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Abstract

Traditional methods in neural data analysis are not appropriate for analyzing the
spike train of a single experimental trial. We show that, by constructing a model
of firing statistics, a more accurate estimate of the firing rate for a single spike
train can be obtained. The model is based on the assumption that the neuron’s
spikes are generated by a non-homogeneous Poisson process which follows Marko-
vian dynamics. We test the method by reconstructing the input stimulus based on
the neurons’ responses either on the raw spike data or the firing rate estimate. The
spike data were recorded from macaque V1 neurons in response to a sinewave grat-
ing undergoing pseudo-random walk. For a large percentage of the cells studied, the
reconstruction is significantly improved by using the estimated firing rate over the
raw spikes, suggesting that estimated rate reflects more accurately the underlying
state of the neurons.
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Reconstruction.

1 Introduction

Most neural data analysis techniques from in vivo experiments use a re-
peated trial approach to estimate the instantaneous firing rate of a neuron.
The standard practice has been to apply a linear smoothing operation across
trials and time. The implicit assumption is that the mean underlying firing
rate is unchanged across trials. In addition, smoothing across time removes
high frequency components of a signal, which may or may not be significant
for encoding or decoding the signals.
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A peri-stimulus time histogram (PSTH), constructed across trials and using
a certain bin width, is a special case of a moving average filter. Linear filter-
ing, however, only re-scales the frequency components in the original signal.
In neurophysiological research, the type of filter (i. e., Gaussian versus moving
average,) and its parameters can greatly influence the resulting estimate for a
firing rate. In general, there is no objective way to assess which frequency com-
ponents are important and which are not. If the goal is to optimally estimate
the instantaneous firing rate from a single trial, one can pose the problem
as that of finding the optimal linear filter. Relevant work includes Kalman
smoothing and bandwidth selection [1-2].

Suppose that instead of trying to find an optimal filter, we are looking for a
probabilistic description of the neuron’s response behavior. For simplicity, we
assume that the neuron’s spikes follow a non-homogeneous Poisson process,
dependent only on an unobserved firing rate r (¢). Furthermore, we assume
that changes in 7 (¢) follow a Markovian dynamic, so the rate r (¢) is station-
ary and dependent only on the previous rate r (¢ — 1). Our goal is to find
P(r(t) | S;), the probability of an unobserved firing rate given the observed
spike train, where S; (¢) is the neural response for trial ¢ at time ¢. With these
assumptions, we can use a Hidden Markov Model (HMM) [3] to estimate
P(r(t) | S;) by building a model of how the firing rate changes over time.
The hidden states in the model correspond to different firing rates, and the
transition probabilities between states model how the firing rates change over
time. The “training” of the HMM gives us a maximum likelihood estimate for
the transition probabilities between states and the probability of observing a
spike given the current state. The only parameter we need to choose for the
model is the number of hidden states. Based on this probabilistic description
using the HMM, we can compute the maximum likelihood estimate of the
instantaneous firing rate from the spikes of a single trial.

2 Methods

Let us define the number of hidden states as M, the presence of a spike
in trial ¢ at time ¢ as S; (t) = 1 and S; (t) = 0 otherwise, and J; (t) = j to
indicate we are in hidden state j in trial ¢ at time ¢ :
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Eq. 1 is the probability that we start in a particular state j. Eq. 2 is the
probability of transition from state j to state k, independently of a particular
data sequence. Eq. 3 is the probability of observing a spike given we are in
state 7 and corresponds to the firing rate associated with this state. These



probabilities can be trained using the Baum-Welch learning algorithm [3].

A HMM is trained for each neuron using the entire corpus of spike train
data collected from that neuron in a particular experiment. Note that while our
resulting model will vary with the statistical properties of the input signal, the
estimates are not computed using the actual input signal. They are dependent
only on the observed neural response. Training is done until the likelihood of
the data given the model has converged. The model is then used to compute
the expected firing rate at all points in time during the trial, given that trial’s
spike train. The Viterbi algorithm can be used to find the maximum likelihood
solution [4]. To find the expected firing rate R(t), we define:
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We show Eqns. 6-8 in both the probabilistic and in the recursive, compu-
tational form, as given by the Baum-Welch training algorithm. Eq. 9 is our
expected firing rate, computed as the expected probability of observing a spike
across all hidden states. Note that we can use this equation on individual trials
to estimate the firing rate at all points in time.

3 Results

To assess the utility of the method, we reconstruct the input stimulus using
the data from single trial spike trains. The stimulus used in the experiment
was a sinewave grating (as shown in Figure 1a), the phase of which under-
went a pseudo-random walk. The step in phase was drawn from a Gaussian
random noise distribution low-pass filtered to introduce a certain degree of
temporal correlation in the input signals. The sinewave grating moves only
along one direction, and can be fully characterized by the cosine of its phase,
which corresponds to the intensity of the image at the center of the receptive



field. Recordings were obtained from neurons in awake macaque V1 for ap-
proximately 400 trials, each lasting 2.2 seconds. The monkey’s only task was

to maintain fixation during this period.
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Fig. 1. (a) Stimulus display in the actual experiment. The sinewave grating moved
back and forth in a pseudo-random walk. The orientation and spatial frequency of
the grating were chosen according to the optimal tuning of the cell. (b) Results of the
HMM estimated firing rate of a neuron (upper panel) and stimulus reconstruction
(lower panel). The original signal and its estimated reconstruction using both the

HMM estimated rate and raw spike data are shown.
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Fig. 2. Another example of the estimated firing rate and resulting reconstruction
from the HMM model, this time for a cell with a higher mean firing rate.

We used M = 10 hidden states in training the hidden Markov models. The

initial conditions were set to:
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The HMM was trained until the likelihood of the data had converged, defined
as P(S; | A) = 0%, o (T). The model was then used to estimate the firing
rate as in Eq. 9.

To reconstruct the input signal from the spike train of the neuron or the
firing rate estimate from the HMM, we compute the optimal linear reconstruc-
tion kernel H [5] as follows, where ¢;(t) is the phase of the grating for trial ¢
at time ¢:
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H is the optimal least-squares solution to X;H = Y; across all trials 7. An
SVD method is used to compute the matrix inverse to alleviate problems with
the temporal correlations in the data. To use H in estimating the input signal,
we convolve it with the estimated firing rates R. Two examples of the HMM
output and the reconstruction are given in Figures 1 and 2. Also shown in
these figures are the performance of a linear reconstruction obtained based on
the raw spike train, computed as above but replacing fiz(t) with S;(¢).

To evaluate the performance, we compare €2, the mean squared error (MSE)
of the stimulus reconstructions for the HMM and raw spike estimates. Figure
3 shows the MSE’s plotted against each other. Also shown is a histogram for
an improvement index, computed as

5 = €2Raw — E%IMM
E%{auw + g%IMM
We examine the properties of the cells for which our estimate of firing rate

results in an improved reconstruction. Figure 3C show that for a moderate or
high firing rate, the reconstruction is improved. We have used a time resolution
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Fig. 3. Error measure comparisons: (A) A comparison of errors for the reconstruction
based only on the raw spike information and the errors for the reconstruction using
the HMM estimate of the firing rate. (B) A histogram of the improvement index over
the set of neurons, showing a small but significant improvement of the reconstruction
based on HMM estimate. (C) Firing Rate versus Improvement: Plot of the cell’s
mean firing rate versus the improvement index. An index of 0 corresponds to no
improvement and < 0 a decrease in performance. We see that the HMM method
improves the reconstruction more for neurons with higher firing rates.

of 1 msec. At this time scale, a neuron with a low firing rate may not behave
in a Markov fashion at all. This particular problem hints at related issues that
arise from using a discrete representation. There are proposals for training
HMM'’s using continuous probability distributions [6]. In addition, work in
the statistical literature on particle filters may also provide extensions into
the continuous domain [7]. For future work, we will extend our modeling to
the continuous domain.
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