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Abstract

This paper explores the statistical relationship betwesmral images
and their underlying range (depth) images. We look at howritlation-

ship changes over scale, and how this information can betasthance
low resolution range data using a full resolution intengitage. Based
on our findings, we propose an extension to an existing tgclerknown
as shape recipes [3], and the success of the two methods rapaced
using images and laser scans of real scenes. Our extensbrows

to provide a two-fold improvement over the current methodurtier-

more, we demonstrate that ideal linear shape-from-shditiers, when

learned from natural scenes, may derive even more stremgthshadow
cues than from the traditional linear-Lambertian shadimngsc

1 Introduction

The inference of depth information from single images iddglly performed by devis-
ing models of image formation based on the physics of ligteraction and then inverting
these models to solve for depth. Once inverted, these madekighly underconstrained,
requiring many assumptions such as Lambertian surfacectafiee, smoothness of sur-
faces, uniform albedo, or lack of cast shadows. Little isvkm@bout the relative merits
of these assumptions in real scenes. A statistical unchelisig of the joint distribution of
real images and their underlying 3D structure would allovtouseplace these assumptions
and simplifications with probabilistic priors based on reednes. Furthermore, statistical
studies may uncover entirely new sources of informatiom &hé@ not obvious from phys-
ical models. Real scenes are affected by many regulariti¢sel environment, such as
the natural geometry of objects, the arrangements of abjecpace, natural distributions
of light, and regularities in the position of the observeewrcurrent shape inference al-
gorithms make use of these trends. Despite the potentiiilness of statistical models
and the growing success of statistical methods in vision,dteidies have been made into
the statistical relationship between images and rangelyl@pages. Those studies that
have examined this relationship in nature have uncoverexthimgful and exploitable sta-
tistical trends in real scenes which may be useful for désggnew algorithms in surface
inference, and also for understanding how humans percepthdn real scenes [6, 4, 8].



In this paper, we explore some of the properties of the sitalsrelationship between

images and their underlying range (depth) images in reales;aising images acquired by
laser scanner in natural environments. Specifically, weextimine the cross-covariance
between images and range images, and how this structurgehaner scale. We then
illustrate how our statistical findings can be applied te@iehce problems by analyzing
and extending the shape recipe depth inference algorithm.

2 Shaperecipes

We will motivate our statistical study with an applicatio@ften, we may have a high-
resolution color image of a scene, but only a low spatial ltggm range image (range
images record the 3D distance between the scene and theeclmmeach pixel). This often
happens if our range image was acquired by applying a stength éhference algorithm.
Stereo algorithms rely on smoothness constraints, eitk@icély or implicitly, and so
the high-frequency components of the resulting range inaagenot reliable [1, 7]. Low-
resolution range data may also be the output of a laser raxageaer, if the range scanner is
inexpensive, or if the scan must be acquired quickly (rargesers typically acquire each
pixel sequentially, taking up to several minutes for a higbelution scan).

It should be possible to improve our estimate of the highiapiequencies of the range
image by using monocular cues from the high-resolutiomisitg (or color) image. Shape
recipes [3, 9] provide one way of doing this. The basic ppheibf shape recipes is that
a relationship between shape and light intensity coulteined from the low resolution
image pair, and theextrapolated and applied to the high resolution intensity image to
infer the high spatial frequencies of the range image. Owaradge of this approach is
that hidden variables important to inference from monacalges, such as illumination
direction and material reflectance properties, might beliaitly learned from the low-
resolution range and intensity images. However, for thisregch to work, we require
some model of how the relationship between shape and ityartginges over scale, which
we discuss below.

For shape recipes, both the high resolution intensity in@gkthe low resolution range

image are decomposed into steerable wavelet filter pyramgsrly breaking the image

down according to scale and orientation [2]. Linear redogsis then used between the
highest frequency band of the available low-resolutiorgeaimage and the corresponding
band of the intensity image, to learn a linear filter that fpestlicts the range band from
the image band. The hypothesis of the model is that this filter then be used to pre-
dict high frequency range bands from the high frequency amizands. We describe the
implementation in more detail below.

Let i, 4 andz,, 4 be steerable filter pyramid subbands of the intensity andeamage
respectively, at spatial resolutien and orientatior (both are integers). Number the band
levels so thatn=0 is the highest frequency subband of the intensity image raad: is
the highest available frequency subband of the low-ressluainge image. Thus, higher
level numbers correspond to lower spatial frequenciesp&hecipes work by learning a
linear filterk,, 4 at leveln by minimizing sum-squared errr, (z,, ¢ — k¢ *in,¢)?, Where

* denotes convolution. Higher resolution subbands of thgegamage are inferred by:

. 1 )
Zm,p = ﬁ(kn,(b * m,g) 1)

wherec = 2. The choice oz = 2 in the shape recipe model is motivated by the linear
Lambertian shading model [9]. We will discuss this choiceafistant in section 3.

The underlying assumption of shape recipes is that the ¢atnwo kernelk,, 4 should be
roughly constant over the four highest resolution bande®@steerable filter pyramid. This



is based on the idea that shape recipe kernels should varly sieer scale. In this section,

we show mathematically that this model is internally indstesit. To do this, we first re-

express the shape recipe process in the Fourier domain. gédratmns of shape recipes
(pyramid decomposition, convolution, and image recomsitvn) are all linear operations,
and so they can be combined into a single linear convolutionther words, we can think

of shape recipes as inferring the high resolution range gjaja via a single convolution

Zhigh(u,v) = I(u,v) - Krecipe(u, v) (2)

wherel is the Fourier transform of the intensity image(In general, we will use capital
letters to denote functions in the Fourier domaili).c.;,. is a filter in the Fourier domain,
of the same size as the image, whose construction is distbssav. Note thaf(, ..;pe IS
zero in the low frequency bands whefg,,, is available. Oncey,;y, (the inverse Fourier
transform ofZy;45) is estimated, it can be combined with the known low-resotutange
data simply by adding them togethet. cipe (%, ¥) = Ziow (2, ¥) + Zhigh (2, y).

For shorthand, we will writd (u, v)I*(u,v) asII(u,v) andZ (u,v)I*(u,v) asZI(u,v).

11 is also known as the power spectrum, and it is the Fouriestoam of the autocorre-
lation of the intensity imageZ 1 is the Fourier transform of the cross-correlation between
the intensity and range images, and it has both real and maggparts. LetX = Z1/I1.
Observe thaf - K is a perfect reconstruction of the original high resolutiange image
(as long ad/I(u,v) # 0). Because we do not have the full-resolution range image, we
can only compute the low spatial frequenciesZdf(u, v). Let Koy = Z 110w /11, Where

Z I, is the Fourier transform of the cross-correlation betwédenlow-resolution range
image, and a low-resolution version of the intensity ima@g,., is zero in the high fre-
quency bands. We can then think &f....,. as an approximation ok = ZI/II formed

by extrapolating K, into the higher spatial frequencies.

In the appendix, we show that shape recipes implicitly genfthis extrapolation by learn-
ing the highest available frequency octavefof,,,, and duplicating this octave into all
successive octaves @f,....,., multiplied by a scale factor. However, there is a problem
with this approach. First, there is no reason to expect #wtufes in the range/intensity
relationship should repeat once every octave. Figure lashlot of Z1 from a scene in
our database of ground-truth range data (to be describezttions 3). The fine structures
in real[ K] do not duplicate themselves every octave. Second and moatamtly, octave
duplication violates Freeman and Torralba’s assumptiah shape recipe kernels should
change slowly over scale, which we take to mean @lescales, not just over successive
octaves. Even if octave 2 & is made identical to octave 1, it is mathematically impdssib
for fractional octaves ok like 1.5 to also be identical unlesgI /11 is completely smooth
and devoid of fine structure. The fine structuregsiriherefore cannot possibly generalize
overall scales.

In the next section, we use laser scans of real scenes to ttedgint statistics of range
and intensity images in greater detail, and use our resufrin a statistically-motivated
model of ZI. We believe that a greater understanding of the joint @igtion of natural
images and their underlying 3D structure will have a broagdaot on the development
of robust depth inference algorithms, and also on undedstgrhuman depth perception.
More immediately, our statistical observations lead to aaraxcurate way to extrapolate
K0, Which in turn results in a more accurate shape recipe method

3 Scaling lawsin natural scene statistics

To study the correlational structures between depth arehsity in natural scenes, we
have collected a database of coregistered intensity afdregplution range images (cor-
responding pixels of the two images correspond to the sarim jpospace). Scans were
collected using the Riegl LMS-Z360 laser range scanner widgrated color photosensor.



a) [real[Z ]| b) ExampleB (6) vs degrees counter-clockwise from horizontal

Figure 1:a) A log-log polar plot of|real[ZI]| from a scene in our databas&I contains
extensive fine structures that do not repeat at each octameevér, along all orientations,
the general form ofreal[Z ]| is a power-law]|imag[Z ]| similarly obeys a power-law.

b) A plot of Bx(6) for the scene in figure 2.real[Bk ()] is drawn in black and
imag[Bk (0)] in grey. This plot is typical of most scenes in our databass.predicted
by equation 4imag[Bk (6)] reaches its minima at the illumination direction (in thisea
to the extreme left, almosdi80°). Also typical is thatreal[ Bk ()] is uniformly negative,
most likely caused by cast shadows in object concavities [6]

Scans were taken of a variety of rural and urban scenes. Al@s were taken outdoors,
under sunny conditions, while the scanner was level witlhugdo The shape recipe model
was intended for scenes with homogenous albedo and surfaiegiah To test this algo-
rithm in real scenes of this type, we selecsisingle-texture image sections from our
database. These textures include statue surfaces anddamgitding exteriors, such as
archways and church facades (12 scenes), rocky terrainomidpiles (8), and leafy fo-
liage (8). No logarithm or other transformation was appliedhe intensity or range data
(measured in meters), as this would interfere with the Latidremodel that motivates the
shape recipe technique. Average size of these textures2a86D pixels per image.

We show a log-log polar plot df-eal[ZI(r, 6)]| from one image in our database in figure
la. As can be seen in the figure, this structure appears telglfmlow a power law. We
claim thatZ I can be reasonably modeled By6) /-, wherer is spatial frequency in polar
coordinates, an@(0) is a parameter of the model (with both real and imaginaryspéntat
depends only on polar angfe We test this claim by dividing the Fourier plane into four
45° octants (vertical, forward diagonal, horizontal, and veaid diagonal), and measuring
the drop-off rate in each octant separately. For each qatantiverage over the octant’s
included orientations and fit the result to a power-law. Tésutting values of (averaged
over all 28 images) are listed in the table below:

orientation \ I real[Z1] imag[Z1] Z7

horizontal 2.47+0.10 3.61+0.18 3.84t0.19 2.844+0.11
forward diagonal | 2.61+0.11 3.67+0.17 3.95+0.17 2.92+0.11
vertical 2.76+0.11 3.62+0.15 3.61+£0.24 2.894+0.11
backward diagona| 2.56+0.09 3.69+0.17 3.84+0.23 2.86+0.10
mean 2.60+0.10 3.65+0.14 3.87+0.16 2.88+0.10

For each octant, the correlation coefficient between theepdawv fit and the actual spec-
trum ranged fron.91 to 0.99, demonstrating that each octant is well-fit by a power-law
(Note that averaging over orientation smooths out some fietsires in each spectrum).
Furthermoreq varies little across orientations, showing that our modglAi closely.

The above findings predict that = Z1 /11 also obeys a power-law. Subtractiag; from
Oreal[z1) ANAimag(z1], We find thatreal [K] drops off atl /7! andimag[K] drops off at

1/r2. Thus, we have thak (r, 0) ~ Bk (0)/r.



Now that we know that’ can be fit (roughly) by d/r power-law, we can offer some
insight into why K tends to approximate this general form. Thé- drop-off in the
imaginary part ofK' can be explained by the linear Lambertian model of shadinth w
oblique lighting conditions. This argument was used by Fra® and Torralba [9] in
their theoretical motivation for choosing= 2. The linear Lambertian model is obtained
by taking only the linear terms of the Taylor series of the banmtian equation. Under
this model, if constant albedo is assumed, and no occlusiqgmesent, then with light-
ing from above,i(z,y) = a 0z/0y, wherea is some constant. In the Fourier domain,
I(u,v) = a27jvZ(u,v), wherej = v/—1. Thus, we have that

_ J
ZI(r,0) = —mll(r,ﬁ) 3

1 1
K(r,6) == r a2msin(6)

(4)

In other words, under this modéek, obeys al /r power-law. This means that each octave
of K is half of the octave before it. Our empirical finding that fheaginary part ofK
obeys al /r power-law confirms Freeman and Torralba’s reasoning bettindsinge = 2

for shape recipes.

However, the linear Lambertian shading model predictsdhgt the imaginary part of 1
should obey a power-law. In fact, according to equationi3,riodel predicts that the real
part of ZI should be zero. Yet, in our database, the real pa#t bfvas typically stronger
than the imaginary part. The real partof is the Fourier transform of the even-symmetric
part of the cross-correlation function, and it includes direct correlationcov(s, z]. In

a previous study of the statistics of natural range imaggsié have found that darker
pixels in the image tend to be farther away, resulting in iicemtly negativecov|i, z].
We attributed this phenomenon to cast shadows in complexesceobject interiors and
concavities are farther away than object exteriors, andetiegions are the most likely
to be in shadow. This effect can be observed wherever shadmviund, such as the
crevices of figure 2a. However, the effect appears strorigesimplex objects with many
shadows and concavities, like folds of cloth, or foliage. #end that the real part of I

is especially likely to be strongly negative in images ofdge. Such correlation between
depth and darkness has been predicted theoretically fosdifighting conditions, such as
cloudy days, when viewed from directly above [5]. The fagttthll of our images were
taken under cloudless, sunny conditions and with obliqulgtiing from above suggests that
this cue may be more important than at first realized. Psytygipal experiments have
demonstrated that in the absence of all other cues, darlagemegions appear farther,
suggesting that the human visual system makes use of thiecdepth inference (see [6]
for a review, also [10]). We believe that thér drop-off rate observed ireal[ K] is due to
the fact that concavities with smaller apertures but eqgaptits tend to be darker. In other
words, for a given level of darkness, a smaller apertureespands to a more shallow hole.

4 Inferenceusing power-law models

Armed with a better understanding of the statistics of reahss, we are better prepared to
develop successful depth inference algorithms. We now khewfine details irZ1/11 do
not generalize across scales, but that its coarse structugaly follows al /r power-law.
We can exploit this statistical trend directly. We can siynfil our By (0) /r power law to
Z10w/11, and then use this estimate Bfto reconstruct the high frequency range data.

Specifically, from the low-resolution range and intensitbage, we compute low resolution
spectra ofZ1 andlI. From the highest frequency octave of the low-resolutioages, we
estimateB;;(0) and Bz;(0). Any standard interpolation method will work to estimate
these functions. We chose-as®(6 + n¢/4) basis function based on steerable filters [2].



a) Original Intensity Image  b) Low-Resolution Range Datac) Power-law Shape Recipe d) Krecipe

A

e) Kpowerlaw

Figure 2:a) An example intensity image from our databalsgA Lambertian rendering of
the corresponding low resolution range imagePower-law method output. Shape recipe
reconstructions show a similar amount of texture, but telstsv that texture generated by
the power-law method is more highly correlated with the tieiture. d) The imaginary
parts of Kyecipe ande) Kpoweriaw fOr the same scene. Dark regions are negative, light
regions are positive. The grey center region in each egtimiak’ corresponds to the low
spatial frequencies, where range data is not inferred Iseciiis already known. Notice
that K ,...ipe OSCillates over scale.

We now can estimate the high spatial frequencies of the remgge,z. Define

Kpowerlaw (Ta 9) = Fhigh (T) . (BZI(0>/BII(9))/T (5)
ZpoweTlaw = Zlow +1- Kpowerlaw (6)

whereFy;,, is the high-pass filter associated with the two highest teiol bands of the
steerable filter pyramid of the full-resolution image.

5 Empirical evaluation

In this section, we compare the performance of shape rewijteur new approach, us-
ing our ground-truth database of high-resolution rangeiathsity image pairs described
in section 3. For each range image in our database, a loiutEso(but still full-sized)
range imagez;.,, was generated by setting to zero the top two steerablegiftamid lay-
ers. Both algorithms accepted as input the low-resolumge image and high-resolution
intensity image, and the output was compared with the aldiigh-resolution range im-
age. The high resolution output corresponds tefald increase in spatial resolution (or a
16-fold increase in total size).

Although encouraging enhancements of stereo output weendiy the authors, shape
recipes has not been evaluated with real, ground-truthrgigblution range data. To maxi-
mize its performance, we implemented shape recipes usigg regression, with the ridge
coefficient obtained using cross-validation. Linear késrveere learned (and the output
evaluated) over a region of the image at lerspixels from the image border.

For each high-resolution output, we measured the sum sdjgarer between the recon-
Struction &rccipe OF Zpoweriaw) @nd the original range image)( We compared this with
the sum-squared error of the low-resolution range imagg to get the percent reduction

in sum-squared errorerror_reduction,ccipe = % This measure of error
reflects the performance of the method independently of éin@wce or absolute depth of



the range image. On average, shape recipe reconstructohis 3, less mean-squared
error thanz;,.,. Shape recipes improved of the28 images. Our new approach ha@%
less mean-squared error thap,,, and improved®6 of the28 images.

We cannot expect the error reduction values to be very highlypbecause our images
are highly complex natural scenes, and also because sose was present in both the
range and intensity images. Therefore, it is difficult toessshow much of the remaining
error could be recovered by a superior algorithm, and howmisisimply due to sensor
noise. As a comparison, we generated an optimal linear steanion,z,,+:», by learning
11 x 11 shape recipe kernels for the two high resolution pyramiddbadirectly from
the ground-truth high resolution range image. This readaotibn provides a loose upper
bound on the degree of improvement possible by linear shapleads. We then measured
the percentage of linearly achievable improvement for émelye:improvement, ccipe =

TMow —TTrecive Shape recipes yielded an average improvemer#3&f. Our approach

ETTlow —€TToptlin

achieved an improvement of 44%, nearly a two-fold enhano¢imesr shape recipes.

6 Therelative strengths of shading and shadow cues

Earlier we showed that Lambertian shading alone prediet<iie real part of I in natural
scenes is empty of useful correlations between images aige ienages. Yet in our data-
base, the real part 6f I, which we believe is related to shadow cues, was afteanger
than the imaginary component. Our depth-inference algorioffers an opportunity to
compare the performance of shading cues versus shadowaean our algorithm again,
except that we set the real partléfo.eriq. t0 zero. This yielded only a 12% improvement.
However, when we ran the algorithm after settingig[ K] to zero, 32% improvement was
achieved. Thus, 72% of the algorithm’s total improvemers dae to shadow cues. When
the database is broken down into categories, the real paff & responsible for 96% of
total improvement in foliage scenes, 76% in rocky terraengs, and 35% in urban scenes
(statue surfaces and building facades). As expected, gogitim relies more heavily on
the real part ofZ1 in environments rich in cast shadows. These results shavshtizealow
cues are far more useful than was previously expected, andtzt they can be exploited
more easily than was previously thought possible, using simhple linear relationships
that might easily be incorporated into linear shape-fréraeing techniques. We feel that
these insights into natural scene statistics are the mgstriant contributions of this paper.

7 Discussion

The power-law extension to shape recipes not only offersbatantial improvement in
performance, but it also greatly reduces the number of patienithat must be learned. The
original shape recipes required ohnie<11 kernel, or121 parameters, for each orientation of
the steerable filters. The new algorithm requires only twapeeters for each orientation
(the real and the imaginary parts 8 (0)). This suggests that the new approach has
captured only those componentsifthat generalize across scales, disregarding all others.

While it is encouraging that the power-law algorithm is higharsimonious, it also means
that fewer scene properties are encoded in the shape resipel& than was previously
hoped [3]. For example, complex properties of the materidisurface reflectance cannot
be encoded. We believe that tB¢d) parameter of the power-law model can be determined
almost entirely by the direction of illumination and the prinence of cast shadows (see fig-
ure 1b). This suggests that the power-law algorithm of thisgp would work equally well
for scenes with multiple materials. To capture more compiexerial properties, nonlinear
methods and probabilistic methods may achieve greateessctlowever, when designing
these more sophisticated methods, care must be taken thtaeasame pitfall encountered
by shape recipes: not all properties of a scene can be seagant simultaneously.



8 Appendix

Shape recipes infer each high resolution band of the rarigg equation 1. Let = 2"~ ™.
If we take the Fourier transform of equation 1, we get
u v

1
Zhigh : Fm.,qS - WKTL,(,‘b (;; ;) : (I : Fm,¢) (7)

whereF, 4 is the Fourier transform of the steerable filter at lewednd orientatiorp, and
Znign 1S the inferred high spatial frequency components of thgeamage. If we take the
steerable pyramid decomposition@f;,, and then transform it back, we ggt,;,;, again,
and so:

m<n

I- Krecipe == Zhigh = Z Zhigth7¢F;7¢ (8)
m,¢
m<n 1 w v .
=1 Z cn—m K"7¢’ (;7 ;) “Fg - Fm,r,b )
m,¢

The steerable filters at each level are simply a dilation efdieerable filters of preceding
levels: F,, ¢ (u,v) = F,, 4 (%, 2). Thus, recalling that = 2"~™, we have

o
1 u v
) Fr ol

m<n

Krccipe = Z Wanb(;a ;) : Fn,g{)(
m,$

u v

) (10)

)
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The steerable filterd’, , are band-pass filters, and they are essentially zero outdide
octaven. Thus, each octave df,...iy. is identical to the octave before it, except reduced
by a constant scale facter In other words, shape recipes extrapol&ig,, by copying the
highest available octave @f;,,, (or some estimation of it) into each successive octave. An
example ofK,..ipe Can be seen in figure 2d.
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