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Abstract

LEE, T.S. Top-down influence in early visual processing: a Bayesian perspective.
PHYSIOL BEHAYV 56(6) 000-000, 2002. Traditional views of visual processing
suggest that early visual neurons are static spatiotemporal filters that extract
local features by feedforward computation. The extracted information is then
channelled through a chain of modules to successively higher visual areas for fur-
ther analysis. Recording from early visual neurons in awake behaving monkeys,
we revealed there are many levels of complexity in the information processing
of the early visual cortex. We found that the early visual neurons not only are
sensitive to features within their receptive fields but also to the global context
of a visual scene, the statistics of the environment and the behavioral relevance
of the visual stimuli. These findings suggest that the early visual cortex (V1
and V2) is tightly coupled and highly interactive with the rest of the visual
system. The top down interaction, mediated by recurrent feedback connections,
introduces contextual priors to influence the perceptual inference in the early

visual cortex.

Early visual cortex

Neurons in the primary visual cortex are known to be tuned to specific elementary local fea-
tures in the visual scenes. These features include location, line orientation, stereo disparity,
movement direction , color and spatial frequency [1, 2]). It is also known that V1 neurons
are also influenced by the surrounding context of the stimuli [3, 4, 5, 6]. The interpreta-
tions of the contextual modulations in these studies have been mostly limited to low-level
mechanistic description in terms of facilitation and inhibition, or to subjective perceptual
interpretations such as the neural correlate of pop-out or figure-ground saliency [4, 5, 7, 8].
Functionally, these modulations are thought to be related to computations of contours and

saliency.

Some of the observed contextual modulations likely arise from the feedback mediated by the
massive amount of recurrent connections from the extrastriate areas to V1. A plausible role

of feedback is that of attentional selection based on the mechanisms of biased competition



[9]. The basic idea of biased competition is that when multiple stimuli are presented in
a visual field, the different neuronal populations activated by these stimuli will engage
in competitive interaction. Attending to a stimulus at a particular spatial location or to
a particular object feature, however, could bias the competition in favor of the neurons
representing the attended features or locations, enhancing their responses and suppressing
the responses of the other neurons. However, the intra-cortical interaction in all biased
competition models (e.g. [10]) is limited to lateral inhibition — a rather impoverished view

on computation being done by the sophisticated machinery in the different visual areas.

Hierarchical Bayesian inference

Inspired by the recent experiments demonstrating top-down effect in V1, we have suggested
that V1 can serve as a high-resolution buffer [7] that participates in many levels of visual
computations through the recurrent feedback (see also Bullier’s blackboard hypothesis [11]).
In this context, a more appropriate theoretical framework for reasoning about top-down
visual processing in the brain is that of Bayesian inference [12, 13, 14]. The idea can be
traced back to the unconscious inference theory of perception by Helmholtz [15]. From the
Bayesian perspective, the visual system arrives at the most probable interpretation of the
visual scene by finding the a posteriori estimate S; of the scene that maximizes P(S;|E, H),
the conditional probability of a scene (S;) given a particular sensory evidence (E), and the

information you have already known (H), which, by Bayes’ theorem, is given by,

E|S;, H)P(S;|H)
P(E|H)

p(si|E, ) = 2!

where P(E|S;, H) is the conditional probability of the evidence given the scene S; and the
prior information H. P(S;|H) is the prior probability of the scene given H, and P(E|H) is
the prior probability of the evidence given H. P(E|S;, H) can be factored into P(E|S;)P(H)

if we assume H does not exert an direct effect on E.

This basic formulation can capture the interaction between two cortical areas, for example,
V1 and V2. Let E be the evidence furnished to V1 by the retina (via LGN), processed with
weights specified by P(E|S;), how well S; can explain E. S; is the output of V1 inference
engine, and H a distribution of hypotheses generated by V2 based on its input from V1



as well as feedback from other higher order areas. V2 communicates to V1, but not LGN.
Hence, the chain is Markovian. The feedback from V2 to V1 is given by the distribution
of H weighted by P(S;|H)P(H), i.e. how well each hypothesis H can predict S;. V1 is
to find the S; that maximizes P(S;|E,H) = P(E|S;)P(S;|H)P(H)/Z. This scheme can
then be applied again to V2 and V4 recursively and so on to generate the whole visual
hierarchy. In this framework, each cortical area is an expert for inferring aspects of the
visual scene, but its inference is constrained by both the data coming in and the top-down
priors feeding back. Unless the image is simple and clear, each area normally cannot be
completely sure of its inference, and has to harbor a number of hypotheses simultaneously.
The feedforward input drives the generation of the hypotheses, the feedback from higher
inference areas provides the priors to shape the inference at the earlier levels. Hierarchical
Bayesian inference is concurrent across multiple areas, information does not flow forward
to IT and then flow back to V1 and then back to IT. Such large loop would take too much
time per iteration and is infeasible in real time inference. Rather, successive cortical areas
in the visual hierarchy can constrain each other’s inference in small loops instantaneously
and continuously. The system, as a whole, might converge to an interpretation of the visual

scene rapidly and simultaneously.

Evidence I: Subjective Contours

We carried out a series of neurophysiological experiments on awake behaving monkeys to
test these ideas. The first experiment examined the neural representation of the famous
Kanizsa illusion — a constructive inference created by the interaction of bottom-up surround
contextual information and top-down priors. The second experiment examined a saliency
effect that emerged from the brain’s inference of 3D surface shape based on shading infor-
mation. Both are wonderful case studies on the influence of higher order priors on early

visual computation.

When viewing the display of stimulus sequence shown in Fig. la, we perceive a subjective
square abruptly appear in front of four circular discs with vivid subjective borders even
in regions of the image where there is no direct visual evidence for them. Could we see
evidence of such illusion in the early visual cortex? Can we demonstrate that this illusion

is generated by feedback from higher areas?



We [16] recorded the responses of over 200 V1 and V2 neurons of awake behaving monkeys
to illusory figures in the course of one year. One or two neurons were tested per recording
session. A number of stimuli (Fig. 1) were tested in each recording session. The most
important stimuli is the illusory square (Fig. 1b), but many other stimuli, including the
amodal figure (Fig. 1c), the stimuli with pac-men rotated (Fig. 1d) and a variety of real
squares defined by contrast and lines (Fig. le and 1f), were also tested for control. Each
stimulus was presented for 120 trials (10 conditions and 12 trials per condition). The
monkey’s task was to fixate a spot on the screen while stimuli were presented. In each
trial, a sequence of four stimuli, 400 msec each, was presented. Figure 1a illustrates the
presentation of the subjective square stimuli. First, four circular discs were presented.
Then they were turned into pac-men, creating an illusion that a white square had abruptly
appeared in front of the disks, occluding them. Over successive trials, the receptive field of
the cell being recorded was placed at 10 different locations relative to the subjective contour
or the corresponding positions in the other figures, 0.25° apart, spanning a range of 2.25°,
as shown in Figure 1b. The receptive fields of the neurons, as plotted by a small oriented
bar, was typically less than 0.8 degrees at that eccentricity (about 2 -3 degree away from
the fovea). The gap between the pac-men was 2 degree wide. The neurons were considered
to be sensitive to illusory contour if their response to the illusory contour, at the precise
location of that contour, was significantly larger than their response to the amodal contour

(Fig. 1c) and the conditions in which the pac-men were rotated (e.g. Fig. 1d).
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Figure 1: Selected stimuli in the subjective contour experiment. (a) An example se-
quence of stimulus presentation in a single trial. (b) Receptive field of the tested neuron
was ‘placed’ at 10 different positions across the illusory contour, one per trial. (c) amodal
contour — the subjective contour was interrupted by intersecting lines. (d) One of the
several rotated pac-men controls. The surround stimulus was roughly the same, but
there was no illusory contour. (e) One of the several types of real squares defined by
luminance contrast. (f). Square defined by lines. These controls were used to assess the
the neuron’s positional sensitivity to real contour as well as for comparing the temporal

responses between real and illusory contours.

We found that 26 percent of the V1 neurons in the superficial layer of V1 exhibited sensitivity
to the illusory contour under our experimental paradigm. The neural correlate of the
illusory contour signal emerged in a V1 neuron at precisely the same location where a line
or luminance contrast elicited the maximum response from the cell (Fig. 2a). The response
to the illusory contour was delayed relative to the response to the real contours by 55 ms
(Fig. 2b), emerging about 100 ms after stimulus onset. The response to the illusory contour
was significantly greater than the response to the controls, including the amodal contour
or when the pac-men were rotated. At the population level, we found that sensitivity
to illusory contours emerged at 65 ms in V2, and 100 ms in the superficial layer of V1
(Figures 2c and 2d). A possible interpretation of these data is that V2 detects the existence
of an illusory contour by integrating information from a more global spatial context, and
then generates a prior to facilitate the generation of contour inference in V1. Since the
feedback connection is rather diffuse spatially, it likely only provides a general guidance in
a spatially non-specific, but feature-specific manner, allowing the V1 circuitry to construct

and complete a precise representation of the subjective contour.
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Figure 2: (a) The spatial profile of a V1 neuron’s response to the contours of both
real and illusory squares, in a temporal window 100-150 ms after stimulus onset. The
real or illusory square was placed at different spatial locations relative to the receptive
field of the cell. This cell responded to the illusory contour when it was at precisely
the same location where a real contour evoked the maximal response from the neuron.
This cell also responded significantly better to the illusory contour than to the amodal
contour (T-test, p < 0.003) and did not respond much when the pac-men were rotated.
(b) Temporal evolution of the cell’s response to the illusory contour compared to its
response to the real contours of a line square, or a white square, as well as to the
amodal contour. The onset of the response to the real contours was at 45 ms, about 55
ms ahead the illusory contour response. (d) Population averaged temporal response of

50 V1 neurons in the superficial layer to the real and illusory contours.

Evidence II: Shape from Shading

In the second experiment [8], we asked two questions. First, does 3D shape from shading
information (a higher level information ) can influence the processing in V1? Second, when
we bias the monkey to look for a certain object, does this top-down bias have an impact on

V1 inference?



We trained monkeys to perform a odd-ball detection task recorded from 550 V1 and V2
neurons while the monkeys were performing the fixation task. Shape from shading stimuli
(Fig. 3a) are known to pop out, or readily segregate into different groups, while the 2D
contrast patterns (WA, Fig 3e; WB, Fig. 3h) could not. The main difference between the
two types of patterns is that the shading stimuli affords a 3D shape interpretation. Showing
that V1 neurons are sensitive to shape from shading oddball and not the 2D contrast pattern

oddball would establish V1 neurons are sensitive to 3D interpretation.

To evaluate whether the shape prior can influence the pop-out computation in the early
visual cortex, we studied the response of V1 and V2 neurons to a variety of stimuli, in
particular, the oddball condition and the uniform condition. In these two conditions of
each type of stimuli, the receptive field of the tested neuron was covered by the identical
stimulus element. An increase in neural responses to the odd-ball condition relative (e.g.
Fig. 3a) to the uniform condition (e.g. Fig. 3b) can be considered a neural correlate of

perceptual saliency.

For each stimulus type, four conditions (singleton, oddball, uniform and hole) were tested.
The singleton stimulus and the hole stimulus were used as controls for each stimulus types.
In the singleton stimulus, there was only one stimulus element, covering the receptive field.
It was used to measure the neuronal response to direct stimulation of the RF alone, without
any surround stimulus. The hole stimulus was the same as the uniform condition except
the stimulus element on the receptive field was absent. It was used to measure the response
to direct stimulation of only the extra-RF surround. In each trial, one of the conditions was

displayed on the screen for 350 ms while the monkey fixated a red dot.
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Figure 3: Higher order perceptual pop-out. We compared two conditions from each
stimulus set: an oddball condition where the receptive field element is an oddball and a
uniform condition where the RF element is one of the elements of the background. LA
oddball (a) and LA uniform (b) conditions are shown for illustration. Six sets of stimuli
were tested (c-h), i.e. lighting from above (LA), below (LB), left (LL) right (LR),
and white above (WA) and white below (WB). In the actual experiment, a singleton
stimulus (only the RF element) and a hole stimulus (background only, without the RF

element) were also tested for each stimulus set for comparisons (see [8]).

We found that, after the monkeys were trained to detect the odd-ball in a stimulus, V1
and V2 neurons responded better to the odd-ball condition than the uniform condition for
the LA or the LB stimuli (Figure 4a), but the difference in responses to the two conditions
was weaker or absent in the WA or WB stimuli (Fig. 4b). These pop-out signals were
found to be inversely correlated with the reaction time of the monkeys in detecting the
oddball of the various types of stimuli (Fig. 4c,d), and hence could be considered a neural
correlate of perceptual saliency of the oddball stimulus. Interestingly, before the odd-ball
detection training, V2 but not V1 neurons exhibit sensitivity to shape from shading pop-
out. This suggests that V2 may be the first cortical area where 3D inference is made
about surface shape, and then the shape priors are fed back to V1 after the monkeys use
the stimuli in their behavior. Another interesting observation is that when we change the
relative presentation frequency of the stimuli to bias the monkeys’ preference to a specific

stimulus, for example, the LB oddball, the neural pop-out response becomes much stronger



for LB at the expense of LA. When we reversed the relative frequency, the pop-out response
reversed correspondingly. Our interpretation is that when the monkey develops a preference
of looking for a certain stimulus, the extrastriate ventral stream might provide a top-down
feature (object) prior to facilitate the processing or detection of that particular stimulus in

V1.

a b

V1 Response to LA Stimuli (Stage 3) V1 Response to WA Stimuli (Stage 3)
AZOO —— singleton 250 —— singleton
9 = odd-ball 2 = odd-ball
% ---  uniform g ---  uniform
2150 hole g 200 hole
o o
9 &
2 Z1s0
2 2
& <100
E g
g g

0 50 100 150 200 250 300 0 50 100 150 200 250 300

post-stimulus time (msec) post-stimulus time (msec)
c d
Correlation with Accuracy: Monkey A Correlation with Reaction Time: Monkey A
100 e 320 .
e” o R?=0.706, F=35.97, p=2.4438e-05
95 ° RT =274.7-463.5(Modulation)
K L 300
~ 90 ° N
o . (] N L]
8 . 2 280 .
G esro@ =
= * o
g 80 §260 ..\ .
[ 7
& o750 e = % e
240 e
70 PC =80.31+183.2(Modulation) ® o
R?=0.574, F=20.25, p=0.00042342 R
% o 3
-0.05 0 0.1 0.15 -0.05 0 0.1 0.15

Neural?\)l%%ulation Neural?\)l%%ulation
Figure 4: Temporal evolution of the normalized population average response of 30 V1
units from monkey A to the LA set (a) and the WA set (b) in a stage after the monkey
had utilized the stimuli in its behavior. Each unit’s response was first smoothed by
a running average within a 15 ms window, then averaged across the population. A
significant difference (pop-out response) was observed between the population average
response to the oddball condition and that to the uniform condition in the LA set.
No pop-out response was observed in the WA set. (c,d) The monkeys’ behaviors and
neural responses adapted after each stage of training. Here, behavior performance
measurements (percent correct and reaction time) in three different training stages
were regressed against the pop-out response. We found significant correlation between

the neural pop-out responses and the behavioral performance (see [8] for details).

10



A new perspective

The findings of these two experiments support the the hierarchical Bayesian inference hy-
pothesis of visual processing. Feedback from a higher order area to an earlier area can
be conceptualized as providing top-down priors to bias the early inference. The impact of
feedback is often subtle and becomes evident only when there is ambiguity in the visual

stimuli, which is true in both of our experiments.

From this perspective, attention should not be conceptualized in terms of biased compe-
tition, but maybe more appropriately in terms of biased inference, or providing top-down
priors in a hierarchical Bayesian inference framework. This conceptualization casts atten-
tion in a more mathematically tractable light. Feedback from the posterior parietal cortex
could provide a spatial prior, i.e. prior expectation of how informative or interesting a par-
ticular visual location is. The influence of this spatial prior is called spatial attention. On
the other hand, feedback from the ventral stream areas would provide a top-down object
or feature prior, telling the early visual area what object the system is looking for, or what
features we are expected to see in our high level inference of the existence of a particular ob-
ject in the visual scene. This manifests as object attention or feature attention. The forms
of attention depend on the task at hand, as different classes of priors would be required
for different inferences. Theoretically speaking, priors can be derived from the statistics of
stimuli and the processing constraints imposed by the computational tasks. Priors would
form a bridge between behaviors, environments and perceptual inference. Understanding

them should therefore be a central question in the study of biological vision.
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