −F (Q, θ) (1)

where KL denotes Kullback-Leibler divergence, F denotes
the variational free energy. Q(H) could be factorized ac-
cording to variables Q(H)=

∏
m Q(hm). Q(h) can be further

factorized according to samples Q(h)=
∏

i Qi(h) since sam-
ples are assumed to be i.i.d. Using these factorizations then:

F (Q, θ) =
∑

i
F (Qi, θ) (2)

=
∑

i
EQi [log Qi(H) − log P(x,H | θ)]

Substitute Equation 2 into Equation 1, then the log likeli-
hood of a sample set is expressed as the summation of the
sample log likelihood. So far we could perform EM algo-
rithm on lower bound −F (Q, θ) instead of the log likelihood
log P(x | θ), by alternatively maximizing the lower bound of
the sample set with respect to Qi and θ.

On the other hand, the log likelihood function, i.e. the
lower bound here, implies a group of measures on samples.
Such measures (e.g. E[Q(hm | xi)]) provide a probabilistic
perspective to look at samples and to identify samples. For
brevity, we do not distinguish measure and feature map in
notation. On the basis of the lower bound, FK and TK de-
rive feature maps using differential operation with respect
to parameters {∇θm log−F (Q, θ)}m. FESS expands the low
bound and uses the resulting terms as feature maps. How-
ever, these methods either directly or implicitly evaluate
how much a sample affect the model, or how well a sample
fits the model, but not both simultaneously, thus suffering
from the problems discussed in Section 1.

3. Posterior Divergence
To overcome the degeneration issue, we propose to de-

rive an alternative set of feature maps from the perspec-
tive of incremental EM algorithm [14]. The derived feature
maps address all three measures.

3.1. Formulation
Different from regular EM algorithm that looks at all

samples in each iteration, the incremental EM algorithm
only looks at one or few selected samples to update the
model in each iteration. Let xc be the sample to be looked at
the t-th iteration;X= (x1, · · · , xN) be set of samples contain-
ing xc; X−c be the resulting set of removing xc from X. i in-
dexes samples and m indexes hidden variables. Let P(x | θ)
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be the model estimated from the sample set X and {Qi}i be
the approximations of posterior distributions {P(H | xi, θ)}i
where xi ∈ X; P(x | θ−c) be the model estimated from the
sample set X−c and {Qi

−c}i be the approximations of poste-
rior distributions {P(H | xi, θ−c)}i where xi ∈ X−c.

The E step of incremental EN algorithm computes the
approximate distribution Qc,t of P(H | xc), and M step com-
bines {Qi,t−1}i!c and Qc,t to update the model θ. Therefore
the implied log likelihood of the input sample xc in incre-
mental EM algorithm could be written as the contribution
of xc to the log likelihood for the entire sample set:

L(xc) =
N∑

i=1

[−F (Qi, θ)] −
N∑

i!c

[−F (Qi
−c, θ−c)] (3)

This log likelihood encodes the contributions of the input
sample xc to the model (i.e. θ−c → θ) and the approximate
distributions (i.e. Qi

−c → Qi). Note that it differs from
the previous log likelihood (i.e. lower bound −F (Qc, θ))
derived by variational EM algorithm.

Substitute Equation 2 into Equation 3, we obtain the ex-
pansion of the implied log likelihood. To derive feature
maps, we factorize the terms of the resulting expansion, i.e.
Qi(H) and P(x,H | θ), as follows:

Qi(H) =
M∏

m=1

Qi(hm) (4)

P(x,H|θ) = P(x | pax, θ)
M∏

m=1

P(hm | pam, θ) (5)

where pax and pam are the parent variable sets of x and hm
respectively. pam will be null when hm has no parent vari-
ables. Substitute Equation 5 and Equation 4 into Equation
2, and further substitute the resulting expression into Equa-
tion 3, and rearrange it according to random variables:

L = [
N∑

i=1

EQi log P(x | pax, θ) −
N∑

i!c

EQi
−c
log P(x | pax, θ−c)]

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
x−crossentropy

+ [
N∑

i=1

EQi log P(h1 | pa1, θ)−
N∑

i!c

EQi
−c
log P(h1 | pa1, θ−c)]

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
h1−crossentropy

− [
N∑

i=1

EQi log Qi(h1) −
N∑

i!c

EQi
−c

log Qi
−c(h1)]

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
h1−entropy

+ · · ·︸︷︷︸
h2···hM−1

+ · · ·︸︷︷︸
hM−crossentropy

+ · · ·︸︷︷︸
hM−entropy

(6)

where L !L(xc). The terms are in the form of entropy or
cross entropy functions, which measure the fitness of a sam-
ple to random variables and the uncertainty in the fitness.

Here we make an assumption to formulate a more inter-
pretable expression. If the size of sample set X−c, i.e. n is
relative large, the difference between Qi and Qi

−c is so little
that we could assume that it could be ignored. Hence we
have approximations for any sample xi and variable hm:

Qi(hm) ≈ Qi
−c(hm) (7)

Applying the approximation to Equation 6 and arranging
the resulting expression, we have:

L ≈ [
N∑

i!c

EQi
−c

log
P(x | pax, θ)

P(x | pax, θ−c)
︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

φx
pd

+ EQc
−c

log P(x | pax, θ)]︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
φx

f it

+ [
N∑

i!c

EQi
−c
log

P(h1 | pa1, θ)
P(h1 | pa1, θ−c)

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
φ

h1
pd

+ EQc
−c

log P(h1 | pa1, θ)︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
φ

h1
f it

− EQc
−c

log Qc
−c(h1)

︸!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!︸
φ

h1
ent

] + · · ·︸︷︷︸
h2···hM−1

+[ · · ·︸︷︷︸
φ

hM
pd

+ · · ·︸︷︷︸
φ

hM
f it

− · · ·︸︷︷︸
φ

hM
ent

] (8)

where φv
pd(xc) denotes the posterior divergence function

which is the difference of cross-entropy and measures how
much the sample xc affects the posterior distribution of the
random variable v (measure (1)), and φv

f it(x
c) denotes the

fitness function that measures how well the sample xc fits
the distribution of the random variable v (measure (2)), and
φv

ent(xc) denotes entropy function that measures the uncer-
tainty of an approximation distribution of the random vari-
able v (measure (3)). We refer to the three components as
‘PD-PD’,‘PD-FIT’,’PD-ENT’ respectively, and refer to all
three components as ‘PD’ in the following section. For a
generative model and the input sample xc, we have a set of
feature maps:

Φc : xc → [φx
pd,φ

x
f it;φ

h1
pd,φ

h1
f it,φ

h1
ent; · · · ;φhM

pd ,φ
hM
f it ,φ

hM
ent]

Note that φc is specified for sample xc because the approx-
imate distribution Qc only relates to the sample. Since the
number of feature maps is determined by the model struc-
ture, the sample features given by a model share the same
number of dimensions and could straightforwardly work
with discriminative classifiers (e.g. SVM [22]).

3.2. Algorithms
This section focuses how to estimate the approximation

distributions {Qi
−c}i, the prior model θ−c and the posterior

model θ and so that we could construct feature maps for a
given sample xc using Equation 8. Here we present two al-
gorithms to treat semi-supervised learning (see example in
Section 5.1) and supervised learning (see example in Sec-
tion 5.2) where we assume the extracted features are used
for supervised learning in this paper.

2715



In the standard semi-supervised learning, a generative
model is trained from unlabeled samples X0 and then used
to extract the features of samples X. The procedure is sum-
marized in Algorithm 1. For the supervised learning, a gen-

Algorithm 1 For semi-supervised learning
1: Input: Sample set X = (x1, ..., xN)
2: Given pre-trained θ−c and {Qi

−c}Ni=1 from X−c
3: for c = 1 to N do
4: Qc

−c ← arg maxQc
−c
−F (Qc

−c, θ−c)
5: θ← arg maxθ

∑N
i=1 EQi

−c
log P(x |H, θ−c)

6: Construct Φc with θ, θ−c, {Qi
−c}Ni=1 using Equation 8

7: end for
8: Output: feature map set {Φi}Ni=1

erative model is trained from samples X and used to ex-
tract its features. We describe the procedure in Algorithm
2. Note that in both algorithms, the E step (estimate Q) and

Algorithm 2 For supervised learning
1: Input: Sample set X = (x1, ..., xN)
2: Estimate θ and {Qi}Ni=1 from X using variational EM
3: Use approximation Qi

−c ← Qi

4: for c = 1 to N do
5: θ−c ← arg maxθ−c

∑
i!c EQi

−c
log P(x |H, θ−c)

6: Construct Φc with θ, θ−c, {Qi
−c}Ni=1 using Equation 8

7: end for
8: Output: feature map set {Φi}Ni=1

M step (estimate θ) have analytical solutions and need no
iterations. For N input samples, the two algorithms run E
step and M step for N rounds respectively.

Though posterior divergence is developed on incremen-
tal EM algorithm, it could work with kinds of EM algo-
rithms, such as variational EM algorithm [9], incremental
EM algorithm [14] and Monte Carlo EM algorithm [23] etc.
Further, for inference and learning methods designed for
specific generative models, we always could estimate Qi

−c
at the inference step and θ, θ−c at the learning step. Hid-
den Markov Models with Baum-Welch algorithm [1] will
be presented in Section 5.2 as an illustration example.

4. Properties
This section compares the error rate of posterior diver-

gence with that of plug-in estimation, and investigates its
relationship to previous works [7, 15].

4.1. Error rate comparison with plug-in estimation
The feature maps of posterior divergence define a feature

space whose number of dimensions is fixed for a given gen-
erative model and hence could straightforwardly work with

discriminative classifiers. The following part will show that
the features given by PD working with linear classifier per-
form at least as good as plug-in estimation.

Let x ∈ X be the input sample and y(x) ∈ {−1,+1} be its
label. Assuming the sample setX is modeled by distribution
P(x | θ). In the plug-in estimation, the model parameter θ+1
is learned from samples of a single class labeled as +1 and is
a consistent estimation of true parameter θ∗+1. For an input
sample xc, it is assigned to +1 for P(xc | θ+1) > 1/2 and −1
for otherwise. Then we consider the linear classifier which
the derived features work on. A linear classifier takes the
form of wTΦ(x)+ b where w ∈ (w |w ∈ Rd, ‖w‖= 1), b ∈ R
and its classification error can be shown as [20]:

R(Φ) = min
w,b

Ex,yΨ[−y(wTΦ(x) + b)] (9)

where Φ(·) is the feature map; Ex,y denotes the expectation
with respect to the true distribution P(x, y | θ∗); and Ψ[a] is
an indicator function that takes 1 for a > 0 and 0 for others.

Using the error rate measure defined in Equation 9, we
can show that posterior divergence, when used with linear
classifier, is superior to plug-in estimation, as shown in the
following proposition.

Proposition 4.1. In the posterior divergence feature space
derived from a trained generative model, the error rate of
a linear classifier is at least as low as that of the plug-in
estimation:

R(Φ) ≤ Ex,yΨ[−y(P(y = +1 | x, θ̂) − 1
2

)] = R(λ)

Proof. ∀w ∈ RN , b ∈ R, they always satisfies an inequality
R(Φ) =minw,b Ex,yΨ[−y(wTΦ(x) + b)] ≤ Ex,yΨ(w, b). With
the inequality and let w=1, b=− log 1/2, we have:

R(Φ) = min
w,b

Ex,yΨ[−y(wTΦ(x) + b)]

≤ Ex,yΨ[−y(1TΦ(x) − 1
2

)]

= Ex,yΨ[−y(log P(x | θ̂+1) − log
1
2

)]

= Ex,yΨ[−y(log P(y = +1 | x, θ̂) − log
1
2

)]

= Ex,yΨ[−y(P(y = +1 | x, θ̂) − 1
2

)] = R(λ)

The last equality holds because log is an increasing function
while Ψ[·] is an indicator function. "

For some generative models whose the log likelihood is
intractable, both posterior divergence and plug-in estima-
tion work on the variational approximation of the log likeli-
hood, hence the theorem holds. When models are tractable,
posterior divergence could be straightforwardly extended,
and the above proposition and proof still holds.
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For previous methods [7, 20, 15] that work on the lower
bound of the log likelihood, it always has w, b to satisfy
wTΦ(x)+ b = −F ≈ log P(x) where −F is the lower bound
of log P(x). Let w = θs − θ, b = log P(x | θ) − log 1/2 for
FK, w = [1, (θ+ − θ)T , 0]T , b = − log 1/2 for TK, and w =
1, b = − log 1/2 for FESS, then we could validate that they
perform at least as well as plug-in estimation.

4.2. Relationship to previous methods

It can be shown that if FESS [15] uses the approxima-
tion of Equation 7 and expands the lower bound according
to random variables, its resulting feature maps are equiva-
lent to PD-FT and PD-ENT of posterior divergence. A main
difference between the two methods is PD-PD that encodes
characteristic information of samples. Again, the posterior
divergence factorizes log likelihood according to random
variables and results an appropriate number of dimensions,
while FESS may produces a high-dimensional feature space
but with trivial and less informative dimensions.

The proposed method is also related to FK [7]. Working
on the variational lower bound and using Taylor expansion,
the feature map of FK could be formulated as:

∇θ j log P(x|θ)≈∇θ j (−F (Q, θ))=∇θ j EQlog(v j| pa j, θ j)

where v j is the set of observed or hidden variables parame-
terized by θ j. On the other hand, we can linearize the pos-
terior divergence function using Taylor expansion like FK:

φ
v j

pd =

N∑

i!c

EQi
−c
[log P(v j | pa j, θ j) − log P(v j | pa j, θ j,−c)]

≈
N∑

i!c

(θ j − θ j,−c) · ∇θ j EQi
−c

log P(v j | pa j, θ j)

Note the right term is the feature map derived by FK. It sug-
gests that the posterior divergence function φv j

pd is a linear
combination of FK functions on samples.

5. Experiments

We evaluate the proposed approach on three typical ap-
plications of generative models: scene recognition, face
and non-face recognition, and protein sequence analysis.
In these experiments, FK [7], TK [20] and FESS [15] are
used for comparison. These methods are used as model-
dependent feature extractors whose outputs are delivered to
the linear SVM [22] for classification. We ignore the plug-
in estimation for comparison purpose as its inferiority to
above methods that has been theoretically proved in Propo-
sition 4.1 and experimentally validated in previous works
[7, 15, 20].

5.1. Scene recognition
Several generative models (e.g. PLSA [4] and LDA [2])

have been used in this problem and shown some attrac-
tive characteristics (e.g. discovering topics unsupervisedly).
Here we use PLSA model to learn the feature maps because
it is slightly superior to LDA in scene recognition [3]. The
output features are delivered to SVM for classification.

The CVCL scene database1 is used to test all methods. It
is composed of 4 typical natural scenes (coast, open country,
forest and mountain) and 4 urban scenes (highway, street,
inside city and tall building). We treat the scene recogni-
tion task as 8 two-class problems, each of which classifies a
scene from other 7 ones.

For each image, we extract 200 SIFT descriptors [13]
from 12×12 squares located by the DOG interest point de-
tector. The number of interest points for each image is fixed
through adaptively adjusting the threshold of DOG. With
a code book formed from all descriptors by clustering, de-
scriptors are quantized to visual words and then each image
is further represented by its word histogram.

PLSA [4] is used to model the relationship of visual
words and scenes. Let random variables w, z and d denote
the term, topic and image respectively, and m(w, d) denotes
the number of term w in image d. The joint distribution of
PLSA is P(w, z, d) = [P(w | z)P(d | z)P(z)]m(w,d), and its free
energy is given by:

F =
∑

d,w

m(d,w)
∑

z

Q(z | d,w)[log Q(z | d,w)

− log P(d | z)P(w | z)P(z)]

where Q is the approximation distribution. With this ex-
pression, one could obtain FESS by directly expanding F
according to the terms in the square bracket. The posterior
divergence feature map for the input document dc, as for-
mulated in Equation 8, can be shown in following form:

φc
w :
∑

i!c

EmQi
−c

log
P(w | z, θ)

P(w | z, θ−c)
, EmQc

−c
log P(w | z, θ)

φc
d :
∑

i!c

EmQi
−c

log
P(dc | z, θ)

P(dc | z, θ−c)
, EmQc

−c
log P(dc | z, θ)

φc
z :
∑

i!c

∑

w

mQi
−c log

P(z | θ)
P(z | θ−c)

,
∑

w

mQc
−c log P(z | θ),

∑

w

−mQc
−c log Qc

−c

where mQc is not a real distribution but EmQi takes the ex-
pectation form for brevity. If the number of terms and top-
ics are K,M respectively, the posterior divergence will have
2×K+2+3×M feature maps.

1http://cvcl.mit.edu/database.htm

2717



2 5 10 20 30 40 50 60 70 80
70

75

80

85

90

R
e

co
g

n
iti

o
n

 r
a

te
 (

%
)

Number of topics

 

 

FK
TP
FESS
PD

2 5 10 20 30 40 50 60 70 80
50

55

60

65

70

75

80

85

90

R
e

co
g

n
iti

o
n

 r
a

te
 (

%
)

Number of topics

 

 

PD
PD−FIT
PD−PD
PD−ENT

Figure 1. Performance comparisons on the PLSA model for scene
recognition. The number of topics is variable. Four methods (Top)
and the three components of PD (Bottom) are evaluated.

For each round of test, 30% positive samples are ran-
domly chosen to form training set and another 30% to form
testing set. Same number of samples are for the negative
category. We test FK, TK, FESS and PD as well as its com-
ponents, each for 20 rounds, and report the average results
in Figure 1. As shown in the top figure, PD outperforms
other methods when the topic number K ≤ 60, and takes
the peak performance of all methods when K = 5. We also
found that PD and FESS share similar trend that works well
for small K and then decreases along it, while FK and TK
generally follow an opposite trend. These observations in-
dicate that the two classes of methods have distinct perfor-
mance trends, and that the performance of PD in this case
is closer to the random variable based methods. The bottom
figure presents the comparison of three components of PD,
where PD-FIT outperforms the other two components and
is the key determinant of the trend of PD, confirming that it
is similar to FESS in this case. The other two components
likely capture some non-redundant information as they help
to improve the overall performance.

5.2. Face and non-face classification
To validate the effectiveness of posterior divergence in

unorthodox EM algorithms, we uses MCVQ [18] for face
and non-face classification in the semi-supervised manner.

MCVQ is a generative model developed for learning parts-
based representation. This model is especially suited for
face representation for it works well on registered data.
Here we use the CBCL face database2 for experiment. It
contains 2429 registered faces and all are in form of 19×19
gray images. The CBCL database also has number of non-
face images that could be used as negative samples in test.

We learn a MCVQ model from the face database and
use it to construct feature extractors. In order to learn a
better representation, smoothness and symmetry priors are
imposed using the technique of [11]. Let part number K=6
and the state number J = 10. Then with the learned model,
we are able to construct feature maps for FK, TK, FESS and
PD. Here we present some feature maps of PD for demon-
stration. As shown in [18], the variational free energy of
MCVQ is given by:

F (Q, θ) = EQ[
∑

d,k

rdk log
gdk

adk
+
∑

k, j

sk j log
mk j

bk j

−
∑

d,k, j

rdk sk j logN(xd)]

Since the parameter gdk is shared by all samples in MCVQ,
i.e. EQc [rc

dk]= gdk for any sample c, we could write the rdk
associated feature maps φrdk as:

φc
rdk

:
N∑

i!c

gdk,−c log
adk

adk,−c
, log agdk,−c

dk , log ggdk,−c
dk,−c

where adk,−c is the parameter of the previous model θ−c.
Note that the two functions on the right are independent
with input sample and degenerate to constant. We can val-
idate that in FESS all feature maps φrdk suffer from this de-
generation. In contrast, posterior divergence still works in
this case for the first function.

With the trained MCVQ model, we extract the features
of 400 face images and 400 non-face images of CBCL
database using Algorithm 1. Of these 100 faces and 100
non-faces are randomly selected as training set and the rest
selected as test set for the linear SVM in each test round.
We report the average results of 20 round of tests in Figure
2, with different numbers of states J. The top figure shows
that, in these configurations, all four methods share simi-
lar trends in performance, but our PD method outperforms
the other three methods. The bottom figure shows that the
PD-PD component outperforms the PD-FIT component in
this case. The PD-ENT component shows the poor perfor-
mance. This illustrates that PD-PD in our method can still
extract useful discriminative features based on how much a
sample affects the model, even when the FESS-like PD-FIT
and PD-ENT components degenerate on random variables
rdk, i.e. EQc [rc

dk]=gdk.

2http://cbcl.mit.edu/software-datasets/
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Figure 2. Performance comparisons of face and non-face classifi-
cation. The number of states is variable. Four methods (Top) and
the three components of PD (Bottom) are evaluated.

5.3. Remote homology recognition
In this experiment, we consider remote homology recog-

nition that assigns protein sequences into classes defined in
the SCOP (1.53)3 taxonomy tree. The protein sequences
data is obtained form ASTRAL database4 with the E-value
threshold of 10−25 to reduce similar sequences. All 4352
protein sequences are hierarchically labeled according to
SCOP specification, which results 7 classes, 509 folds, 801
superfamilies and 1294 families. In this experiment, 804,
950, 694, 737, 54, 121 and 992 sequences of 7 classes re-
spectively are available. Following [20], we use the first
4 classes for validation so that 6 two-class problems are
formed. For each two-class problem, 30% samples are ran-
domly selected for training and 40% for testing.

Here we employ hidden Markov models (HMM) [16] for
protein classification because of its ability to model vari-
able length sequences and its state-of-the-art performance.
Let random binary vector qt

1×M and yt
1×N indicate the hid-

den state (M probable states) and output state (N probable
states) at time t, parameters π, AM×M , BM×N be the initial
probability, state changing probability and output proba-
bility. The Baum-Welch algorithm [1] is used to estimate

3http://scop.mrc-lmb.cam.ac.uk/scop/
4http://astral.berkeley.edu/

model parameters θ= (π, A, B). The free energy function of
HMM is given by:

F (Q, θ) = EQ[
M∑

i=1

q0
i log

τi

πi
+

Tc−1∑

t=0

M∑

i, j=1

qt
iq

t+1
j log

gi j

ai j

−
Tc∑

t=0

M,N∑

i, j=1

qt
iy

t
j log bi j]

where qiq j and qiy j could be viewed as two set of variables.
Based on the model θ, we estimate the approximate dis-
tributions {Qi(q0

i , qiq j, qiy j | τ,G)}i through maximizing the
variational lower bound −F (Q, θ) with respect to Qi and
then θ−c with respect to θ. Then the feature maps can be
derived through Equation 8. For example:

φc
qiq j

:
∑

k!c

gk
i j,−c log

ai j

ai j,−c
, gc

i j,−c log ai j, gc
i j,−c log gc

i j,−c

φc
qiy j

:
∑

k!c

hk
i j,−c log

bi j

bi j,−c
, hc

i j,−c log bi j,−c

Note that the difference between FK and TK is that FK
takes single model but TK takes two models of samples
classes into account, although their feature maps share sim-
ilar form (differential operator). Feature vectors of both FK
and TK are normalized to 1, which will improve the per-
formance to some extent. As for FESS and PD, it is worth
noting that the length of feature vector depends on how to
expand the log likelihood into feature maps. In order to get
features (or feature maps) with fixed length from HMM, we
use a standard approach [15] that normalizes the likelihood
by the sequence length.

For each two-class problem, we perform the experiment
on randomly selected training and test sets for 20 rounds.
The average recognition rates are reported in Table 1. We
found that PD outperforms other methods on most data sets
except for the set ‘2-3’. Even for set ‘2-3’, PD’s perfor-
mance is very close to the top performance. In particular,
the fitness component derived from feature maps PD-FIT
share approximate performance with FESS for their similar
definition, which has been previously stated in Section 3.1.

6. Conclusions
In the paper, we present a method to construct feature

maps from generative models, so that one can learn feature
spaces using Bayesian statistical methods, hereby bridging
generative and discriminative models. Feature maps based
on the posterior divergence of of the log likelihood func-
tion implied in the incremental EM algorithm are found to
capture discriminative information that are more complete
and robust than existing parameter based or random vari-
able based methods. The three measures can each be re-
lated to FK and FESS respectively. Our method is able to
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Feature 1 - 2 1 - 3 1 - 4 2 - 3 2 - 4 3 - 4
FK 81.52 82.23 72.30 83.61 68.88 70.36
TK 82.73 82.18 73.94 83.89 70.13 71.08
FESS 84.39 79.60 74.48 81.17 69.06 69.31
PD 87.54 83.60 76.78 83.02 73.34 74.45
PD-PD 84.54 77.61 72.61 79.04 65.88 64.41
PD-FIT 84.34 79.70 74.63 81.18 68.84 69.87
PD-ENT 75.59 71.18 65.91 70.03 59.37 58.76

Table 1. Recognition rates (%) of seven kinds of features. The data
name such as ‘1-2’ indicates that classes 1 and 2 are specified as
the positive and negative categories respectively.

work with generalized EM algorithm, unorthodox EM algo-
rithm, Monte Carlo EM algorithm and specifically designed
learning algorithms on a variety of generative models with
an efficient computation scheme. The method depends on
adopted generative models and the approximation of poste-
rior distribution as Equation 1. Therefore, it requires gener-
ative models themselves being able to model the given data
and that they converge to a local maximum.

Beyond the three applications in the paper, the proposed
method should be easily adoptable for other computer vi-
sion or pattern analysis tasks as long as the data could be
modeled by some generative models. There are other at-
tempts to integrate generative and discriminative models.
For example, [8, 17, 10] use generative models as priors
over discriminative models and [24, 12] learn generative
models with the help of discriminative constraints. These
methods are theoretically distinct from our method (as well
as FESS and FK/TK methods). It would however be inter-
esting to compare their performance with ours in a variety
of classification applications.

Acknowledgment
This work was supported by National Basic Research

Program of China 2011CB302203, NSFC 60833009 and
60975012 and Microsoft Research Asia Fellowship. Lee
is supported by NSF CISE 0713206, AFOSR FA9550-091-
0678 and Pennsylvania Department of Health through the
commonwealth university research enhancement program.

References
[1] L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization

technique occurring in the statistical analysis of probabilistic
functions of Markov chains. The Annals of Mathematical
Statistics, 41(1):164–171, 1970.

[2] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[3] A. Cristani, U. Castellani, V. Murino, and N. Jojic. A hybrid
generative/discriminative classification framework based on
free energy terms. In ICCV, 2009.

[4] T. Hofmann. Probabilistic latent semantic analysis. In UAI,
pages 289–296, 1999.

[5] A. Holub, M. Welling, and P. Perona. Hybrid generative-
discriminative visual categorization. International Journal
of Computer Vision, 77(1):239–258, 2008.

[6] T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher
kernel method to detect remote protein homologies. In In-
ternational Conference on Intelligent Systems for Molecular
Biology, pages 149–158, 1999.

[7] T. Jaakkola and D. Haussler. Exploiting generative models
in discriminative classifiers. In NIPS, pages 487–493, 1999.

[8] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy
discrimination. In NIPS, 1999.

[9] M. Jordan, Z. Ghahramani, J. T., and S. L. Introduction to
variational methods for graphical models. Machine Learn-
ing, 37:183–233, 1999.

[10] J. Lasserre, C. Bishop, and T. Minka. Principled hybrids of
generative and discriminative models. In CVPR, volume 1,
pages 87–94. IEEE, 2006.

[11] X. Li, L. Wang, H. Liu, and Y. Liu. Learning parts-based
representation for face transition. In ACM Multimedia, 2010.

[12] X. Li, X. Zhao, Y. Fu, and Y. Liu. Bimodal gender recogni-
tion from face and fingerprint. In CVPR, 2010.

[13] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[14] R. Neal and G. Hinton. A view of the EM algorithm that
justifies incremental, sparse, and other variants. Learning in
Graphical Models, 89:355–368, 1998.

[15] A. Perina, M. Cristani, U. Castellani, V. Murino, and N. Jo-
jic. Free energy score space. In NIPS, pages 1428–1436,
2009.

[16] L. Rabiner. A tutorial on hidden Markov models and selected
applications inspeech recognition. Proceeding of the IEEE,
77(2):257–286, 1989.

[17] R. Raina, Y. Shen, A. Ng, and A. McCallum. Classification
with hybrid generative/discriminative models. In NIPS, vol-
ume 16, 2004.

[18] D. Ross and R. Zemel. Multiple cause vector quantization.
In NIPS, pages 1041–1048, 2003.

[19] N. Smith and M. Gales. Speech recognition using SVMs. In
NIPS, volume 25, 2002.

[20] K. Tsuda, M. Kawanabe, G. Ratsch, S. Sonnenburg, and
K. Muller. A new discriminative kernel from probabilistic
models. Neural Computation, 14(10):2397–2414, 2002.

[21] K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for bio-
logical sequences. Bioinformatics, 18(Suppl 1):S268, 2002.

[22] V. Vapnik. The nature of statistical learning theory. Springer
Verlag, 2000.

[23] G. Wei and M. Tanner. A Monte Carlo implementation of
the EM algorithm and the poor man’s data augmentation al-
gorithms. Journal of the American Statistical Association,
85(411):699–704, 1990.

[24] J. Zhu, A. Ahmed, and E. Xing. Maximum Margin Super-
vised Topic Models for Regression and Classification. In
ICML, volume 382. ACM, 2009.

2720


