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Dynamical mechanisms underlying contrast gain control in single neurons

Yuguo Yu and Tai Sing Lee
Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

~Received 6 March 2003; published 8 July 2003!

Recent neurophysiological experiments have revealed that the linear and nonlinear kernels of the transfer
function in sensory neurons are not static. Rather, they are adaptive to the contrast or the variance of time-
varying input stimuli, exhibiting a contrast gain control phenomenon. We investigated the underlying biophysi-
cal causes of this phenomenon by simulating and analyzing the leaky integrate-and-fire and the Hodgkin-
Huxley neuronal models. Our findings indicate that contrast gain control may result from the synergistic
cooperation of the nonlinear dynamics of spike generation and the statistical properties of the stimuli. The
resulting statistics-dependent stimulus threshold is shown to be a key factor underlying the adaptation of
frequency tuning and amplitude gain of a neuron’s transfer function in different stimulus environments.
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I. INTRODUCTION

Adaptation to changes in external stimulus conditions
ubiquitous characteristic of information processing in t
nervous system@1#. Numerous experimental studies@2–13#
have indicated that the amplitudes of the transfer function
neurons in the early visual and auditory systems are
static, but depend significantly on the overall statistical pr
erties of visual and auditory scenes. Early sensory neu
~e.g., retinal ganglion cells! have been found to be adaptiv
to changes in the statistics of stimuli, in terms of both t
average light intensity level~see@3# for a review! and the
spatial and temporal contrast or variance in light intens
~see@4# for a review!. Similar adaptations to stimulus var
ance have been observed in other temporal parameters,
as movement velocity or intensity, in blowfly H1 neuro
@5,6# and macaque V1 neurons@7#, as well as in auditory
neurons@8#.

These phenomena are thought to be mediated by a
trast gain control mechanism@9# and serve to dynamically
adjust a neuron or a neural system’s output response ran
match the range of its input signals, which in turn maximiz
coding efficiency@10,6#. A classic example islight adapta-
tion. When the mean light level is decreased, retinal gang
cells were found to increase their sensitivity and expand t
temporal integration window@1,11#. In dim or low contrast
conditions, the temporal scale of the kernels was found
expand while the gain increased@12#. The dilation of the
temporal kernel allows the neuron to integrate more sign
before reporting to the cortex, while the increase in g
enables the neuron to process weak signals more effecti

Much attention has been focused on the mechanisms
derlying these intelligent adaptation behaviors of the nerv
system, but their neural basis is not well understood
present. It is not certain whether the behavior emerges f
a network interaction of neurons or is part of the intrins
properties of an individual neuron. Biophysically, a series
recent experiments@13# and theoretical studies@14# sug-
gested that the contrast gain control phenomenon can
found in single neurons, and the intrinsic dynamics in sp
generation may play an important role.

In this paper, we applied numerical simulations and ana
1063-651X/2003/68~1!/011901~7!/$20.00 68 0119
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sis to the Hodgkin-Huxley~HH! @15# and leaky integrate-
and-fire~LIF! neuronal models@16# to isolate and elucidate
the adaptive mechanism at the level of a single neuron.
found that many of the adaptation phenomena can be fo
in the behavior of an individual model neuron, and that the
adaptations are at least partially controlled by the basic
tors related to the bifurcation dynamics of a spiking neur
Insofar as these factors are intrinsic to neuronal spike g
eration, we believe that intelligent adaptation to statisti
context is a fundamental and universal property of all spik
neurons in the nervous system.

II. METHODS

To investigate the adaptation of a neuron’s temporal
ceptive field to different stimulus conditions, we used
white-noise analysis technique. This method has been u
in recent neurophysiological studies for characterizing
linear and nonlinear components of the transfer functions
neurons in various physiological systems@2,17#. The specific
method we used is an advanced Wiener kernel method b
on the Laguerre expansion technique@18#.

In this method, the discrete input-output relation of
stable nonlinear time-invariant dynamic system is deco
posed into the discrete-time Volterra series@19# with finite-
memory lengthL:

y~ t !5h01 (
t50

L

h1~t!x~ t2t!1 (
t150

L

(
t250

L

h2~t1 ,t2!

3x~ t2t1!x~ t2t2!1¯ , ~1!

wherex(t) is the input data sequence,y(t) is the output data
sequence of the system, andt is the discrete time point in ou
case. Volterra kernels$h0 ,h1 ,h2 ,...% fully characterize the
input-output mapping and constitute a complete and can
cal representation of any stable system whose output cha
infinitesimally in response to an infinitesimal change of t
input signal.h0 , the zeroth order kernel, is an offset term
usually determined by the mean value of the output.h1 , the
first order kernel, is a linear impulse response having a fin
length, and higher order kernelshj with j >2 characterize
©2003 The American Physical Society01-1
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the nonlinearity of the system. When kernels of higher ord
are incorporated, the response function of the system ca
described more accurately@19#.

Expansion of the Volterra kernels on a complete ortho
nal Laguerre basisbj (t) transforms Eq.~1! into the multino-
mial expression

y~ t !5c01(
j 51

N

c1~ j !v j~ t !1 (
j 151

N

(
j 251

N

c2~ j 1 , j 2!

3v j 1
~ t !v j 2

~ t !1¯

5 f ~v1 ,v2 ,...,v j ,...!, ~2!

where

v j~ t !5 (
t50

L

bj~t!x~ t2t!, ~3!

wherec0 , c1( j ), c2( j 1 , j 2),... represent the Laguerre expa
sion coefficients of the kernelhj (t) ~note thatc05h0), and
bj (t) denotes thej th order discrete-time orthonormal La
guerre functions,

bj~t!5a~t2 j !/2~12a!1/2(
k50

j

~21!kS t
kD S j

kD
3a j 2k~12a!k ~t>0!, ~4!

wherea (0,a,1) is the Laguerre parameter that describ
the asymptotic descent of the kernelshj (t) @18#. The kernel
recovery was performed using theLYSIS computational pack-
age of the Biomedical Simulations Resource of the Univ
sity of Southern California. In this study, we recover only t
zeroth, the first, and second order kernels, i.e.,h0 , h1 , and
h2 , respectively.

The input signalx(t) is Gaussian white noise~GWN!
with a fixed, short correlation time~cut frequency
5500 Hz) with meanm and standard deviations ~or the
noise intensityD, 2D5s2) as variables. The outputy(t) is a
sequence of binary numbers corresponding to the spikes
erated by the neuronal model at a resolution of 1 ms.
verify the feasibility and accuracy of the method in recov
ing static kernels in the appropriate parameter space,
tested the method using a model that is composed of a s
linear kernel @K15sin(pt/ta)exp(2t/tb)# cascaded with a
static nonlinear kernel (K25K183K1 , whereK18 is the trans-
pose matrix ofK1).

In the simulation experiment, the model neuron is t
Hodgkin-Huxley model@15#, as specified below:

CmV̇52gNam
3h~V2VNa!2gKn4~V2VK!

2gl~V2Vl !1s~ t !, ~5!

ṁ5@m`~V!2m#/tm~V!, ~6!

ḣ5@h`~V!2h#/th~V!, ~7!

ṅ5@n`~V!2n#/tn~V!, i 51, . . . ,N, ~8!
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whereV is the membrane potential andm,h and n are the
gating variables of the Na1 and K1 channels@15#, respec-
tively. gNa, gK , andgl are the maximal values of conduc
tance of the sodium, potassium, and leakage currents;
VNa, VK , andVl are the corresponding reversal potentia
The auxiliary functions and the parameter values can
found in @15#. The membrane capacity isCm51 mF/cm2.
s(t) is the input stimulus~GWN in our simulation! and is
described as

s~ t !5m1j~ t !, ~9!

^j~ t !&50, ~10!

^j~ t1!j~ t2!&5s2d~ t12t2!, ~11!

wherem is the mean value of the noise,s is the standard
deviation, andj(t) is the GWN with mean zero and un
standard deviation. ^¯& represents the ensemble avera
over the noise distribution.

III. RESULTS

A. Identification of static kernels

First, we investigate the input parameter space in wh
the method works accurately and effectively. We tested
recovery of the static model kernel with noise inputs of d
ferent mean~m! and variance~s!. This is important to estab
lish, as otherwise it is not certain whether the change exh
ited in the neuronal kernel is due to adaptation or an artif
due to the testing signals. For the static kernels~see Sec. II!,
we usedK15sin(pt/ta)exp(2t/tb) and K25K183K1 , with
ta5tb510, as the first and second order kernels, resp
tively. The input stimulus is drawn from a Gaussian wh
noise distribution. We investigated the range of the stand
deviation ~s! of the white noise where the method cou
completely and accurately recover the kernels. The recove
kernelsK1 andK2 of the model are shown in Figs. 1~a! and
1~b!. The difference between the model and the recove
kernels is estimated by a cross-correlation analysis, as sh
in Fig. 2. Figure 2~a! shows that, fors<102, the correlation
coefficient is independent of the value ofs, and approaches
1, indicating that the first order kernel can be recovered p
fectly. A drop in correlation coefficient corresponds to disto
tion in the recovered kernel. Fors.102, the correlation co-
efficient decreases rapidly, indicating the limitation of t

FIG. 1. ~a! The first order model kernel and the recovered k
nels from the method fors51028, 1022, 100, and 102, respec-
tively. ~b! The second order kernel fors51.
1-2
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method for larges where the linear kernel is contaminate
by large noise fluctuation. Therefore, we established thas
<102 is a valid range where the kernel method can be u
to recover the first order linear kernel. On the other hand,
second order kernelK2 can be recovered perfectly whens
>1023, but has problems whens,1023. This is because
the nonlinear features of the system cannot be fully exc
by a noise input with small variance.

Combining the results from Figs. 2~a! and 2~b!, we con-
clude that the kernel recovery method can be used stably
noise withs between 1023 and 102 for kernels with compa-
rable temporal scale. Within this range, the recovered ker
can be recovered accurately independent of stimuli. Out
this range, the recovered kernels contain considerable di
tions. A similar conclusion is obtained for different values
ta and tb . The same results can be generated with Kor
berg’s fast orthogonal algorithm@20#.

B. Adaptation of the kernels of the HH model

Next, using this method we investigate the adaptation
the HH model of neurons in response to different stimu
statistics. A GWN stimulus is used as input, and the resul
spike trains generated by the model are used as output.
mean of the input was fixed (m50) and the standard devia
tion ~s! was varied systematically from 1 to 20mA/cm2.
Figures 3~a! and 3~b! shows an example of an input sign
~with s53) and the output of the HH neuron in response
it. We used 200 s of both the input and output data to reco
the first and second order kernels of the HH neuron by
Laguerre expansion technique@shown in Figs. 3~c! and 3~d!#.

Interestingly, we found that the kernels recovered us
GWN with different values ofs are considerably different
Given that the static kernels can be recovered invaria
with these signals, the change exhibited in the kernel
indicative of the neuron’s adaptation to stimulus statisti
The change is nonmonotonic: the gain amplitude of the k
nel increases ass varies from 2 to 3, but decreases whens

FIG. 2. The correlation coefficient between the model kern
and the recovered first order kernels~a! and second order kernel
~b! as a function ofs.
01190
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exceeds 3. Further, with an increase ins, the kernel is found
to contract in time~i.e., its peak temporal frequency in
creases with an increase ins!. This change in gain and tem
poral structure to match different noise statistics indica
that the HH neuron adapts to the statistics of the stimulus
a similar manner to the variance or contrast adaptation
served in electrophysiological experiments@12#.

To evaluate this adaptation phenomenon systematic
we computed the power spectral density~PSD! of the first
order kernel recovered from stimuli generated with differe
s, as shown in Fig. 4~b!. For each PSD, we found that th
peak frequency in the PSD~which we termed the natura
frequency of the kernel! is tuned tos. Figure 4~c! shows that
the natural frequency of the kernel (f kernel) increases almos
linearly with an increase ins, changing from 47 to 66 Hz as
s changes from 1 to 20. The kernel tuning frequency sa
rates~stops increasing! as s exceeds 20. These findings in
dicate that there is a systematic relationship between the
quency tuning of a neuron and the variance of the no
stimulus input.

s

FIG. 3. Kernels of the HH neuron.~a! Input GWN signal, drawn
from a normal distribution withm50 ands53. ~b! The spike train
of the HH neuron in response to the GWN signal in~a!. ~c! The first
order and~d! the second order kernel of the HH neuron for GW
with s53.
1-3
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The PSD peak for the kernel recovered from a no
stimulus generated withs53 is much higher than those gen
erated with as of 2 or 10. This higher gain in the PSD of th
kernel allows more spectral energy to pass through fos
53 signals. To quantify this phenomenon, we computed
total energy of the transfer function for different values ofs:

E5 (
f 50

F21

@P~ f !#/F, ~12!

whereP( f ) is the power spectral density of the first or se
ond order kernel.f is the index of frequency andF is the
index of the highest frequency in the PSD. Figure 4~d! shows
thatEs first increases and then decreases with an increas
s, reaching a maximum ats53. This underscores the non
monotonicity of the relation between frequency tuning a
s, demonstrating that there is a particular set of intermed
stimulus statistics that can drive the neuron in the maxim
sensitive state.

Next, we investigate the sensitivity of this adaptation
the mean of the input noise signals. Figure 5~a! shows the
energy of the first order kernel~i.e.,Es as a function ofs for
m ranges from 0 to 8!. We found that there exists a critica
valuemc'6.2, below whichEs shows a global maximum a
an intermediates, and above whichEs decreases logarith
mically with an increase ins2 . The same phenomenon
observed also in the second order kernel@Fig. 5~c!#. This
critical mc is the stimulus current threshold for generating
spike, corresponding to the HH neuron’s saddle-node bi
cation point@21#. Figures 5~b! and 5~d! show howE of the

FIG. 4. Adaptation of kernels tos. ~a! The first order kernels of
the HH neuron for noises withs52,3,10, respectively, in the cas
of m50. ~b! The power spectral density functions of the first ord
kernels for the three sets of noises.~c! The natural frequency of the
first kernel as a function ofs, computed as the frequency of th
maximum PSD.~d! The energyEs of the first order kernel as a
function of s2 for m50.
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first and second order kernels change withm for different
fixed s2 . It can be observed that for smalls E increases
rapidly with m, while for largers E increases very slowly.
This suggests that, when the input variance is small, the n
ron is sensitive to the stimulus, but as the input varian
increases, it loses its stimulus sensitivity and is control
instead by the stochasticity of the stimulus.

The above results demonstrate that the linear kerneh1
and the nonlinear kernelh2 are adaptive and tuned to stati
tics ~s andm! of the stimulus. The neuron exhibits tuning
s, and this tuning is controlled by the value ofm in its
relation to the stimulus current threshold (mc). This indicates
that the adaptation phenomenon is intimately connected
the bifurcation dynamics in spike generation, which we w
investigate further through analytical methods in the n
section.

C. Analytical results based on LIF model

The above simulation results suggest that the contrast
control observed in neurophysiological experiments mi
originate from the basic dynamical mechanism underly
spike generation. To investigate the critical determining f
tors in the spike generation dynamics that contribute to
aptation, we analyzed the simplest neuronal model, ca
the leaky integrate-and-fire model. The HH neuron mode
characterized by many variables and complex dynam
making it difficult to isolate the essential features. The L
model captures two main properties of an excitable neur
all-or-none firing behavior related to bifurcation, and a r
fractory period during which the neuron recovers its exc
ability. We seek to understand which of these features
key to the adaptation phenomenon. The LIF model is sim
to a RC circuit in physics and is given by

r

FIG. 5. The energyEs of the first order kernel as a function o
~a! s2 for different values ofm and~b! m for different values ofs2.
The energyEs of the second order kernel as a function of~c! s2 for
different values ofm and ~d! m for different values ofs2.
1-4
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dV/dt52V/tm1m1sj~ t ! if V~ t !,Vth , ~13!

V~ t1!5V0 if V~ t2!5Vth , ~14!

wheretm5RC is the time constant of the neuron with res
tanceR and capacitanceC. Here,V050 mV, Vth512 mV,
tm510 ms,R53 MV, C53.33 nF, and the absolute refra
tory periodt ref54 ms. m is the mean value of the Gaussia
white noise.

We derive below the input-output relationship of the ne
ron as a function ofs andm and examine how the sensitivit
of the neuron changes as a function ofs andm. The linear
part of the model@Eq. ~13!# combines with the nonlinear pa
@Eq. ~14!# to create a saddle-node bifurcation point atmc .
Whens50, the membrane potentialV(t) relaxes to a stable
equilibrium @i.e., the resting statemt @16# for subthreshold
stimulus (m,mc5Vth /R)]. When m>mc , the membrane
potential will cross the threshold, generating a spike. Fo
GWN input stimulus withsÞ0, the evolution of the prob-
ability distribution of the membrane potentialV is given by a
well-known stochastic diffusion process, also called
Ornstein-Uhlenbeck process given by Eq.~15!, which is a
type of transformed Brownian motion process. The proba
ity distribution of a neuron’s voltage potentialV at time t is
given by a probability density functionP(V,t) that satisfies
the Fokker-Planck equation@16,22#:

]P~V,t !

]t
5

1

2
s2

]2P~V,t !

]V2 2
]

]V F S m2
V

tm
D P~V,t !G ,

~15!

with an absorbing boundary conditionP(Vth ,t)50 @22# and
satisfying the following normalization:

E
2`

Vth
P~V,t !dV51. ~16!

In stationary conditions, the mean firing spike rate (r ), or
the flux of realizations crossing the threshold, is given by
flux

r 5F S m2
V

tm
D P~V,t !2

1

2
s2

]P~V,t !

]V G
Vth

52
1

2
s2

]P

]VU
Vth

.

~17!

The time-independent stationary firing rater can then be
derived from the above equations as@16,22#

r 51Y S t ref1AptmE
a

b

exp~x2!@12erf~x!#dxD ,

~18!

with a5tm(m2Vth /R)/sAtm andb5tmm/sAtm, wherer,
t ref , andtm are the mean firing rate, the absolute refracto
period, and the membrane time constant of the neuron
01190
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spectively. erf(x) is the error function. The analytical input
output relations ofr as a function ofm ands are plotted in
Figs. 6~a! and 6~b!. Figure 6~a! shows that the firing rater
increases roughly sigmoidally withm for small s, but lin-
early with m for largers.

The critical point wherer>0, at which the neuron start
to fire, shifts to the left ass increases~i.e., the bifurcation
point has moved to the left!, suggesting that the neuron be
comes more sensitive to the lower mean current input. T
shifting of the bifurcation point induced by noise may be
critical factor underlying kernel adaptation in a neuron.
addition, we observe that the slope of ther;m curve is
sharper for smalls and decreases with an increase ins. This
indicates that the neuron is more sensitive to a chang
weak stimulus in low signal variance than in high sign
variance, corresponding to a change in sensitivity in
transfer function as a function ofs. The flattening of the
slope with a high value ofs also means that the exact loc
tion of the bifurcation point has become ambiguous, imp
ing that the neuron’s spike generation might become m
stochastic. Figure 6~b! provides another view of the data i
Fig. 6~a!. It shows the dependency of the firing rate ons at
different fixed values ofm. For all values ofm, the firing rate
(r ) first increases withs and then saturates at large values
s, exhibiting a tuning to boths andm.

To investigate how the sensitivity slope of the inpu
output relationship~transfer function! changes with the sta
tistical parameters, we perform the following analysis. Fir
we linearly approximate the input-output relationship a
write the input signals(t) and output mean firing rater (t) of
the neuron as

FIG. 6. The mean firing rate as a function of~a! m for variouss
and ~b! s for variousm. The static incremental sensitivityr repre-
sented by the integral of the first order kernel, as a function of~c! s
for variousm and ~d! m for variouss.
1-5
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r ~s01ds!5r 0~s0!1dsE
0

`

h~t;s0!dt, ~19!

where h is the first order kernel. The local sloper of the
input-output curve, which is called the static incremen
sensitivity @23#, can be shown to be the integral of the fir
order kernel,

r5
dr

dm
5E

0

`

h~t;m!dt. ~20!

Combining Eqs.~18! and~20!, we can express the increme
tal sensitivity in terms ofs andm. The results are plotted in
Figs. 6~c! and 6~d!. Figure 6~c! shows that, form,mc56,
the incremental sensitivity shows a global maximum at
intermediates. The exacts for the maximum is a function o
m. For m>mc56, the incremental sensitivity decreas
monotonically as a function ofs. mc56 serves as a bound
ary that divides the system’s behaviors into two differe
dynamical regimes, comparable to the dependency of
kernel gain energy of the HH model as a function ofs andm
as shown in Fig. 5~a!.

Figure 6~d! shows the relationships between incremen
sensitivity r and m for different values ofs. For smalls
~e.g.,s50.1), the sensitivity curve shows a very sharp pe
near the current threshold~bifurcation point!, mc56. As s
increases, the corresponding peak shifts to the left and
comes more smooth. This implies that for stimuli with lar
variance the bifurcation point of the system shifts left a
becomes more ambiguous, consistent with what we saw
Fig. 6~a!. The decrease of the current threshold makes
neuron more sensitive to the input signal, while the ambi
ity in its location introduces randomness in spike generat
Therefore, there is a trade-off between an increase in se
tivity and an increase in randomness. There exists a valu
s at which this trade-off is maximum in signal to noise rat
i.e., where the neuron is most sensitive to the input signa
the context of noise. Thus, a certain level of variance in
stimulus input is most synergistic with the nonlinear thre
old dynamics of the neuron, driving the neuron to fire mo
quasiregularly, resulting in a maximal gain in transfer fun
tion. That is the underlying reason for the contrast or va
ance tuning phenomenon. The change in gain amplitud
the kernels in experiments is a result of the shift in the
fective bifurcation point of the system induced by variatio
in the stimulus. We have experimented with a variety of v
ues of the LIF model parameters, such astm5RC, v th , and
we found that, while the peak location and the curve sh
can change quantitatively with these parameters, the b
adaptation phenomenon is qualitatively similar to what
have shown here.

The incremental sensitivity maximized at an intermedi
s @Fig. 6~c!# in thes-tuning curve is of significance becaus
it suggests that the nonlinear dynamics of a neuron reso
with a particular set of stimulus statistics. This might allow
to encode the stimulus of its preferred statistics with ma
mum efficiency. The synergistic cooperation between the
nal variance and the neuron’s dynamics allows the neuro
absorb the energy of the stimulus environment and to pro
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some preferred information with maximum efficiency.
population of neurons tuned to different values ofs might
provide an optimal coverage to the stimulus space. T
s-dependent resonance is consistent with the earlier
served phenomena in many nonlinear systems, i.e., stoch
resonance~SR! @24# and coherence resonance~CR! @25#. A
common feature of SR and CR is that the coherence mea
or signal to noise ratio in the output of a nonlinear thresh
system can be maximized by the additional noise with
optimal noise variance. Work on this issue has implicated
threshold condition in nonlinear system as the key unde
ing factor @24,25#. Thus, our results show that threshold b
furcation dynamics is likely the key factor underlying ne
ronal adaptation.

IV. DISCUSSION AND CONCLUSION

Adaptation to the statistics of the stimulus has been
served in many sensory systems. The global statistics of
stimulus appear to play an important role in modifying t
transfer function of the neuron to optimize information e
coding @26#. The transfer function of a neuron, sometim
called the receptive field in sensory systems, is therefore
simply a property of the neuron alone, but rather an emerg
property that arises from synergistic interaction between
neuron and its sensory environment@27#.

In this paper, we applied system identification techniqu
to study the kernel adaptation of the HH model and p
formed a theoretical analysis on the LIF model to investig
the possible dynamical origin of neuronal adaptation.
found that the amplitude and energy of the linear and n
linear kernels of the neuronal model can change accordin
the statistics of the input stimuli, displaying a statistic
dependent gain control phenomenon. In particular, for m
values of the stimulus less than the stimulus threshold (mc),
the transfer function exhibits maximum gain at some int
mediate stimulus variance, showing a tuning to stimu
variance. The time scale of the model kernel contracts w
an increase inm or s, consistent with experimental observ
tions in variance adaptation@9,12#. These findings sugges
that the variance adaptation observed originates from
nonlinear threshold dynamics of spike generation. Analy
of a LIF model reveals that the change of effective stimu
threshold in various statistical stimulus environments is
key factor underlying variance or contrast gain control. R
cent experiments@13# on cortical neurons strongly supporte
this conclusion, finding that the gain modulation common
seenin vivo may arise from varying levels of backgroun
synaptic noisy input.

Given that the LIF model captures the basic features
almost all excitable neurons, our results suggest that varia
or contrast gain control might be a universal mechanism e
bodied in all spiking neurons for maximizing informatio
encoding and transmission. When neurons are embedded
network, a more sophisticated intelligent adaptation mi
emerge to optimize the function of the neural system. T
findings provided in this paper reveal that the basic mec
nism of contrast gain control is already embodied in a sin
neuron.
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