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Abstract Hidden information derived from probabilistic generative models of data distrib-
utions can be used to construct features for discriminative classifiers. This observation has
motivated the development of approaches that attempt to couple generative and discrimina-
tive models together for classification. However, existing approaches typically feed features
derived from generative models to discriminative classifiers, and do not refine the generative
models or the feature mapping functions based on classification results. In this paper, we pro-
pose a coupling mechanism developed under the PAC-Bayes framework that can fine-tune
the generative models and the feature mapping functions iteratively to improve the classi-
fier’s performance. In our approach, a stochastic feature mapping, which is a function over
the random variables of a generative model, is derived to generate feature vectors for a sto-
chastic classifier. We construct a stochastic classifier over the feature mapping and derive the
PAC-Bayes generalization bound for the classifier, for both supervised and semi-supervised
learning. This allows us to jointly learn the feature mapping and the classifier by minimiz-
ing the bound with an EM-like iterative algorithm using labeled and unlabeled data. The
resulting framework integrates the learning of the discriminative classifier and the generative
model and allows iterative fine-tuning of the generative models, and the feedforward fea-
ture mappings based on task performance feedback. Our experiments show, in three distinct
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applications, this new framework produces a general classification tool with state-of-the-art
performance.

Keywords Stochastic feature mapping · PAC-Bayes generalization bound · Hybrid
generative-discriminative classification

1 Introduction

Probabilistic generative models that seek to model data distributions are adept in exploiting
hidden information, in dealing with structured data (e.g. protein sequence with variable
length) and in solving nonlinear classification problems by means of maximum posteriori
(MAP) classifiers, while discriminative models designed to find decision boundaries among
different classes based on extracted features still furnish most of the state-of-the-art tools for
classification. A number of promising methods (Jaakkola and Haussler 1999; Jaakkola et al.
1999; Raina et al. 2003; McCallum et al. 2006; Li et al. 2010, 2011; Perina et al. 2012) have
been developed to exploit the complementarities of these two major paradigms (Jaakkola
et al. 1999; Ng and Jordan 2002). These methods can be roughly categorized into two classes
based on how they couple the generative and discriminative models: methods with explicit
featuremappings (Jaakkola andHaussler 1999; Perina et al. 2012; Li et al. 2011) andmethods
without explicit feature mappings (Jaakkola et al. 1999; Raina et al. 2003; McCallum et al.
2006). In this paper, we focus on the first class as it is more flexible and can be directly used
in discriminative classifiers.

Methods with explicit feature mappings, called generative feature mapping or generative
score space (Jaakkola and Haussler 1999; Perina et al. 2012; Li et al. 2011), are motivated
by the two findings revealed by earlier works in the context of classification: (1) generative
models can provide useful information from their parameters and variables to construct fea-
ture mappings and simultaneously transform structured data of variable length into data in
a fixed dimension feature space; (2) discriminative models are effective in finding decision
boundaries in such a feature space. A feature mapping is a function over the hidden variables,
observed variables and model parameters. It transforms a data point into a feature vector for
the classifier. While these existing methods have tried to exploit the power of the generative
models in uncovering hidden information, the generative models and the classifiers in these
methods are insulated from each other and the resulting feature mappings could be sub-
optimal. Thus, it is desirable to develop a closed-loop coupling mechanism that allows the
generative models and the feature maps to be fine-tuned by the classification performance.

PAC-Bayes theory (McAllester 1999; Seeger 2002; McAllester 2003; Langford 2006;
Lacasse et al. 2006; Germain et al. 2009; Seldin et al. 2012; Tolstikhin and Seldin 2013)
potentially can provide a framework to learn featuremappings and classifiers jointly, allowing
the fine tuning of feature mapping. PAC-Bayes is a theory proposed to bound the general-
ization error of classifiers, where classifiers are learned by minimizing the generalization
bound with respect to the parameters of the classifiers over the training set. Similarly, feature
mappings can also be learned by minimizing the generalization bound with respect to the
quantities of feature mappings.

In this paper, we propose an approach based on the PAC-Bayes theory (McAllester 1999;
Seeger 2002; McAllester 2003; Langford 2006; Lacasse et al. 2006; Germain et al. 2009;
Seldin et al. 2012; Tolstikhin and Seldin 2013) to integrate the complementary strengths of
generative and discriminative models. First we derive a stochastic feature mapping which is a
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Fig. 1 A graphical illustration of the proposed approach. The generative model on the left provides hidden
variables, data distribution and model parameters to construct a feature mapping for the discriminative model
on the right. The classification performance of the discriminative model feeds back to tune the parameters of
the generative model, which leads to the tuning of the feedforward feature mapping to improve classification
performance

function over the observed and hidden variables of generative models. The feature mapping
maps a data point to a stochastic feature. It is stochastic because it is constructed as the
mean of multiple Gibbs samples of the generative model based on the observed data point.
This is different from earlier methods (Jaakkola and Haussler 1999; Perina et al. 2012; Li
et al. 2011) which map a data point to a deterministic feature. Further, we construct a Gibbs
classifier to operate on the derived feature mapping, and derive a PAC-Bayes generalization
bound that can be used to learn the classifier in supervised or semi-supervised manner.
With the derived stochastic feature mapping and generalization bounds, learning is relatively
simple. Byminimizing the bound using an EM-like iterative algorithm, we obtain the analytic
posterior over the hidden variables (E-step) and the set of simple update rules for the model’s
parameters (M-step). The derived posterior provides a bridge that allows the classifier to
tune the generative models and consequently the feature mapping to improve classification
performance. Our proposed framework is illustrated in Fig. 1 (Li et al. 2013).

The primary contributions of this paper are threefold:

(1) We derived a stochastic feature mapping that is effective in capturing generative (dis-
tribution and hidden) information in the data;

(2) We derived a PAC-Bayes generalization bound for the stochastic classifier over this
stochastic feature mapping for both supervised and semi-supervised learning;

(3) We developed a joint learning approach to learn feature mapping and classifier by
minimizing the derived bound.

Our proposed scheme offers a number of advantages over existing methods:

(1) The proposed stochastic feature mapping and its generalization bound can effectively
be exploited to utilize hidden variables in the classification process, yielding state-of-
the-art classification performance;

(2) The proposed method produces satisfactory performance when the ‘capacity’ of gen-
erative models is small, suggesting that it is efficient in both inference and learning;

(3) When the number of labeled training data is limited, the unlabeled data can be used to
bootstrap the training of the classifier to improve performance.

In the remainder of this paper, we will first briefly review the related works in Sect. 2. We
will then derive the feature mapping in Sect. 3. Section 4 constructs the stochastic classifier
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Table 1 The notation list

Obj. Description Obj. Description

x Input data y Output label

θ Model parameter h Hidden variables

Q(h | x) Posterior distribution Q(h)
∫
Q(h | x)P(x)dx

φ Feature mapping φ̄ φ̄ = φ/ ‖ φ ‖
fQ Stochastic classifier w Weight, EQ [w] = u

D Unknown P(x, y) S Training set with size m = |S|
RD( fQ) True risk RS( fQ) Empirical risk

e( fQ) Risk for labeled data d( fQ) Risk for unlabeled data

Sl Labeled set with size ml = |Sl | Su Labeled set with size mu = |Su |

over the derived feature mapping, and drives the generalization bound for the classifier. In
Sect. 5, we will present learning algorithms for the generative model, the feature mapping
and the classifier simultaneously. In Sect. 6 we will evaluate the proposed method on three
typical applications. We will conclude our contributions in Sect. 7. For readability, we have
summarized the involved mathematical notations of this paper in Table 1.

2 Related works

2.1 Generative score spaces

Generative feature mapping (Jaakkola and Haussler 1999; Tsuda et al. 2002; Smith and
Gales 2002; Holub et al. 2008; Perina et al. 2012; Li et al. 2011) is a class of methods that
are designed to exploit the generative information for discriminative classification. Feature
mappings are scores or measures computed over the generative models. They are functions
over the observed variables, hidden variables, and parameters of generative models. The
space spanned by a feature mapping is called as a score space or feature space.

Fisher score (FS) method (Jaakkola and Haussler 1999) derives feature mappings by
measuring how a generative model’s parameters affect the log likelihood of the data given
the model. Let x ∈ Rd be the observed variable and P(x | θ) be its marginal distribution
parameterized by a vector θ , the i-th component of the FS feature mapping is the differential
with respect to the parameter θi ,

Φi (x, θ) = ∇θi log P(x | θ)
Free energy score space (FESS) method (Perina et al. 2012) measures how well a data point
fits random variables. The resulting feature mappings are the summation terms of log like-
lihood function. Posterior divergence (PD) (Li et al. 2011) derives a set of comprehensive
measures that are related to both FS and FESS. These methods, working with classifiers,
integrate the abilities of generative and discriminative models, and have produced very com-
petitive performance in a variety of challenging tasks (Holub et al. 2008; Perina et al. 2012;
Chatfield et al. 2011), including, for example, image recognition. However, in these methods,
featuremappings and classifiers are learned independently, label information or classification
performance was not fully utilized in the learning of feature mappings.
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2.2 PAC-Bayes generalization bounds

PAC-Bayes (McAllester 1999; Seeger 2002; McAllester 2003; Langford 2006; Lacasse et al.
2006; Germain et al. 2009; Seldin et al. 2012; Tolstikhin and Seldin 2013) is a theory
for bounding the generalization error of classifiers. A variety of PAC-Bayes generaliza-
tion bounds (McAllester 1999; Seeger 2002; McAllester 2003; Langford 2006; Lacasse et al.
2006; Germain et al. 2009; Seldin et al. 2012; Tolstikhin and Seldin 2013) have been pro-
posed for different classifiers such as deterministic classifiers, Gibbs classifiers (McAllester
1999), linear classifiers or nonlinear classifiers (e.g. Gaussian process (Seeger 2002)). Gibbs
classifier, which we will use, is a stochastic classifier that usually operates under majority
voting decision rules.

PAC-Bayes can bound classifiers built from different discriminative criteria, for example,
the large margin criterion. The generalization bounds, derived from PAC-Bayes theory, can
be expressed in two typical forms: an implicit form which bounds the difference between
the empirical risk and the true risk (Seeger 2002; Langford 2006; Lacasse et al. 2006), or an
explicit form which bounds the true risk directly (McAllester 2003; Germain et al. 2009).
Besides, there are some tight bounds (Seldin et al. 2012;Tolstikhin andSeldin 2013) available.
In this paper, we will focus on explicit bounds because they allow us to derive the analytic
solution of the posteriors of hidden variables, with higher computational efficiency.

Our proposed method is related to transductive methods (Joachims 1999, 2003) which
exploit both labeled data and unlabeled data for classification. Different with their method-
ology that explicitly infers the labels of unlabeled examples, our method instead minimizes
the error rate of unlabeled examples. These methods work particularly well when the labeled
training set is relatively small.

3 Stochastic feature mapping from free energy lower bound

Exploiting generative information, i.e., hidden variable, observed variable and data distribu-
tion, for discriminative classification (Jaakkola and Haussler 1999; Holub et al. 2008; Perina
et al. 2012; Li et al. 2011) has shown promise in a variety of real world applications. A way
to achieve this is to derive feature mapping from probabilistic generative models.

This section aims to derive a feature mapping to exploit generative information. Given a
generative model with observed variable x, hidden variable h and parameter θ , the problem
is to find a feature mapping φ(x,h) over the random variables. Our method is to fish out the
informative components from the free energy the lower bound of log likelihood of generative
models. The featuremapping takes a stochastic form rather than a deterministic form. The use
of stochastic form makes it easier to derive and optimize the generalization bound. Further,
the feature mapping is not an explicit function of parameters, simplifying the estimation
procedure of model parameters (see Sect. 5.3).

3.1 Formulation

Let P(x | θ) be the marginal distribution of a generative model parameterized by θ . Let
P(x,h | θ) be its joint distribution where h is the set of hidden variables. As in Jaakkola
and Haussler (1999), Perina et al. (2012) and Li et al. (2011), we choose to operate on the
lower bound or negative free energy function of log P(x | θ) rather than log P(x | θ) because
the lower bound of log P(x | θ) can be obtained even if log P(x | θ) itself is intractable. The
lower bound is given by Jordan et al. (1999),
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log P(x | θ) ≥ EQ(h | x)[log P(x,h) − log Q(h | x)] ! F(x, θ) (1)

where Q(h | x) is the variational approximate posterior of P(h | x). It is worth noting that
the lower bound F(x, θ) can be used here without loss of generality, because it is exactly
equal to the log likelihood when Q(h | x) is expressive enough, i.e., Q(h | x) is given by exact
inference.

Here, assuming that the generative model P(x,h | θ) belongs to the exponential family
which covers most generative models, we arrive at the following general form,

P(x,h) = exp{α(θ)T T (x,h)+ A(θ)} (2)

where θ is the vector of parameters; T (x,h) is the vector of sufficient statistics;α(θ) and A(θ)
are functions over parameter θ . Similarly, the prior is P(h) = exp{αh(θh)

T T (h)+ Ah(θh)}.
Further, we assume that the posterior Q(h | x), given x, takes the same form with its prior
P(h) but with different parameter (Jordan et al. 1999),

Q(h | x) = exp{αh(θ̂h)
T T (h)+ Ah(θ̂h)} (3)

Substituting the formulas of P(x,h) in Eq. (2) and Q(h | x) in Eq. (3) into Eq. (1), we have,

F(x, θ) = EQ(h | x)[α(θ)T T (x,h)+ A(θ) − αh(θ̂h)
T T (h) − Ah(θ̂h)]

= (α(θ)T ,−1T ,−1)TEQ(h | x)[φ(x,h)] + A(θ) (4)

where (α(θ)T ,−1T ,−1) and A(θ) are functions over the model parameters; and the sto-
chastic function,

φ(x,h) = (T (x,h)T , (diag(αh(θ̂h))T (h))T , Ah(θ̂h))
T (5)

is a vector of explicit functions over x and h, but not over θ . This means that φ(x,h) will
not be involved in the estimation of θ at the E-step (Sect. 5.3). The feature vector output by
φ(x,h) thus contains three groups of features. The first group comes from T (x,h), which is
the sufficient statistics of the adopted generative model, based on both the hidden variables
h and the observed variables x. The second group of features come from diag(αh(θ̂h))T (h),
which is a score that measures how well the posterior explains the data x. The third group of
features come from Ah(θ̂h), which is a score related to the partition function of Q(h | x).

3.2 An illustrative example

To illustrate the above idea on feature mapping, we provide a simple example of feature
mapping derived from a Gaussian mixture model with 3 mixture centers. This is illustrated in
Fig. 2. Let x ∈ R be the observed variable; and the hidden variable be h = z = (z1, . . . , z3)T

which is a binary indicator vector assigning the example x to 3 mixture centers. That is,
for each data point x , z can only be (1, 0, 0), (0, 1, 0), (0, 0, 1), indicating which Gaussian
(center) the data point is assigned to as a result of the MAP inference. In this case, the data
vary along in 1D (i.e. x) and the examples from the three Gaussians are shown in the right
top inset. Note that we assume there are in fact only two causes (circle vs. triangles) for the
observation x . The goal is to map these data onto a new space in which the data points are
easily separable into the two causes or classes.

The first two groups of features in the feature mapping φ in this case are:

T (x, z) = (z1x, z1x2, z1, z2x, z2x2, z2, z3x, z3x2, z3)T

diag(αz(θ̂z))T (z) = (z1 log â1, z2 log â2, z3 log â3)T
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Fig. 2 An illustrative example for the proposed feature mapping. Inset: The raw data are generated from three
Gaussian distributions, but we assume the data come from two classes (circles and triangles).Main: Gaussian
mixture models with three mixture centers are used to model the data distribution. Each data point is to be
inferred and assigned to one of the centers, which is indicated by the binary indicator vector z = (z1, z2, z3)T .
The feature mapping as described in the text and in more details in Sect. 6.2. z1x and z2x are two of the derived
featuremapping functionswhich are stochastic. For illustration, we alternatively use their deterministic version
z∗1x, z

∗
1x where z∗ = maxz P(z|x) is given by MAP estimation. Note that, those points assigned to the third

component are project to (0, 0). When the raw data (inset), which are not linearly separable in the original
space, are mapped to a new feature space spanned by these two feature mappings, they form distinct and
linearly separable clusters

where âi = EQ(z)[zi ] is the expectation of zi over the posterior Q(z | x), which can be
estimated by examples or taking expectation. The last group of features Az(θ̂z) = 0 because
the partition function of multinomial distribution is 1 = e0.

Hence, each 1D data point x is mapped to a 12D feature space in this case. Figure 2
illustrates only two feature dimensions from T (x, z), i.e. z1x and z2x , which already produces
a feature space in which the projected data points are linearly separable, greatly simplifying
the classification problem.

4 Stochastic classifier and generalization bound

Given the stochastic feature mapping (Eq. 5), the problem of this section is to derive a gen-
eralization error bound for a stochastic classifier (Eq. 6) equipped with the feature mapping,
for both supervised and semi-supervised learning. Ourmethod is to decompose the risk term
into two parts which are respectively for labeled data and unlabeled data. The error bound
allows us to learn an effective feature mapping for classification in a discriminative manner
by minimizing it with respect to the parameters of the feature mapping.

To obtain this error bound, we use a stochastic classifier over the feature mapping here.
There are two reasons for our using a stochastic feature mapping and a stochastic classifier
instead of a deterministic classifier: (1) the general setting of PAC-Bayes theory assumes
a stochastic form which allows simple derivation of the generalization error bound; (2) the
stochastic form also allows solving the resulting model in a simple algorithm.
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4.1 Linear stochastic classifier over feature mapping

Let X be the input space consisting of an arbitrary subset of Rd and Y = {−1,+1} be the
output space. An example is an input-output pair (x, y) where x ∈ X and y ∈ Y . With
stochastic feature mapping φ(x,h) derived in Eq. (5), we can construct a Gibbs classifier
over this stochastic feature mapping:

fQ = sign[w · φ(x,h)] ! fw(x,h) (6)

where w ∼ Q(w) is the weight and h ∼ Q(h); the posteriors Q(w) and Q(h) will be
determined later in Sect. 5.3. A Gibbs classifier with an appropriate feature mapping φ is
known to allow exploitation of the hidden variables in discriminative classifiers (Yu and
Joachims 2009), and the PAC-Bayes bound for such a classifier can be tighter than VC
bounds (Vapnik 2000).

4.2 Classification risk of stochastic classifier

In a PAC-Bayes setting (McAllester 1999), each example (x, y) is independently drawn from
a fixed but unknown probability distribution D on X × Y . Let f (x,h) : X → Y be any
classifier with an auxiliary variable h ∈ H. Let Q( f ) be a posterior distribution over a space
F of classifiers conditioned on the whole training set; and Q(h) be the posterior distribution
over a space H of hidden variables. Let S = {(x1, y1), . . . , (xm, ym)} be the training set
whose examples are independently drawn. Consider a Gibbs classifier fQ that first chooses
a classifier f according to Q( f ) and a variable h according to Q(h), and then classifies an
example x. The true risk RD( fQ) and the empirical risk RS( fQ) of this Gibbs classifier can
be given by the following expressions:

RD( fQ) = EQ(h)Q( f )

[
E(x,y)∼D I( f (x,h) *= y)

]
(7)

RS( fQ) = EQ(h)Q( f )

[
1
m

∑m

i=1
I( f (xi ,h) *= yi )

]
(8)

where Q(h) =
∫
Q(h | x)P(x)dx depends on the whole training set instead of any specific

example x; m = |S| is the number of training examples; I(a) is the indicator function which
outputs 1 if a is true and outputs 0 otherwise. RD( fQ) and RS( fQ) can be decomposed as
follows.

Lemma 1 Let S = {(x1, y1), . . . , (xm, ym)} be a set of independently drawn examples. Let
f1 ∼ Q and f2 ∼ Q be two independent and identically distributed random variables. The
empirical risk RS( fQ) in Eq. (8) and the true risk RD( fQ) in Eq. (7) can be decomposed as
follows,

RS( fQ) = eS( fQ)+
1
2
dS( fQ)

RD( fQ) = eD( fQ)+
1
2
dD( fQ)

where

eS( fQ) = EQ(h)Q( f1)Q( f2)

[
1
m

∑m

i=1
I( f1(xi ,h) *= yi )I( f2(xi ,h) *= yi )

]

dS( fQ) = EQ(h)Q( f1)Q( f2)

[
1
m

∑m

i=1
I( f1(xi ,h) *= f2(xi ,h))

]
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eD( fQ) = EQ(h)Q( f1)Q( f2)

[
E(x,y)∼D I( f1(x,h) *= y)I( f2(x,h) *= y)

]

dD( fQ) = EQ(h)Q( f1)Q( f2)

[
Ex∼D

[
I( f1(x,h) *= f2(x,h))

]

The proof of this Lemma can be found in the Appendix. Noticing that, the classifier f =
sign[w · φ(x,h)] (Eq. 6) is parameterized by w, therefore f1 ∼ Q( f ) means w1 ∼ Q(w),
i.e., the weight w of a stochastic classifier is sampled from the posterior distribution of f . eS
is a measure of the variance of the classification error, and is estimated from labeled data. dS
measures the disagreement of the classification, and is estimated from the unlabeled data.

4.3 Generalization bound for classification risk

Having defined the stochastic classifier over the featuremapping and derived the classification
risks, we now proceed to derive the generalization bound for the classifier using PAC-Bayes
theory. We can learn the stochastic feature mapping discriminatively and train the stochastic
classifier over the feature mapping by minimizing the error bound.

In this derivation, although there are some tighter bounds (Seldin et al. 2012; Tolstikhin
and Seldin 2013) available, we prefer explicit bounds for the true risk RD( fQ), which allows
an analytical derivation of the posterior Q. We choose to bound the true risk following
the one-side version in McAllester (2003) and use the explicit bound in Keshet et al. (2011).
Considering themeasures kl(q ‖ p) = q ln q

p+(1−q) ln 1−q
1−p andKL(Q ‖ P) = EQ[log Q

P ],
we have the following bound.

Theorem 1 For any distribution D over X × Y , any space F of classifiers, any space H
of hidden variables h of generative models, any distribution P over F × H, any δ ∈ [0, 1),
ε > 0, with probability at least 1 − δ, the inequality holds simultaneously for all posteriors
Q,

'D( fQ) ≤ sup
{
ε : kl('S( fQ)‖ε) ≤ 1

m

(
KL'(Q ‖ P)+ ln

m + 1
δ

)}

where KL'(Q ‖ P) = α'KL(Q( f ) ‖ P( f )) + EP(x)KL(Q(h | x)) ‖ P(h | x)), m = |S|
where α' = 1 if '( fQ) is R( fQ) and α' = 2 if '( fQ) is e( fQ) or d( fQ).

The proof of this theorem is summarized in the Appendix. Note that, the theorem differs
from the bounds in McAllester (2003), Seeger (2002) and Lacasse et al. (2006) by the extra
variable h introduced along with the stochastic feature mapping. This bound has a parameter
ε and is difficult to minimize. However, in the following theorem, we can formulate this
bound into a more practical bound that can be minimized directly.

Theorem 2 For any distribution D over X × Y , any space F of classifiers, any space H
of hidden variables h of generative models, any distribution P over F × H, any δ ∈ [0, 1),
with probability at least 1 − δ, the inequality holds simultaneously for all posteriors Q,

'D( fQ) ≤ inf
λ>1/2

1

1 − 1
2λ

[
'S( fQ)+

λ

m

(
KL'(Q ‖ P)+ ln

m + 1
δ

)]

where KL'(Q ‖ P) = α'KL(Q( f ) ‖ P( f )) + EP(x)KL(Q(h | x)) ‖ P(h | x)), m = |S|
where α' = 1 if '( fQ) is R( fQ) and α' = 2 if '( fQ) is e( fQ) or d( fQ).
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The proof of the theorem can be found in the Appendix. Here we extend the bound to
accommodate both labeled and unlabeled data for semi-supervised learning. Letting Sl be
the labeled training set, Su be the unlabeled training set, S = Su ∪ Sl , we have the following
theorem.

Theorem 3 For any distribution D over X × Y , any space F of classifiers, any space H
of hidden variables h of generative models, any distribution P over F × H, any δ ∈ (0, 1],
with probability at least 1 − δ, the inequality holds simultaneously for all posteriors Q,

RD( fQ) ≤ inf
λl>1/2

1

1 − 1
2λl

[
eSl ( fQ)+

λl

ml

(
KLe(Q ‖ P)+ ln

ml + 1
δ

)]

+ inf
λu>1/2

1/2

1− 1
2λu

[
dS( fQ)+

λu

m

(
KLd(Q ‖ P)+ ln

m + 1
δ

)]

where KLe = KLd = 2KL(Q( f ) ‖ P( f )) + EP(x)KL(Q(h | x) ‖ P(h | x)) and ml = |Sl |,
m=|S|.

The proof of this theorem can be found in the Appendix.

Remarks This bound allows classifiers to exploit unlabeled data, since dS( fQ) dose not
involve class label. Minimizing dS( fQ) will contract the posteriors over the stochastic clas-
sifier and the stochastic feature space, reducing the uncertainty or ambiguity in classification
and feature mappings. In the above bound, we use the S = Su ∪ Sl instead of Su to build
the risk term for unlabeled data, because the labeled set Sl can be simultaneously used as the
unlabeled set. Noticing that, the above semi-supervised bound is different with that in Lacasse
et al. (2006) which is over the variance of the classification risk.

Also we derived a semi-supervised bound on the basis of the explicit bound proposed
in Germain et al. (2009). However, in the experiments, we found that the solutions to the
classifier and the generative model are difficult to find by optimization, as they are sensitive
to the specification of parameters and the initial weights of the classifier (Germain et al.
2009). In the remainder of this paper, we will show that the bound derived in Theorem 3 can
be minimized effectively using an EM-like algorithm and can produce generative model and
classifier solutions that yield satisfied classification performance.

5 Learning and inference

Learning the stochastic feature mapping and classifier, in the sense of generalization error
minimization, requires to minimize the bound in Theorem 3. This is equal to minimizing
the right side of the inequality for specified λl and λu (Keshet et al. 2011). Our method is
to optimize the bound using an EM-like iterative algorithm. To simplify the solution and
improve optimization effectiveness, we specify λu = λl . Given the labeled training set Sl
with the sizeml = |Sl | and the unlabeled training set Su with the sizemu = |Su |, S = Su ∪ Sl
with the size m = |S| = ml + mu , the objective function can be expressed as,

J = eSl ( fQ)+
1
2
dS( fQ)+

(
λl

ml
+ λu

2m

)
KLe(Q ‖ P) (9)

where KLe(Q ‖ P) = 2KL(Q( f )‖ P( f ))+EP(x)KL(Q(h | x) ‖ P(h | x))which is the sum
of the objective functions for the stochastic classifier (Eq. 6) and the objective function for
the generative model (Eq. 1). To minimize J , we need the expressions for KL(Q( f )‖ P( f )),
EP(x)KL(Q(h | x)‖ P(h | x)), eSl ( fQ) and dS( fQ) which will be given in the next section.
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5.1 Specification and expression

To derive the four expressions required in Eq. (9), we first need to specify the form of
stochastic classifier. We consider the linear stochastic classifier in Eq. (6). In this case, fQ =
fw. Then, as were done in Langford (2006), we choose the prior of the weight w to be
Gaussian P(w) = N (0, I) and its posterior also to be Gaussian but with a different mean,
Q(w) = N (u, I).

Using the above specifications of P(w) and Q(w), and applying the Gaussian inte-
grals (Langford 2006), we have,

EQ(w) I( fw(x,h) *= y) = Φ
(
yū · φ̄(x,h)

)
(10)

where Φ(a) =
∫ ∞
a

1√
2π

exp (− x2
2 )dx = 1

2 erfc(
a√
2
); ū = u

‖u‖ and the normalized feature

φ̄= φ(x,h)
‖φ(x,h)‖ . Further, considering Eq. (10), we have the integration:

EQ(w1)Q(w2) I( fw1 *= fw2) = EQ(w1)Q(w2) 2I( fw1 *= 1)I( fw2 *= −1)

= 2Φ
(
ū · φ̄(x,h)

)
Φ

(
−ū · φ̄(x,h)

)
(11)

Minimizing the above risk term drives Φ(ū · φ̄(x,h)) and Φ(−ū · φ̄(x,h)) apart, reducing
the classification uncertainty. Substituting Eq. (10) into eSl ( fQ) and Eq. (11) into dS( fQ),
we have the following expressions,

eSl ( fQ) =
1
ml

∑ml

i=1
EQ(h)

[
EQ(w1)Q(w2)

∏2

k=1
I( fwk (xi ,h) *= yi )

]

= 1
ml

∑ml

i=1
EQ(h)

[
Φ(yi ū · φ̄(xi ,h)2

]
(12)

dS( fQ) =
1
m

∑m

i=1
EQ(h)

[
EQ(w1)Q(w2)I( fw1(xi ,h) *= fw2(xi ,h))

]

= 2
m

∑m

i=1
EQ(h)

[
Φ(ū·φ̄(xi ,h))Φ(−ū·φ̄(xi ,h))

]
(13)

Further, with the specifications of Q(w) and P(w), their KL divergence is,

KL(Q(w)‖ P(w)) = 1
2

‖u‖2 (14)

And the expression of EP(x)KL(Q(h | x) ‖ P(h | x)) over the training set S is,

1
m

∑m

i=1
KL(Q(h | xi ) ‖ P(h | xi )) (15)

5.2 The objective function

Having the expressions for KL(Q(w) ‖ P(w)) (Eq. 14), eSl ( fQ) (Eq. 12), dS( fQ) (Eq. 13)
and EP(x)KL(Q(h | x) ‖ P(h | x)) (Eq. 15), for brevity, letting m̃λ = ( λl

ml
+ λu

2m) )
−1, the

objective function in Eq. (9) over the labeled training set Sl and the unlabeled training set Su
can be expressed as:

J = eSl ( fQ)+
1
2
dSu ( fQ)+

1
m̃λ

KLe(Q ‖ P)

= 1
ml

∑ml

i=1
EQ(h)

[
Φ(yi ū · φ̄(xi ,h))2

]
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+ 1
m

∑m

i=1
EQ(h)

[
Φ(ū · φ̄(xi ,h))Φ(−ū · φ̄(xi ,h))

]

+ 1
2m̃λ

‖u‖2 + 1
m̃λm

∑m

i=1
KL(Q(h | xi )‖ P(h | xi )) (16)

where the first and second terms are estimated by labeled and unlabeled data respectively.
Learning the classifier with the feature mapping function φ embedded in it is to minimize J
with respect to the unknown quantities u, θ and Q(h | xi ), subject to

∫
Q(h | xi ) d h = 1, for

fixed values of λl and λu (Keshet et al. 2011).
The unlabeled data benefit the classifier in two ways: (1) by shaping the feature space so

that the mapped features are more distinct for the classifier; (2) by providing more data to
train generative models. We will describe an EM-like iterative algorithm (Jordan et al. 1999)
that can be used to minimize J in Eq. (16).

5.3 Inference and parameter estimation

In this section, we derive the EM-like iterative learning procedure to optimize the objective
function in our proposed approach. In thefirst step,wefixu and θ , andminimize J with respect
to Q(h | xi ) (Eq. 16), subject to

∫
Q(h | xi )dh=1. This is a standard posterior regularization

problem (Graça et al. 2007) which can be solved using the method of Lagrange multipliers.
Note that, the objective functions for labeled data and unlabeled data are different. For each
labeled example xi ∈ Sl , as derived in the Appendix, we have,

Q(h|xi ) ∝ P(hi , xi ) exp
{
− m̃λm

ml
Φ

(
yū · φ̄i

)2− m̃λΦ
(
ū · φ̄i

)
Φ

(
−ū · φ̄i

)}
(17)

where φ̄i is the short notation of φ̄(xi ,h). For each unlabeled example xi ∈ Su , similarly we
have,

Q(h | xi ) ∝ P(h, xi ) exp
{
−m̃λΦ

(
ū · φ̄i

)
Φ

(
−ū · φ̄i

)}
(18)

The fact that the classifier output is inside the expression for posteriors means that the gener-
ative models are being tuned when the classifier is being optimized during the minimization
of the generalization bound. This tuning mechanism inhibits those examples of h that had
lead to misclassification and promotes those with less misclassification.

In the second step, we fix Q(h | xi ) and θ , and determine u (i.e., the mean of posterior
Q(w)), by minimizing J with respect to u. The gradient of J can be expressed as:

∂ J
∂u

= 1
ml

∑ml

i=1
EQ(h | xi )

[
2Φ

(
yi ū · φ̄i

)
G(yi ū · φ̄i ) yi φ̄i

] ∂ū
∂u

+ 1
m̃λ

u

+ 1
m

∑m

i=1
EQ(h | xi )

[
G(u · φ̄i )

(
Φ(ū · φ̄i ) − Φ(−ū · φ̄ik)

)
φ̄i

] ∂ū
∂u

where G(·) is a gaussian function with zero-mean and unit variance; n is the number of
examples drawn from Q(h | xi ). We use rejection sampling to draw examples from this
posterior, where P(h, xi ) can be used as the comparison function due to exp(·) ≤ 1 (Φ ≥
0 ⇒ exp(·) ≤ 1). First, we draw the examples of h from P(h, xi ) using Gibbs sampling.
Second, for the drawn example hik , we reject it if Q(hik | xi ) < rk and accept it otherwise,
where rk is an example randomly drawn from the uniform distribution over [0, P(hik, xi )].
The accepted example are the examples of Q(h | xi ). Then we have,
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∂ J
∂u

≈ 1
mln

∑ml ,n

i,k=1
2Φ

(
yi ū · φ̄ik

)
G(yi ū · φ̄ik) yi φ̄ik

∂ū
∂u

+ 1
m̃λ

u

+ 1
mn

∑m,n

i,k=1
G(u · φ̄ik)

[
Φ(ū · φ̄ik) − Φ(−ū · φ̄ik)

]
φ̄ik

∂ū
∂u

(19)

In the third step, we fix Q(h | xi ), u and solve parameters θ . Note only the last term of
Eq. (16), i.e., the objective function of the generative model, involves θ . So the update rules
for θ in this joint learning model, derived by minimizing Eq. (16) with respect to θ , are the
same as the update rules of the original generative model, i.e.,

θ = max
θ

∑m

i=1
KL(Q(h | xi )‖ P(h | xi , ))

= max
θ

∑m

i=1
KL(Q(h | xi )‖ P(xi ,h | θ))

≈ max
θ

1
n

∑m,n

i,k=1
[log Q(hik | xi ) − log P(xi ,hik | θ)] (20)

The complete learning procedure of the proposed method is summarized in Algorithm 1. The
classification procedure is summarized in Algorithm 2.

Algorithm 1 Inference and learning
1: input: data set S = Sl ∪ Su where |S| = m
2: initialize û0, δ = 0.05, λl = λu = 0.55, t = 1 and learning rate γ = 0.5
3: pre-train the adopted generative model and output θ̂0
4: repeat
5: for i = 1 to m do
6: sample from Q(h | xi ) using Gibbs-rejection sampling (Eq. 17)-(18))
7: end for
8: ût ← ût−1 − γ ∂ J (θ̂ t−1)

∂u (Eq. 19)
9: update θ̂ t according to Eq. (20)
10: t ← t + 1
11: until convergence
12: output: û, θ̂

Algorithm 2 Classification
1: input: example xi , parameters û, θ̂
2: sample {hi1, · · · ,hin} from Q(h | xi ) using Gibbs-rejection sampling (Eq. 18)
3: sample {w1, · · · ,wn} from Q(w)
4: ŷi = maxy

∑n
k=1 I(sign[wk · φ(xi , hik )] = y) (majority voting using examples)

5: output: ŷi

5.4 A toy example

To demonstrate how the proposed approach works, we present a toy example using 2D syn-
thetic data. The data points, belonging to two categories, are drawn from four Gaussian
distributions. See Fig. 3a for illustration, where ‘o’ and ‘+’ label two categories respectively,
and color and gray markers respectively indicate training and test examples. For this is a
nonlinear classification problem, we use SFM-GMM that is derived in Sect. 6.2 for demon-
stration, where the number of mixture centers is set to K = 10. The learning procedure and
the classification procedure of SFM-GMM are respectively shown in Algorithms 1 and 2.
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Fig. 3 Illustration of the toy example. a The decision bounds of the semi-supervised version (green)
and supervised version (blue) of SFM-GMM. The data points are drawn from four Gaussian distributions
where µ1 = (10, 10)T , Σ1 = diag([8, 8]), µ2 = (20, 10)T , Σ2 = diag([10, 8]), µ3 = (30, 10)T ,
Σ3 = diag([12, 8]) and µ4 = (40, 10)T , Σ4 = diag([10, 8]). b The negative log likelihood as the func-
tion of the number of iteration

Figure 3a visualizes the decision bounds of the supervised version (blue) and the semi-
supervised version (green) of SFM-GMM, where the test accuracies are 78.13 and 81.25%
respectively. In general, both supervised and semi-supervised SFM-GMM can separate the
two categories appropriately. Figure 3a presents the negative log likelihood for supervised
SFM-GMM, as a function of the number of iterations. It can be found that, with the pre-trained
GMM, our approach reaches convergence within about 20 iterations.

6 Experiments

In this section, we will evaluate the proposed stochastic feature mapping (SFM) and related
methods empirically on general classification tasks, scene recognition and protein sequence
classification respectively.We seek to demonstrate three advantages of SFM: (1) the proposed
stochastic feature mapping and its generalization bound can effectively exploit information
from generative models for classification, producing results that are competitive with several
state-of-the-art methods; (2) SFM shows satisfactory performance when the ‘capacity’ of a
generative model is small, meaning that SFM is efficient in inference and learning; (3) when
the amount of labeled training data is small, unlabeled data can help train the generative
models, resulting in improvement in performance.

6.1 Overall testing approach and evaluation strategies

For each of these multiple-class classification problems, we break it down to many binary
classification problems, each of which is a one-versus-rest classification that distinguishes
one class from all the others. For each binary problem, we test each binary classification
problem on 20 random partitions, and report the average accuracy of the labeled data. For
each application, we perform three groups of experiments to verify the three advantages of
the proposed SFM method stated above: (1) we randomly partition the positive examples
into 50% training and 50% test sets, and do so also for the negative examples; (2) we vary
the capacity of generative models (e.g., the number of mixture centers) to evaluate how
capacity affects performance; (3) in the semi-supervised scenario, we vary the percentage
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of the labeled training examples and the unlabeled training examples to evaluate how and
whether the unlabeled data improves the classifier performance.

For each problem, a generative model appropriate for the database has to be chosen. We
usedGaussianmixturemodels (GMM) for theUCI datasets, latent Dirichlet allocation (LDA)
for the scene dataset, and Hidden Markov models (HMM) for the protein sequence datasets.
Thus, our approach is called SFM-GMM, SFM-LDA and SFM-HMM in the three different
applications to indicate the generative models used.

In the three applications, we will compare the performance of our proposed approach
SFM with a number of state-of-the-art classifiers, as detailed in the following list,

– LMKL (localized multiple kernel learning) (Gönen and Alpaydin 2008) is a state-of-the-
art classifier. We use the authors’ toolbox1, where linear kernel and 2-degree polynomial
kernel are chosen.

– PBGD3 (PAC-Bayes gradient descent) (Germain et al. 2009) is a classifier also derived by
minimizing a PAC-Bayes generalization bound, we implement this algorithm according
to the authors’ suggestions, with confidence parameter δ = 0.05; C based on cross
validation, and the random initial number k = 10.

– SVM (Supported Vector Machine) is a popular classifier. We use a popular toolbox
libsvm (Chang and Lin 2011)2 with a RBF kernel. The cost is set to C = 1, and the
bandwidth parameter is chosen by cross validation around γ = 1/#feature.

– TSVM (transducitve SVM) (Joachims 1999) is a state-of-the-art semi-supervised clas-
sifier. We use the toolbox3 released by the authors, with the parameters chosen by cross
validation.

– MAP (maximum a posteriori). Probabilistic generative models with a maximum the
posteriori decision rule. The models are same with those used in FS and FESS.

– SFM (stochastic feature mapping, our approach). We implemented Algorithm 1. Since
the solution of u could be trapped in local minima problem, we typically repeated the
optimization 2∼6 times, with a different random initial point each time within the range
[−10, 10], to obtain a satisfactory solution. As discussed in Sect. 5, we augment the
unlabeled set to Su ∪ Sl . The maximum iteration number is set to 20 for Experiment I
and 30 for Experiments II and III.

Also, we compare our approach SFM with two feature mapping methods derived from gen-
erative models:

– FS (Fisher score) (Jaakkola and Haussler 1999). We implement FS-LDA and FS-HMM
following the suggestions of the authors and (Chatfield et al. 2011). The parameters
of generative models, i.e., the number of mixture centers, topics and hidden states, are
chosen according to cross validation.

– FESS (free energy score space) (Perina et al. 2012).We implement FESS-LDAaccording
to the authors’ suggestion, and use the authors’ toolbox for FESS-HMM4.

6.2 Experiment I: deriving a general classification tool

In this experiment, we derive a general classification method by applying the proposed
framework to a simple yet general generativemodel, the Gaussianmixturemodel. Let x ∈ Rd

1 http://users.ics.aalto.fi/gonen/icml08.php.
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
3 http://svmlight.joachims.org/.
4 http://profs.sci.univr.it/~perina/fess2.htm.
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Table 2 Classification accuracy (%±std) on UCI database, with one-versus-rest scheme

Dataset TSVM
(Joachims
1999)

SVM
(Chang
and Lin
2011)

LMKL
(Gönen
and Alpay-
din 2008)

PBGD3
(Germain
et al. 2009)

SFM-GMM

Breast cancer 96.91± 1.32 96.79± 1.79 96.41± 0.97 93.98± 1.52 95.26± 0.93

Breast tissue 88.25± 5.74 83.37± 4.31 87.69± 5.24 88.14± 4.50 89.61± 3.84

Wine 95.61± 2.46 97.36± 1.94 95.48± 4.10 92.22± 8.56 96.11± 1.38

Sonar 75.29± 4.83 74.45± 3.22 80.21± 1.52 75.52± 5.70 81.54± 2.93

Credit approval 84.01± 1.72 84.61± 1.83 81.92± 1.41 83.53± 1.82 85.06± 1.31

SPECTF heart 78.27± 1.05 76.56± 2.97 80.38± 3.40 79.70± 0.65 81.34± 0.46

Libras movement 95.47± 2.12 91.74± 3.14 96.58± 1.78 94.52± 2.80 95.97± 3.12

Steel plates faults 88.60± 8.94 86.52± 9.03 92.63± 8.14 87.30± 8.26 90.24± 8.23

Bold values represent the best result on each experiment
‘Credit approval’ is the short of ‘Australian Credit Approval’ and ‘Sonar’ is the short of ‘Connectionist Bench
(Sonar, Mines vs. Rocks)’

be the observed variable; z = {z1, . . . , zK } be the hidden binary indicator vector for K
mixture centers; a = {a1, . . . , aK } be the parameters of the approximate posterior of z. We
assume the covariance matrix be diagonal. The feature mapping of this model is,

φ = (T (x, z)T , (diag(αz(θ̂z))T (z))T , Az(θ̂z))
T

where,

T (x, z) =
(
z1(xT , diag(xxT )), . . . , zK (xT , diag(xxT )), 1

)T

diag(αz(θ̂z))T (z) = (z1 log a1, . . . , zK log aK )T

and Az(θ̂z)=0. The posterior of z can be easily derived fromEq. (17). The number of mixture
centers is configured to K = 4 in these experiments, since K = 4 could produce satisfactory
results for most datasets.

Here we select 8 datasets from UCI database for evaluation, preferring those without
missing entities. The number of classes of each dataset is between 2 and 15. In each dataset,
each example, such as a type of wine in the wine class, is described by a list of attributes, such
as color intensity, acidity and hue for wine. The number of examples of each class varies from
14 and 673. The dimensionality is between 9 and 90. We compare our method SFM-GMM
with SVM (Vapnik 2000), TSVM (Joachims 1999), LMKL (Gönen and Alpaydin 2008) and
PBGD3 (Germain et al. 2009). 5% unlabeled data is used to activate the semisupervised
learning of TSVM. In each test, a dataset is randomly split to two parts, 50% for training
and the rest for test. The average results over 20 tests are reported in Table 2. It shows that
SFM-GMM is adaptive to the distribution of each dataset to achieve consistent top or near
the top performance for all datasets, outperforming other methods on half of the datasets.

The results of semi-supervised case are presented in Fig. 4. Figure 4a shows the clas-
sifiers’ performance as a function of the number of mixture centers K . Results from three
datasets using SFM-GMMare shown togetherwith results from the state-of-the-art FS feature
mapping which is however a deterministic mapping and is not tunable because the feature
mapping and the classifier are learned separately. It can be observed that SFM-GMM has
a significant performance gap over FS when the number of mixture centers is small (e.g.
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K = 2, 4, 6) for the ‘Breast tissue’ category. Also, the algorithm reaches convergence within
15 iterations. These imply that SFM-GMM is efficient computationally. Classification results
for ‘Sonar’ and ‘Breast cancer’ classes are also shown to show that K = 4 is close to optimal
for many classes in this data set.

Figure 4b demonstrates that when the amount of labeled data is small, introduction of
unlabeled data yield improved performance, particularly when only 2 ∼ 10 percent of the
labeled data are used in the training. When the amount of labeled data increased, the benefit
of unlabeled data diminishes. Increasing the amount of unlabeled data in semi-supervised
training produces performance benefit particularly when the amount of labeled data used is
small, as shown in Fig. 4c. The diminished benefit of the unlabeled data when significant
amount of labeled data is present in the training set is because the labeled examples have an
increasing dominating effect.

This experiment shows that the proposed stochastic feature mapping and the feedback
tuningmechanism in our approach could yield improvement for the general class of Gaussian
mixture models for classification.

6.3 Experiment II: scene recognition using LDA

We evaluate our SFM method and compare its performance against comparable methods
on a scene recognition task popular in computer vision. The distribution of a collection of
visual words, typically some informative image patterns, or cluster center of image pattern
descriptors, has found to be informative in this task. Such representation based on visual
words is found to be relatively robust against topic variation and spatial position variation.
We use latent Dirichlet allocation (LDA) (Blei et al. 2003) to model the distributions of
visual words, and derive a recognition tool with our proposed framework. As in Griffiths
and Steyvers (2004), we sample the topic variable using collapsed Gibbs sampling and reject
examples according to the rule in Eq. (17). We fix the LDA model’s parameter α and allow
β (Griffiths and Steyvers 2004) to be updated. Note that α is the parameter of the distribution
over the mixture of topics, or scene, and β is the parameter of the distribution over topics.

Let w, z respectively indicate word and topic, and γ be the parameter of the approx-
imate posterior of z. The feature mapping of this model is given by Eq. (5). That is,
φ = (T (w, z)T )T , (diag(αz(θ̂z))T (z))T , Az(θ̂z))

T , where,

T (w, z) = (z11, . . . , zNK , w1z11, . . . , wN zNK )
T

diag(αz(θ̂z))T (z) = (z11 log γ11, . . . , zNK log γNK )
T

and Az(θ̂z) = 0, where n, i, k index word, term and topic respectively. For FS (Jaakkola
and Haussler 1999) and FESS (Perina et al. 2012), we extract features from the trained LDA
model and deliver to SVM. Cross-validation shows that the optimal number of topics for FS
and FESS are both 50, and for SFM is 10 (see also Fig. 5a) for the particular scene database
we will discuss next.

The OT scene dataset (Oliva and Torralba 2001) is chosen for evaluation. This dataset
contains 2688 images, classified into 4 categories of artificial scenes and 4 categories of
natural scenes, with 260 ∼ 410 images for each scene category. For each image, dense
SIFT descriptors (Lowe 2004) are extracted from 20 × 20 grid patches over 4 scales. These
descriptors are quantized to visualwords using a code book (50 centers) obtained by clustering
randomly selected descriptors. The distribution of occurrence frequency of visual words is
represented as a histogram and used as an input feature for scene classification. The evaluation
results are summarized in Table 3. Our results compare well with PHOW (Vedaldi et al. 2009)
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Table 3 Accuracy (%±std.) of one-versus-rest scene recognition

SCENE PHOW
(Vedaldi
et al. 2009)

LDA-MAP FS-LDA
(Jaakkola
and Haus-
sler 1999)

FESS-LDA
(Perina et al.
2012)

SFM-LDA

Coast 90.66± 0.65 83.85± 0.92 90.42± 0.34 93.89± 0.46 94.56± 0.61

Forest 96.49± 0.39 94.94± 0.46 94.45± 0.46 97.92± 0.26 98.15± 0.34

Mountain 92.58± 0.64 84.99± 1.78 88.62± 0.50 93.29± 0.47 93.97± 0.41

Country 91.38±0.71 72.30± 1.74 87.40± 0.46 90.62± 0.33 90.81± 0.63

Highway 95.27± 0.49 81.50± 1.28 92.48± 0.22 94.67± 0.34 96.18± 0.27

InsideCity 93.96± 0.62 85.14± 1.74 90.79± 0.14 94.26± 0.65 95.81± 0.37

Street 93.89± 0.64 76.46± 1.23 93.76± 0.24 94.21± 0.42 95.40± 0.45

Building 94.40± 0.49 87.85± 0.55 92.83± 0.57 96.06± 0.51 96.39± 0.44

Bold values represent the best result on each experiment

which is a state-of-the-art feature transform for generating input vector for scene recognition.
The results of semi-supervised learning are shown in Fig. 5, again demonstrating unlabeled
examples can help classification particularly when there are few labeled examples.

Figure 5a compares the performance among the three methods (our SFM-LDA, FESS-
LDA and FS-LDA) as a function of the number of topics used in the model in the binary
classification of “highway” category against all other categories. The models are trained with
50% of the labeled data, and tested with the rest. The results show that both SFM and FESS
are better than FS in this case, and that SFM has a performance advantage over FESS when
small number of topics are used (5–20), and their performance converge at 30 topics. Fig. 5b
compares the benefit of using unlabeled data to train the models first, versus not using any
unlabeled data at all. 25% or 672 images of the dataset is used as unlabeled data, i.e. not
using the label of the images. Training with unlabeled data yields significant benefit when the
labeled data used is relatively small, i.e. up to 268. As more and more labeled data are used,
the overall performance of the classifier continues to improve, but the benefit of training with
unlabeled data disappears because the classifier relies more and more on the labeled data.
Figure 5c demonstrates this trend from a different perspective.

6.4 Experiment III: protein classification using HMMs

An advantage of the stochastic feature mapping is that it can map structured input data of
variable length into feature vector of a fixed dimensional feature space. To demonstrate this
feature of our approach, we apply our proposed framework to remote homology recognition
in molecular biology. The problem here is that given a test protein sequence, we assign it
to one of the domain superfamilies defined in the SCOP (1.53) taxonomy tree according to
the functions of proteins. The protein sequence data is obtained from the ASTRAL database.
E-value threshold of 10−25 is applied to the database to reduce similar sequences. We use
four labeled domain superfamilies, i.e. metabolism, information, intra-cellular processes and
extra-cellular processes in our evaluation. The numbers of sequences are 804, 950, 695 and
992 respectively. Each protein sequence is a string composed of 22 distinct letters, and the
string length varies from 20 to 994.

The hidden Markov model (HMM) (Rabiner 1989), a generative model that is useful
for dealing with sequences with variable length, is used to model the distribution of pro-
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Table 4 Accuracy (%±std.) of one-versus-rest protein recognition

SUP.FAM. 2GRAM HMM-MAP FS-HMM
(Jaakkola and
Haussler 1999)

FESS-HMM
(Perina et al.
2012)

SFM-HMM

# 1 78.79± 1.13 80.91± 1.53 80.03± 0.78 80.12± 0.84 83.43± 0.91

# 2 79.01± 0.97 80.10± 0.51 77.56± 0.64 78.96± 0.59 84.16± 0.60

# 3 75.19± 0.86 77.92± 0.79 73.31± 0.21 73.35± 0.41 80.12± 0.54

# 4 96.01± 0.33 95.10± 0.39 94.27± 0.37 97.58± 0.13 96.89± 0.35

Bold values represent the best result on each experiment

tein sequences. The number of output states is 22. Let x be the sequence with length
Tx; xt be the binary indicator at time t , where xtk = 1 indicates that the k-th state of K
possible states is selected at time t . Let qt be the binary state indicator with qti = 1 indi-
cating the i-th state of M possible states is selected at time t . AM×M denotes the transition
probabilities of the approximate posterior. The feature mapping of this model is given by
φ = (T (x,q)T , (diag(αq(θ̂q))T (q))T , Aq(θ̂q))

T , where,

T (x,q) =
(

q01 , . . . , q
0
M ,

Tx−1∑

t=0

qt1q
t+1
1 , . . . ,

Tx−1∑

t=0

qtMqt+1
M ,

Tx∑

t=0

qt1x
t
1, . . . ,

Tx∑

t=0

qtM xtK

)T

diag(αq(θ̂q))T (q) =
(∑Tx−1

t=0
qti q

t+1
j log Ai j , . . . ,

∑Tx−1

t=0
qtMqt+1

M log AMM

)T

and Aq(θ̂q) = 0. With the hidden states of the input sequence inferred using Baum–Welch
algorithm (Baum et al. 1970), it is easy to estimate the posterior transition probabilities
conditioned on x.We can sample examples of the hidden states from the sampling distribution
derived in Eq. (17) to re-estimate their posterior.

The comparative results are reported in Table 4. The number of hidden states used here is
4 for SFM-HMM and 15 for FS and FESS, which are chosen to achieve their best performing
results respectively. As shown in Fig. 6a, our SFM-HMM consistently outperforms FS and
FESS at any number of hidden states chosen, but the largest difference in performance gap
is observed when the number of states is small. Our model can be considered more efficient
as it can explain data better using fewer number of states (causes). The 2-GRAM feature
is the transition probability of observed states of a sequence, i.e. { 1

Tc

∑Tc−1
t=0 xti x

t+1
k }i,k . The

difference of the performance of the first four existing methods are not significant except
on superfamily #3. The results of semi-supervised learning are reported in Fig. 6, which
again when there are few labeled examples in the training set, unlabeled data could help the
learning of the generative models (Fig. 6b, c).

6.5 Discussions

6.5.1 Generalization bound and performance

The proposed learning approach for the stochastic feature mapping is based on the minimiza-
tion of generalization bound. Even though the generalization bound is not always tight, the
proposed approach shows some promising attributes. The primary reason is that its advantage
comes from the exploitation of hidden variables and the feedback mechanism based on the
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generalization bound, namely, tuning the generative models and feature mapping according
to classification results.

6.5.2 Semi-supervised versus supervised

The above experiments also arise the comparison discussion on semi-supervised learning
and supervised learning. It is worth noting that, the semi-supervised learning scheme uses
the same labeled examples with the supervised learning scheme, but exploits additional
unlabeled examples to train generative model and reduce the classification variance. The
unlabeled examples are significantly helpful when the number of labeled examples is few,
and seldom bring degeneration to the classification. Thus, in our experiments, the semi-
supervised scheme usually outperforms against the supervised scheme.

7 Conclusions

This paper presents a new approach to integrate generative models and discriminative models
for classification under the PAC-Bayes theoretical framework. The bridge for this integration
is a stochastic feature mapping derived from the negative free energy function for exponential
family models. This feature mapping is an explicit function over the hidden and observed
variables, but not over the parameters of the generative models. This allows the update of the
generative models to be independent of feature mapping, as if it is in a uncoupled system.
This allows the SFM scheme to be easily and flexibly coupled to many types of generative
models, greatly increase theflexibility of the framework.Under this framework, the generative
model and the discriminative model form a close loop, with stochastic feature mapping being
tuned in the feedforward path to improve the discriminative classifier, and the classification
performance in the feedback path to tune the generative models. This innovation makes the
classifier more flexible and adaptive, yielding state-of-the-art results in many application
scenarios. Another innovation of this work is the derivation of the PAC-Bayes bound for
semi-supervised learning. This allows the generative models to learn from both labeled and
unlabeled data, significantly enhancing the ability of the classifier when labeled data are
limited. The fact that the generative model can be optimized independent of the feature
mapping allows the SFM to be coupled with a large variety of generative models, adding to
the versatility of our framework.

We performed three experiments on distinct datasets from medicine, computer vision,
and molecular biology and demonstrated a number of advantages offered by this framework
over other existing approaches. In particular, because our method allows the fine tuning of
the generative models and consequently the feature mapping function based on classification
results, it is versatile and adaptive to the data. This leads to a more efficient generative model
that can explain data with small capacity, as well as a more effective classifier that yields
consistent state-of-the-art performance across multiple datasets. We demonstrated that when
there is a limited amount of training data, this framework can capitalize on the strength of
the generative models to learn from unlabeled data and tune the feature mapping to achieve
better classifier performance. We further demonstrated in our applications that the SFM can
be coupled to a variety of generative models, including GMM, LDA and HMM. A major
remaining difficulty is the non convexity of the objective function, which can trap the solution
in local minima. We have adopted a multiple initialization or seeding strategy to remedy the
situation, and have achieved good results.
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Nevertheless,we expect the exploitation ofmore robust and efficient optimizationmethods
will likely yield better performance, and the development of incremental learning algorithm
or parallel learning method could scale the approach to large dataset. Besides, coupling the
proposed framework with tighter bounds is left as a future work.

Appendix

Proof of Lemma 1

Here we give the proof of the decomposition of RS( fQ). The decomposition of the true
risk RD( fQ) can be similarly proved. Letting E f be the abbreviation of EQ( f ), for any
y ∈ [−1, 1], we have,

E f1, f2 I( f1 *= f2) = E f1, f2 [I( f1= y)I( f2 *= y)+ I( f1 *= y)I( f2 = y)]
= E f1, f22[I( f1 *= y)(1 − I( f2 *= y))]
= E f1, f22[I( f1 *= y) − I( f1 *= y)I( f2 *= y)]
= 2E f1 [I( f1 *= y)] − 2E f1, f2 I( f1 *= y)I( f2 *= y)]

Then we have the decomposition of E f1 I( f1 *= y),

E f1 I( f1 *= y) = 1
2
E f1, f2 I( f1 *= f2)+ E f1, f2 I( f1 *= y)I( f2 *= y) (21)

where the first term is label-independent while the second term is label-dependent. Sub-
stituting Eq. (21) into RS( fQ) of Eq. (8) and letting f1i be the abbreviation of f1(xi ,h),
then,

RS( fQ) =
1
m

∑
i
EQ(h)E f1 I( f1i *= yi )

= 1
m

∑
i
EQ(h)

[
E f1, f2 I( f1i *= yi )I( f2i *= yi )+

1
2
E f1, f2 I( f1i *= f2i )

]

= eS( fQ)+
1
2
dS( fQ)

which finishes the proof.

Proof of Theorem 1

First, if '( fQ) is d( fQ) (see Lemma 1), with probability at least 1−δ, the following inequality
holds simultaneously for all posteriors Q,

kl(dS( fQ) ‖ dD( fQ)) = kl
(
EQ( f1)Q( f2)Q(h)[r̂d( fQ)] ‖ EQ( f1)Q( f2)Q(h)[rd( fQ)]

)

≤ EQ( f1)Q( f2)Q(h)
[
kl(r̂d( fQ) ‖ rd( fQ))

]

≤ 1
m

(
KLd(Q ‖ P)+ ln

m + 1
δ

)

where the true risk related term rd( fQ) = E(x,y)∼D I( f1(x,h) *= f2(x,h)), the empirical
risk related term r̂d( fQ) = 1

m
∑m

i=1 I( f1(xi ,h) *= f2(xi ,h)) and the divergence KLd(Q ‖
P) = 2KL(Q( f )‖ P( f ))+ EP(x)KL(Q(h | x ‖ P(h | x)). The first inequality is derived by
applying Jensen’s inequality, given the convexity of kl. The second inequality is proved in
Appendix 1, holding with probability at least 1 − δ.
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Second, for ε > 0, following the proof in McAllester (2003) gives,

dD( fQ) ≤ sup
{
ε : kl(dS( fQ)‖ε) ≤ 1

m

(
KLd(Q ‖ P)+ ln

m + 1
δ

)}
(22)

which finished the proof for d( fQ).
Third, for e( fQ) and R( fQ), using the inequalities proved in nextAppendix 1 and applying

the above proof,we obtain the explicit bounds for eD( fQ) and RD( fQ)which are summarized
in Theorem 1.

Proof of inequalities for Theorem 1

First, we prove the inequality for the case that '( fQ) is d( fQ). The inequalities for the cases
that '( fQ) is R( fQ) or e( fQ) can be similarly proved. Following the approach in Seeger
(2002). We denote the risk related variables,

rd = E
x∼D

I( f1(x,h) *= f2(x,h))

r̂d = 1
m

m∑

i=1

I( f1(xi ,h) *= f2(xi ,h))

The variable mr̂d follows the binomial distribution parameterized by (m, rd), thus we have
the following inequality,

ES

[
emkl(r̂d‖rd )

]
=

m∑

i=0

(
m
i

)
em[kl(i/m‖rd )+i/m log rd+(1−i/m) log(1−rd )]

=
m∑

i=0

(
m
i

)
e−mH(i/m) ≤ m + 1

where H(p) = −p log p − (1 − p) log(1 − p) is the entropy of binomial variable, and the
inequality is derived by using exp (−mH(i/m)) ≥

(m
i

)
(Seeger 2002). Noting that f1, f2,h

are independently distributed, we write P( f1)P( f2)P(h) as the compact form P( f1, f2,h),
and Q( f1)Q( f2)Q(h) as Q( f1, f2,h). Taking expectation over P( f1, f2,h), and applying
Markov’s inequality, we have,

Pr
{
EP( f1, f2,h)

[
emkl(r̂d‖rd )

]
>

m + 1
δ

}
≤ δ

Therefore, for an arbitrary set of examples S, the following inequality holds with probability
as least 1 − δ,

EP( f1, f2,h)

[
emkl(r̂d‖rd )

]
≤ m + 1

δ
(23)

Defining the Gibbs measure dPG( f1, f2,h) = emkl(r̂d ‖rd )

EP [emkl(r̂d ‖rd )]dP( f1, f2,h) (Seeger 2002),
then we have the following formulas,

KL(Q( f1, f2,h)‖ P( f1, f2,h))+ ln EP

[
emkl(r̂d‖rd )

]
− EQ[mkl(r̂d ‖ rd)]

=
∫

ln

(
dQ( f1, f2,h)
dP( f1, f2,h)

· EP [emkl(r̂d‖rd )]
emkl(r̂d‖rd )

)

dQ( f1, f2,h)

= KL(Q( f1, f2,h) ‖ PG( f1, f2,h)) ≥ 0 (24)
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Substituting Eq. (23) into Eq. (24), we have,

EQ[ kl(r̂d ‖ rd)] ≤ 1
m

(
KL(Q( f1, f2,h)‖ P( f1, f2,h))+ ln EP

[
emkl(r̂d‖rd )

])

≤ 1
m

(
KL(Q( f1, f2,h)‖ P( f1, f2,h))+ ln

m + 1
δ

)
(25)

The divergence term can be further formulated as,

KL(Q( f1, f2,h)‖ P( f1, f2,h))
= KL(Q( f1)‖ P( f1))+ KL(Q( f2)‖ P( f2))+ KL(EP(x)Q(h|x)‖EP(x)P(h|x))
≤ 2 · KL(Q( f )‖ P( f ))+ EP(x)KL(Q(h | x‖ P(h | x)) = KLd(Q ‖ P) (26)

where the inequality is derived by applying Jensen’s inequality, given the convexity of KL.
Substituting Eq. (26) into Eq. (25) leads to the following inequality which holds with prob-
ability at least 1 − δ,

EQ
[
kl(r̂d ‖ rd)

]
≤ 1

m

(
KLd(Q ‖ P)+ ln

m + 1
δ

)

Second, if '( fQ) is e( fQ), the above inequality can proved for P( f1, f2,h) and
Q( f1, f2,h), true risk term re = E(x,y)∼D[I( f1(x,h) *= y)I( f2(x,h) *= y)], empirical
term r̂e = 1

m
∑m

i=1[I( f1(xi ,h) *= yi )I( f2(xi ,h) *= yi )]. And divergence KLe(Q ‖ P) =
KLd(Q ‖ P). If '( fQ) is R( fQ), considering its definition and applying the above proof,
the inequality can be proved for P( f,h), Q( f,h), rR = E(x,y)∼D[I( f (x,h) *= y)],
r̂R = 1

m
∑m

i=1[I( f (xi ,h) *= yi )],

KL(Q( f,h)‖ P( f,h))
= KL(Q( f )‖ P( f ))+ KL(EP(x)Q(h | x)‖EP(x)P(h | x))
≤ 1 · KL(Q( f )‖ P( f ))+ EP(x)KL(Q(h | x‖ P(h | x)) = KLR(Q ‖ P) (27)

In sum, the following inequality holds with probability at least 1 − δ, for '( fQ) being
either R( fQ), d( fQ) or e( fQ),

EQ
[
kl(r̂' ‖ r')

]
≤ 1

m

(
KL'(Q ‖ P)+ ln

m + 1
δ

)
(28)

Proof of Theorem 2

The proof follows the route in Keshet et al. (2011). For readability, we give the outline. Note
that kl(p ‖ q) ≥ (q − p)2/(2q) when q > p. Thus, for 'S > 'D , we have the inequality
kl('D ‖ 'S) ≥ ('S − 'D)

2/(2'S). Theorem 1 becomes,

'D ≤ sup
{
'D : ('D − 'S)

2

2'D
≤ 1

m

(
α'KL'(Q ‖ P)+ ln

m + 1
δ

)}

Letting c = 1
m

(
α'KL'(Q ‖ P)+ ln m+1

δ

)
, applying the results in Keshet et al. (2011) gives,
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sup
{
'D : ('D − 'S)

2

2'D
≤ c

}
= sup

{
'D : ∀λ > 0, 'D − 'S ≤ 'D

2λ
+ λc

}

= inf
λ>1/2

(
1

1 − 1
2λ

)

('S + λc)

which finishes the proof.

Proof of Theorem 3

This theorem can be proved by applying the proof of PAC-Bound 3 in Lacasse et al.
(2006). Note that, Lemma 1 has shown that RS( fQ) = eSl ( fQ) + 1

2dS( fQ). Letting
cl = 1

ml

(
2KLe(Q ‖ P) + ln ml+1

δ

)
, cu = 1

m

(
2KLd(Q ‖ P) + ln m+1

δ

)
, and using The-

orem 2, we have,

RS( fQ) = eSl ( fQ)+
1
2
dS( fQ)

≤ inf
λl>1/2

(
1

1 − 1
2λl

)

(eSl + λl cl)+
1
2

inf
λu>1/2

(
1

1 − 1
2λu

)

(dS + λucu)

which finishes the proof.

Solution of Q(h | xi )

For a labeled example xi , the objective function for Q(h | xi ) is,

min
Q(h | xi )

1
ml

EQ(h | xi )
[
Φ(yi ū · φ̄i )

2
]
+ 1

m
EQ(h | xi )

[
Φ(ū · φ̄i )Φ(−ū · φ̄i )

]

+ 1
m̃λm

EQ(h | xi )
[
log Q(h | xi ) − log P(xi ,h | θ)

]

s.t.
∫

Q(h | xi ) d h = 1

Using the method of Lagrange multipliers, we have,

Q(h | xi ) ∝ P(xi ,h) exp
{
− m̃λm

ml
Φ

(
yū · φ̄i

)2 − m̃λΦ
(
ū · φ̄i

)
Φ

(
−ū · φ̄i

)}

The solution of Q(h | xi ) for unlabeled examples can be similarly derived.
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