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Abstract

This paper explores the statistical relationship between natural images
and their underlying range (depth) images. We look at how this relation-
ship changes over scale, and how this information can be usedto enhance
low resolution range data using a full resolution intensityimage. Based
on our findings, we propose an extension to an existing technique known
as shape recipes [3], and the success of the two methods are compared
using images and laser scans of real scenes. Our extension isshown
to provide a two-fold improvement over the current method. Further-
more, we demonstrate that ideal linear shape-from-shadingfilters, when
learned from natural scenes, may derive even more strength from shadow
cues than from the traditional linear-Lambertian shading cues.

1 Introduction

The inference of depth information from single images is typically performed by devis-
ing models of image formation based on the physics of light interaction and then inverting
these models to solve for depth. Once inverted, these modelsare highly underconstrained,
requiring many assumptions such as Lambertian surface reflectance, smoothness of sur-
faces, uniform albedo, or lack of cast shadows. Little is known about the relative merits
of these assumptions in real scenes. A statistical understanding of the joint distribution of
real images and their underlying 3D structure would allow usto replace these assumptions
and simplifications with probabilistic priors based on realscenes. Furthermore, statistical
studies may uncover entirely new sources of information that are not obvious from phys-
ical models. Real scenes are affected by many regularities in the environment, such as
the natural geometry of objects, the arrangements of objects in space, natural distributions
of light, and regularities in the position of the observer. Few current shape inference al-
gorithms make use of these trends. Despite the potential usefulness of statistical models
and the growing success of statistical methods in vision, few studies have been made into
the statistical relationship between images and range (depth) images. Those studies that
have examined this relationship in nature have uncovered meaningful and exploitable sta-
tistical trends in real scenes which may be useful for designing new algorithms in surface
inference, and also for understanding how humans perceive depth in real scenes [6, 4, 8].



In this paper, we explore some of the properties of the statistical relationship between
images and their underlying range (depth) images in real scenes, using images acquired by
laser scanner in natural environments. Specifically, we will examine the cross-covariance
between images and range images, and how this structure changes over scale. We then
illustrate how our statistical findings can be applied to inference problems by analyzing
and extending the shape recipe depth inference algorithm.

2 Shape recipes

We will motivate our statistical study with an application.Often, we may have a high-
resolution color image of a scene, but only a low spatial resolution range image (range
images record the 3D distance between the scene and the camera for each pixel). This often
happens if our range image was acquired by applying a stereo depth inference algorithm.
Stereo algorithms rely on smoothness constraints, either explicitly or implicitly, and so
the high-frequency components of the resulting range imageare not reliable [1, 7]. Low-
resolution range data may also be the output of a laser range scanner, if the range scanner is
inexpensive, or if the scan must be acquired quickly (range scanners typically acquire each
pixel sequentially, taking up to several minutes for a high-resolution scan).

It should be possible to improve our estimate of the high spatial frequencies of the range
image by using monocular cues from the high-resolution intensity (or color) image. Shape
recipes [3, 9] provide one way of doing this. The basic principle of shape recipes is that
a relationship between shape and light intensity could belearned from the low resolution
image pair, and thenextrapolated and applied to the high resolution intensity image to
infer the high spatial frequencies of the range image. One advantage of this approach is
that hidden variables important to inference from monocular cues, such as illumination
direction and material reflectance properties, might be implicitly learned from the low-
resolution range and intensity images. However, for this approach to work, we require
some model of how the relationship between shape and intensity changes over scale, which
we discuss below.

For shape recipes, both the high resolution intensity imageand the low resolution range
image are decomposed into steerable wavelet filter pyramids, linearly breaking the image
down according to scale and orientation [2]. Linear regression is then used between the
highest frequency band of the available low-resolution range image and the corresponding
band of the intensity image, to learn a linear filter that bestpredicts the range band from
the image band. The hypothesis of the model is that this filtercan then be used to pre-
dict high frequency range bands from the high frequency image bands. We describe the
implementation in more detail below.

Let im,φ andzm,φ be steerable filter pyramid subbands of the intensity and range image
respectively, at spatial resolutionm and orientationφ (both are integers). Number the band
levels so thatm=0 is the highest frequency subband of the intensity image, andm=n is
the highest available frequency subband of the low-resolution range image. Thus, higher
level numbers correspond to lower spatial frequencies. Shape recipes work by learning a
linear filterkn,φ at leveln by minimizing sum-squared error

∑

(zn,φ−kn,φ ?in,φ)2, where
? denotes convolution. Higher resolution subbands of the range image are inferred by:

ẑm,φ =
1

cn−m
(kn,φ ? im,φ) (1)

wherec = 2. The choice ofc = 2 in the shape recipe model is motivated by the linear
Lambertian shading model [9]. We will discuss this choice ofconstant in section 3.

The underlying assumption of shape recipes is that the convolution kernelkm,φ should be
roughly constant over the four highest resolution bands of the steerable filter pyramid. This



is based on the idea that shape recipe kernels should vary slowly over scale. In this section,
we show mathematically that this model is internally inconsistent. To do this, we first re-
express the shape recipe process in the Fourier domain. The operations of shape recipes
(pyramid decomposition, convolution, and image reconstruction) are all linear operations,
and so they can be combined into a single linear convolution.In other words, we can think
of shape recipes as inferring the high resolution range datazhigh via a single convolution

Zhigh(u, v) = I(u, v) · Krecipe(u, v) (2)

whereI is the Fourier transform of the intensity imagei. (In general, we will use capital
letters to denote functions in the Fourier domain).Krecipe is a filter in the Fourier domain,
of the same size as the image, whose construction is discussed below. Note thatKrecipe is
zero in the low frequency bands whereZlow is available. Oncezhigh (the inverse Fourier
transform ofZhigh) is estimated, it can be combined with the known low-resolution range
data simply by adding them together:zrecipe(x, y) = zlow(x, y) + zhigh(x, y).

For shorthand, we will writeI(u, v)I∗(u, v) asII(u, v) andZ(u, v)I∗(u, v) asZI(u, v).
II is also known as the power spectrum, and it is the Fourier transform of the autocorre-
lation of the intensity image.ZI is the Fourier transform of the cross-correlation between
the intensity and range images, and it has both real and imaginary parts. LetK = ZI/II.
Observe thatI · K is a perfect reconstruction of the original high resolutionrange image
(as long asII(u, v) 6= 0). Because we do not have the full-resolution range image, we
can only compute the low spatial frequencies ofZI(u, v). Let Klow = ZIlow/II, where
ZIlow is the Fourier transform of the cross-correlation between the low-resolution range
image, and a low-resolution version of the intensity image.Klow is zero in the high fre-
quency bands. We can then think ofKrecipe as an approximation ofK = ZI/II formed
by extrapolating Klow into the higher spatial frequencies.

In the appendix, we show that shape recipes implicitly perform this extrapolation by learn-
ing the highest available frequency octave ofKlow, and duplicating this octave into all
successive octaves ofKrecipe, multiplied by a scale factor. However, there is a problem
with this approach. First, there is no reason to expect that features in the range/intensity
relationship should repeat once every octave. Figure 1a shows a plot ofZI from a scene in
our database of ground-truth range data (to be described in section 3). The fine structures
in real[K] do not duplicate themselves every octave. Second and more importantly, octave
duplication violates Freeman and Torralba’s assumption that shape recipe kernels should
change slowly over scale, which we take to mean overall scales, not just over successive
octaves. Even if octave 2 ofK is made identical to octave 1, it is mathematically impossible
for fractional octaves ofK like 1.5 to also be identical unlessZI/II is completely smooth
and devoid of fine structure. The fine structures inK therefore cannot possibly generalize
overall scales.

In the next section, we use laser scans of real scenes to studythe joint statistics of range
and intensity images in greater detail, and use our results to form a statistically-motivated
model ofZI. We believe that a greater understanding of the joint distribution of natural
images and their underlying 3D structure will have a broad impact on the development
of robust depth inference algorithms, and also on understanding human depth perception.
More immediately, our statistical observations lead to a more accurate way to extrapolate
Klow, which in turn results in a more accurate shape recipe method.

3 Scaling laws in natural scene statistics

To study the correlational structures between depth and intensity in natural scenes, we
have collected a database of coregistered intensity and high-resolution range images (cor-
responding pixels of the two images correspond to the same point in space). Scans were
collected using the Riegl LMS-Z360 laser range scanner withintegrated color photosensor.
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Figure 1:a) A log-log polar plot of|real[ZI]| from a scene in our database.ZI contains
extensive fine structures that do not repeat at each octave. However, along all orientations,
the general form of|real[ZI]| is a power-law.|imag[ZI]| similarly obeys a power-law.
b) A plot of BK(θ) for the scene in figure 2.real[BK(θ)] is drawn in black and
imag[BK(θ)] in grey. This plot is typical of most scenes in our database. As predicted
by equation 4,imag[BK(θ)] reaches its minima at the illumination direction (in this case,
to the extreme left, almost180◦). Also typical is thatreal[BK(θ)] is uniformly negative,
most likely caused by cast shadows in object concavities [6].

Scans were taken of a variety of rural and urban scenes. All images were taken outdoors,
under sunny conditions, while the scanner was level with ground. The shape recipe model
was intended for scenes with homogenous albedo and surface material. To test this algo-
rithm in real scenes of this type, we selected28 single-texture image sections from our
database. These textures include statue surfaces and faceted building exteriors, such as
archways and church facades (12 scenes), rocky terrain and rock piles (8), and leafy fo-
liage (8). No logarithm or other transformation was appliedto the intensity or range data
(measured in meters), as this would interfere with the Lambertian model that motivates the
shape recipe technique. Average size of these textures was 172,669 pixels per image.

We show a log-log polar plot of|real[ZI(r, θ)]| from one image in our database in figure
1a. As can be seen in the figure, this structure appears to closely follow a power law. We
claim thatZI can be reasonably modeled byB(θ)/rα, wherer is spatial frequency in polar
coordinates, andB(θ) is a parameter of the model (with both real and imaginary parts) that
depends only on polar angleθ. We test this claim by dividing the Fourier plane into four
45◦ octants (vertical, forward diagonal, horizontal, and backward diagonal), and measuring
the drop-off rate in each octant separately. For each octant, we average over the octant’s
included orientations and fit the result to a power-law. The resulting values ofα (averaged
over all 28 images) are listed in the table below:

orientation II real[ZI] imag[ZI] ZZ
horizontal 2.47±0.10 3.61±0.18 3.84±0.19 2.84±0.11
forward diagonal 2.61±0.11 3.67±0.17 3.95±0.17 2.92±0.11
vertical 2.76±0.11 3.62±0.15 3.61±0.24 2.89±0.11
backward diagonal 2.56±0.09 3.69±0.17 3.84±0.23 2.86±0.10
mean 2.60±0.10 3.65±0.14 3.87±0.16 2.88±0.10

For each octant, the correlation coefficient between the power-law fit and the actual spec-
trum ranged from0.91 to 0.99, demonstrating that each octant is well-fit by a power-law
(Note that averaging over orientation smooths out some fine structures in each spectrum).
Furthermore,α varies little across orientations, showing that our model fitsZI closely.

The above findings predict thatK = ZI/II also obeys a power-law. SubtractingαII from
αreal[ZI] andαimag[ZI], we find thatreal[K] drops off at1/r1.1 andimag[K] drops off at
1/r1.2. Thus, we have thatK(r, θ) ≈ BK(θ)/r.



Now that we know thatK can be fit (roughly) by a1/r power-law, we can offer some
insight into whyK tends to approximate this general form. The1/r drop-off in the
imaginary part ofK can be explained by the linear Lambertian model of shading, with
oblique lighting conditions. This argument was used by Freeman and Torralba [9] in
their theoretical motivation for choosingc = 2. The linear Lambertian model is obtained
by taking only the linear terms of the Taylor series of the Lambertian equation. Under
this model, if constant albedo is assumed, and no occlusion is present, then with light-
ing from above,i(x, y) = a ∂z/∂y, wherea is some constant. In the Fourier domain,
I(u, v) = a2πjvZ(u, v), wherej =

√
−1. Thus, we have that

ZI(r, θ) = − j

a2π r sin(θ)
II(r, θ) (3)

K(r, θ) = −j
1

r

1

a2π sin(θ)
(4)

In other words, under this model,K obeys a1/r power-law. This means that each octave
of K is half of the octave before it. Our empirical finding that theimaginary part ofK
obeys a1/r power-law confirms Freeman and Torralba’s reasoning behindchoosingc = 2
for shape recipes.

However, the linear Lambertian shading model predicts thatonly the imaginary part ofZI
should obey a power-law. In fact, according to equation 3, this model predicts that the real
part ofZI should be zero. Yet, in our database, the real part ofZI was typically stronger
than the imaginary part. The real part ofZI is the Fourier transform of the even-symmetric
part of the cross-correlation function, and it includes thedirect correlationcov[i, z]. In
a previous study of the statistics of natural range images [6], we have found that darker
pixels in the image tend to be farther away, resulting in significantly negativecov[i, z].
We attributed this phenomenon to cast shadows in complex scenes: object interiors and
concavities are farther away than object exteriors, and these regions are the most likely
to be in shadow. This effect can be observed wherever shadowsare found, such as the
crevices of figure 2a. However, the effect appears strongestin complex objects with many
shadows and concavities, like folds of cloth, or foliage. Wefound that the real part ofZI
is especially likely to be strongly negative in images of foliage. Such correlation between
depth and darkness has been predicted theoretically for diffuse lighting conditions, such as
cloudy days, when viewed from directly above [5]. The fact that all of our images were
taken under cloudless, sunny conditions and with oblique lighting from above suggests that
this cue may be more important than at first realized. Psychophysical experiments have
demonstrated that in the absence of all other cues, darker image regions appear farther,
suggesting that the human visual system makes use of this cuefor depth inference (see [6]
for a review, also [10]). We believe that the1/r drop-off rate observed inreal[K] is due to
the fact that concavities with smaller apertures but equal depths tend to be darker. In other
words, for a given level of darkness, a smaller aperture corresponds to a more shallow hole.

4 Inference using power-law models

Armed with a better understanding of the statistics of real scenes, we are better prepared to
develop successful depth inference algorithms. We now knowthat fine details inZI/II do
not generalize across scales, but that its coarse structureroughly follows a1/r power-law.
We can exploit this statistical trend directly. We can simply fit our BK(θ)/r power law to
ZIlow/II, and then use this estimate ofK to reconstruct the high frequency range data.

Specifically, from the low-resolution range and intensity image, we compute low resolution
spectra ofZI andII. From the highest frequency octave of the low-resolution images, we
estimateBII(θ) andBZI(θ). Any standard interpolation method will work to estimate
these functions. We chose acos3(θ + πφ/4) basis function based on steerable filters [2].



a) Original Intensity Image b) Low-Resolution Range Datac) Power-law Shape Recipe d) Krecipe

e)Kpowerlaw

Figure 2:a) An example intensity image from our database.b) A Lambertian rendering of
the corresponding low resolution range image.c) Power-law method output. Shape recipe
reconstructions show a similar amount of texture, but testsshow that texture generated by
the power-law method is more highly correlated with the truetexture. d) The imaginary
parts ofKrecipe ande) Kpowerlaw for the same scene. Dark regions are negative, light
regions are positive. The grey center region in each estimate of K corresponds to the low
spatial frequencies, where range data is not inferred because it is already known. Notice
thatKrecipe oscillates over scale.

We now can estimate the high spatial frequencies of the rangeimage,z. Define

Kpowerlaw(r, θ) = Fhigh(r) · (BZI(θ)/BII(θ))/r (5)

Zpowerlaw = Zlow + I · Kpowerlaw (6)

whereFhigh is the high-pass filter associated with the two highest resolution bands of the
steerable filter pyramid of the full-resolution image.

5 Empirical evaluation

In this section, we compare the performance of shape recipeswith our new approach, us-
ing our ground-truth database of high-resolution range andintensity image pairs described
in section 3. For each range image in our database, a low-resolution (but still full-sized)
range image,zlow, was generated by setting to zero the top two steerable filterpyramid lay-
ers. Both algorithms accepted as input the low-resolution range image and high-resolution
intensity image, and the output was compared with the original high-resolution range im-
age. The high resolution output corresponds to a4-fold increase in spatial resolution (or a
16-fold increase in total size).

Although encouraging enhancements of stereo output were given by the authors, shape
recipes has not been evaluated with real, ground-truth highresolution range data. To maxi-
mize its performance, we implemented shape recipes using ridge regression, with the ridge
coefficient obtained using cross-validation. Linear kernels were learned (and the output
evaluated) over a region of the image at least21 pixels from the image border.

For each high-resolution output, we measured the sum squared error between the recon-
struction (zrecipe or zpowerlaw) and the original range image (z). We compared this with
the sum-squared error of the low-resolution range imagezlow to get the percent reduction
in sum-squared error:error reductionrecipe =

errlow−errrecipe

errlow
. This measure of error

reflects the performance of the method independently of the variance or absolute depth of



the range image. On average, shape recipe reconstructions had 1.3% less mean-squared
error thanzlow. Shape recipes improved21 of the28 images. Our new approach had2.2%
less mean-squared error thanzlow, and improved26 of the28 images.

We cannot expect the error reduction values to be very high, partly because our images
are highly complex natural scenes, and also because some noise was present in both the
range and intensity images. Therefore, it is difficult to assess how much of the remaining
error could be recovered by a superior algorithm, and how much is simply due to sensor
noise. As a comparison, we generated an optimal linear reconstruction,zoptlin, by learning
11 × 11 shape recipe kernels for the two high resolution pyramid bands directly from
the ground-truth high resolution range image. This reconstruction provides a loose upper
bound on the degree of improvement possible by linear shape methods. We then measured
the percentage of linearly achievable improvement for eachimage:improvementrecipe =
errlow−errrecipe

errlow−erroptlin
Shape recipes yielded an average improvement of23%. Our approach

achieved an improvement of 44%, nearly a two-fold enhancement over shape recipes.

6 The relative strengths of shading and shadow cues

Earlier we showed that Lambertian shading alone predicts that the real part ofZI in natural
scenes is empty of useful correlations between images and range images. Yet in our data-
base, the real part ofZI, which we believe is related to shadow cues, was oftenstronger
than the imaginary component. Our depth-inference algorithm offers an opportunity to
compare the performance of shading cues versus shadow cues.We ran our algorithm again,
except that we set the real part ofKpowerlaw to zero. This yielded only a 12% improvement.
However, when we ran the algorithm after settingimag[K] to zero, 32% improvement was
achieved. Thus, 72% of the algorithm’s total improvement was due to shadow cues. When
the database is broken down into categories, the real part ofZI is responsible for 96% of
total improvement in foliage scenes, 76% in rocky terrain scenes, and 35% in urban scenes
(statue surfaces and building facades). As expected, the algorithm relies more heavily on
the real part ofZI in environments rich in cast shadows. These results show that shadow
cues are far more useful than was previously expected, and also that they can be exploited
more easily than was previously thought possible, using only simple linear relationships
that might easily be incorporated into linear shape-from-shading techniques. We feel that
these insights into natural scene statistics are the most important contributions of this paper.

7 Discussion

The power-law extension to shape recipes not only offers a substantial improvement in
performance, but it also greatly reduces the number of parameters that must be learned. The
original shape recipes required one11×11 kernel, or121 parameters, for each orientation of
the steerable filters. The new algorithm requires only two parameters for each orientation
(the real and the imaginary parts ofBK(θ)). This suggests that the new approach has
captured only those components ofK that generalize across scales, disregarding all others.

While it is encouraging that the power-law algorithm is highly parsimonious, it also means
that fewer scene properties are encoded in the shape recipe kernels than was previously
hoped [3]. For example, complex properties of the material and surface reflectance cannot
be encoded. We believe that theB(θ) parameter of the power-law model can be determined
almost entirely by the direction of illumination and the prominence of cast shadows (see fig-
ure 1b). This suggests that the power-law algorithm of this paper would work equally well
for scenes with multiple materials. To capture more complexmaterial properties, nonlinear
methods and probabilistic methods may achieve greater success. However, when designing
these more sophisticated methods, care must be taken to avoid the same pitfall encountered
by shape recipes: not all properties of a scene can be scale-invariant simultaneously.



8 Appendix

Shape recipes infer each high resolution band of the range using equation 1. Letσ = 2n−m.
If we take the Fourier transform of equation 1, we get

Zhigh · Fm,φ =
1

cn−m
Kn,φ

(u

σ
,
v

σ

)

· (I · Fm,φ) (7)

whereFm,φ is the Fourier transform of the steerable filter at levelm and orientationφ, and
Zhigh is the inferred high spatial frequency components of the range image. If we take the
steerable pyramid decomposition ofZhigh and then transform it back, we getZhigh again,
and so:

I · Krecipe = Zhigh =

m<n
∑

m,φ

ZhighFm,φF ∗
m,φ (8)

= I

m<n
∑

m,φ

1

cn−m
Kn,φ

(u

σ
,
v

σ

)

· Fm,φ · F ∗
m,φ (9)

The steerable filters at each level are simply a dilation of the steerable filters of preceding
levels:Fm,φ(u, v) = Fn,φ

(

u
σ
, v

σ

)

. Thus, recalling thatσ = 2n−m, we have

Krecipe =
m<n
∑

m,φ

1

cn−m
Kn,φ(

u

σ
,
v

σ
) · Fn,φ(

u

σ
,
v

σ
) · F ∗

n,φ(
u

σ
,
v

σ
) (10)

The steerable filtersFn,φ are band-pass filters, and they are essentially zero outsideof
octaven. Thus, each octave ofKrecipe is identical to the octave before it, except reduced
by a constant scale factorc. In other words, shape recipes extrapolateKlow by copying the
highest available octave ofKlow (or some estimation of it) into each successive octave. An
example ofKrecipe can be seen in figure 2d.
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