
A Large Dataset of Macaque V1 Responses to Natural Images Revealed Complexity in V1 Neural Codes

1a

Summary and conclusion
● We collected extensive data on the response of 1689 Macaque V1 neurons to 30k-50k natural images. Using this 

data, we developed neural network models that more accurately predicts neural responses, and characterizes the 
receptive fields of the neurons.

● Our findings suggest that V1 neurons exhibit complexity beyond traditional oriented Gabor and tuned to curves, 
textures, eyes, and other higher order features.

● We demonstrate a large data set of natural images is important for revealing the complexity of receptive fields that 
white noise stimuli fail to recover.  

● We also found complex receptive fields predicted by overcomplete sparse coding fit neural responses better than 
standard sparse coding, though still not as powerful as the CNN models.

● The CNN models automatically exhibit surround suppression, suggesting that models have captured neurons' 
sensitivity to context, and that these CNN models can potentially be used as neurons-in-silicon for carrying out 
"neurophysiological experiments". 
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Research shows that Convolutional Neural Network is an excellent tool for modeling neural 
representation and computation in the ventral stream of macaque monkeys (Yamins and DiCarlo 
2016) and for characterizing V1 receptive fields in monkeys (Zhang et al. 2019) and mice ( 
Candena et al., 2019,  Walker et al., 2019.).  Our earlier studies showing that V1 neurons are tuned 
to more complex features beyond orientation-selective Gabor filters (Tang et al., 2018a., Zhang et 
al. 2019) were based on a parametric artificial pattern and might be biased.  The extreme sparsity 
of macaque V1 responses to natural images in 2-P calcium imaging had prevented adequate CNN 
fitting of macaque V1 receptive fields (Tang et al. 2018b). This study provides a large dataset for 
better characterizations of the neural codes of macaque V1 neurons. 

Experiments & Data
Using two-photon imaging with GCaMP5, we measured the responses of 1689 neurons from 6 sites 
of three awake behaving macaque monkeys to 30k-50k natural images. About 300 cells from each 
site  were tracked  across five days anatomically and based on responses to 200 fingerprint 
images.  Monkeys performed fixation task.  The images were presented in sequence with 1 second 
per image preceded by 1 second of gray screen. The 30k-50k images in the training set were 
presented once,  1000 images in the validation set were tested once with 10 repeats. 

Individual CNN (iCNN) (Zhang et al. 2019) or shared core CNN (SCM) (Klindt et al. 2017), (with 4 
conv layers) were fitted to the responses to 30k-50k training images to predict the responses to 
1000 validation images.  The metric used to evaluate the models was the Pearson correlation 
between neuron responses and model-predicted responses. Predicted correlation for entire 
population of neurons is around 0.53. (Histogram of the performance distribution iCNN vs SCM 
shown below).
z

Shared-core model. Proposed by Klindt, et al. in 2017Individual-CNN, with 4 Convolutional layers 
and 2 Max Pooling layers

Response for 50K Natural Stimuli

100μm

Top 20 images in presented stimuliExample 2-photon imaging results for one site
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CNN modeling of V1 RFs

Diversity and Complexity of V1 tunings

Surround suppression

Receptive fields based on Over-complete sparse coding fit better than complex sparse coding 

Visualizations: By visualizing all neurons in the collected V1 
data, we can observe complex tuning that differs from 
traditional Gabor-oriented filters. All neurons in a example 
site M1S1 see below (iCNN visualizations): 
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We tested the fitted CNN models with 
the Pattern stimuli used in Tang et al. 
2018a, augmented with reverse contrast 
and Laplacian filtered versions to 
compare neurons' visualization to their 
classification based on responses to 
curves, junctions, bars and edges in the 
earlier study.

Augmented pattern stimuli

Data size matters 

Ranked tuning curve (blue curve) for an example neuron 
against the prediction of the model (orange curve) with 
performance of 0.77 correlation. The neuron's preferred 
image is "visualized" by optimizing the input image via 
backpropagation to maximize the responses of the 
neurons. The dashed line shows the response of the 
model to the visualized image (see above). Validation set 
images with top responses were shown for comparison.

V1 neurons forms certain clusters: V1 neurons exhibit clustering 
behavior, as evidenced by the example neurons presented in the 
center panel below, each belonging to a labeled cluster. These 
neurons exhibit different patterns, such as curves, textures, and 
even eye-specific neurons. The top panel displays the top 5 
validation images that elicited the largest responses from each 
neuron, while the bottom panel shows the top 5 Pattern stimuli. 
Notably, the preferred validation images and pattern stimuli of the 
neurons share similar shapes with the visualizations, indicating 
the intricate nature of the V1 neural code.

Curves TexturesEyes SineGrating Bar othersCorner

Validation Top 5 imagesValidation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images

Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5Pattern stimuli Top 5 Pattern stimuli Top 5

Left panel shows the response prediction performance of 40 top-performing neurons from site M2S1 as 
a function of the amount of data used to train the models. It shows the general trend, also evident for 
the entire population, response prediction performance improves with the number of training samples 
used.
Right panel shows the visualizations of two example neurons increase in complexity with more and 
more data.  

Natural images matters 

½ * Max response

One cell evolves 
from a traditional 
oriented edge to a 
curve while the 
other evolves from 
a grating to an eye. 

As the size of the dataset grows, we observed more neurons become classified as Higher-Order (HO). 
A neuron is classified as HO when all the pattern stimuli that elicit responses greater than 50% of its 
peak response belong to one or more higher order categories (curves, corners, crosses, rings). 
Neurons with oriented bars or edges above half-peak response are classified as OT (Oriented-Tuning). 

With limited data, 
neurons are 
predominantly 
classified as 
oriented tuned (OT), 
but models trained 
with more data 
revealed a higher 
proportion of 
neurons tuned to 
complex patterns 
(HO).

We evaluated the performance 
of linear-nonlinear (LN) models 
in predicting neural responses 
using linear filters learned 
through sparse coding from 16 
x 16 natural image patches. 
Our results indicate that 
prediction performance 
improves with increasing 
overcompleteness of the 
representation, as shown in the 
right graph. To account for 
rotation and translation 
variations, we rotated each 
filter set by 18 orientations, 
shifted them by 25 positions, 
and reversed the contrast 
before identifying the best filter 
for each LN model to predict 
neuron responses.

Overcomplete sparse coding (cite Olshausen, LeCun, Sommer) also yields more 
complex receptive fields than standard sparse coding (Olshausen and Field 1996). 
The best fitted "overcomplete" codes for neurons in site m2s1 (Middle Panel, 16X 
overcomplete) revealed  curvature and corner neurons versus the standard Gabor 
filters in the standard sparse coding (Left Panel). CNN models' visualization (Right 
Panel)  show a greater degree of diversity and complexity in neural codes.

Natural images, with rich features, are crucial for 
recovering complex receptive fields, in addition to 
the amount of data. Testing CNN models with white 
noise image, we found that standard 
reverse-correlation techniques fail to recover 
complex pattern receptive fields even with 5 million 
white noise patterns.  CNN visualization, top 
response weighted average stimuli, as well as the 
receptive fields recovered from white noises are 
shown for comparison. 

Visualizations Top image Weighted-sum 5 million whitenoise

Response

…

Reverse correlation method

We tested the CNN models of 279 neurons (all sites combined) with good response prediction performance (> 0.7 in 
Pearson Correlation) with sine-wave grating with size,  ranging from 1X to 7X receptive field size. Interestingly,  these 
neurons trained with natural images exhibit the classical surround suppression effect automatically.  (a) RF distribution 
of the neurons, as mapped by bars. (b) averaged responses of the selected CNN neurons to a sine-wave grating 
(averaged over 4 phases) of each cell’s preferred orientation and spatial frequency inside (grating center-only) or 
outside (gray center, grating surround-only) apertures of different diameters. (c) distribution of the magnitude of the 
surround suppression index (MaxRsp - MinRsp) / MaxRsp, which is very similar to that reported in Cavanaugh et al. 
(2002) (d). 

RF distribution of selected neurons

N=279

Center and Surround Grating Responses Dist of surround suppression
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