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Abstract

We present a physiologically constrained neural dynamical model of the visual sys-
tem for the organization of attention and its mediation of object recognition and
visual search. In this model, spatial and feature attention are mediated by a single
neural mechanism involving the interaction of the ventral and the dorsal streams
with the early visual cortex. The model consists of three representative modules
which encode object classes, spatial locations, and elementary features respectively.
These modules are coupled together in a neural dynamical system in the framework
of biased competition. The system can be made to operate in either a spatial or an
object attention mode by introducing a top-down bias to either the dorsal or the
ventral stream modules. In this system, translation invariant object recognition and
object spatial localization arise from the interaction among the modules, with the
early visual areas playing a key role in mediating such interaction.
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1 Introduction

Visual attention can function in two distinct modes: spatial focal attention
that can be visualized as a spotlight that ‘illuminate’ a certain location of
visual space for focused visual analysis [4]; spatially distributed object atten-
tion with which a target object can be searched in parallel over a large visual
space [7]. Duncan [2] proposed that the two modes of operation are both man-
ifestation of a top-down selection process. In spatial attention, the selection
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is focal in the spatial dimension and diffuse in feature dimension; while in
object attention, the selection is focal in the feature dimension and diffuse in
the spatial dimension. In recent years, a number of neurophysiological studies
[5,10,11,13] have provided insights to the neural basis of spatial attention and
object attention. Several computational models have been advanced to ac-
count for aspects of either spatial attention or object attention [12,14,15,17].
Yet, none of these models, except [1], attempt to integrate spatial and object
attention mechanisms into a unitary system.

The system described in this paper is built upon earlier models on biased-
competition in the ventral stream [2, 13, 15], and on interactive processes in
visual processing [3,9]. Our main proposal here is that translation invariant ob-
ject recognition and visual search can be accomplished through the interaction
between the interaction of the ventral-stream module and the dorsal-stream
module via the early visual cortex such as V1 and V2. Early visual cortex
plays a special role in mediating and integrating information fed back from
the various expert modules in the extrastriate cortex, as proposed in the high-
resolution buffer theory of V1 [6]. In this framework, spatial attention and
object attention mechanisms can be integrated in an unified system.

2 Methods

A neural dynamical system with three interacting modules has been im-
plemented. The three cortical modules are the early visual cortical mod-
ule (V1/V2), a ventral-stream module (V4/IT), and a dorsal-stream module
(PP/PO). Spatial or object attention are generated by top-down bias input
to the dorsal-stream module or the ventral-stream module respectively, and
the two streams interact through the bidirectional connection between these
modules and the early visual cortex, as shown in Figure 1.

The unit in each module represents a pool of neurons with similar prop-
erties. Its activity is described using mean field approximation [16]. In this
formulation, each unit ¢ is characterized by two variables: its activation x;
(average firing rate of the pool) and an input current I;, characteristic for all
cells in pool 7, satisfying the following input-output relationship:
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where T, is the cell’s absolute refractory period (e.g. 1 msec) and 7 is the mem-
brane time constant. Let there be m neuronal pools in each cortical module.
Each excitatory pool’s dynamics is then described by, for z = 1,...m,

T%Ii(t) =—L+aF(L®)—-bFI'@)+ PO+ LT+ 1, +v

The first term is a habituation decay term. The second term represents the
recurrent self excitation for maintaining the activity of the pool. It mediates
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Fig. 1. (a) A schematic diagram of the model. The model contains three modules:
the early visual module (EM), the ventral stream module (VM) and the dorsal
stream module (DM). The early visual module contains orientation-selective com-
plex cells and hypercolumns as in the primary visual cortex. The ventral stream
module contains neuronal pools encoding specific object classes as in the inferotem-
poral cortex. The dorsal stream module contains a map encoding positions in the
retinotopic coordinate. The early module and the ventral module are connected with
symmetrical connections developed with Hebbian learning. The early module and
the dorsal module are connected with symmetrically localized connections modeled
with Gaussian weights. Competitive interaction within each module is mediated by
inhibitory pools. Connection between modules are excitatory, biasing the compet-
itive dynamics in each module. Concentration of neural activities to an individual
pool in the ventral module corresponds to object recognition. Concentration of neu-
ral activities to a unit in a dorsal module corresponds to object localization. The
early module provides a buffer for the ventral and the dorsal modules to interact.

the cooperative interaction among neurons within each unit. The third term
is the inhibitory input from the inhibitory neuronal pool. I? is the specific
bottom-up input to pool i from a lower cortical module, and I is the spe-
cific top-down bias input from higher cortical modules. I, and v are diffuse
spontaneous background input and an additive Gaussian noise to the system
respectively.

The inhibitory neuronal pool integrates information from all the excitatory
pools within each module and feeds back unspecific inhibition to each of the
excitatory pools. It mediates competitive normalizing interaction among the
neuronal pools within the module. Its dynamics is given by,

P10 = =1 —dP(I'() + 3= F(1(0)

These two dynamical equations are the fundamental components in our sys-
tem.

The early visual module (EM), which models areas V1 and V2, contains 33
x 33 hypercolumns, covering a 66 x 66 pixel scene. Each of the hypercolumn
contains 24 pools, 8 orientations and 3 scales, of feature detectors, modeled by



power modulus of Gabor wavelet responses to the input images. For simplicity,
we allow global normalization within units at each scale within the early visual
module. Hence, there are 26136 excitatory pools and 3 inhibitory pools in the
early visual module.

The dorsal stream module (DM), a lattice of 66 x 66 units, computes and
maintains a spatial map of an object’s location. It helps to direct the spot-
light of spatial attention on the early visual module. Neurophysiologically, it
might include a number of cortical areas in the dorsal stream such as V3a,
LIP and PO. This module receives top-down bias input from the prefrontal
cortex which specifies the locus of spatial attention. Each node on DM lattice
is represented a pool of neurons that are reciprocally connected to a set of
hypercolumns in V1 with a Gaussian spatial spread. The activation of each
DM node indicates spatial attention allocation to the hypercolumns under
its feedback influence. There is one common inhibitory pool that mediates
competitive interactions among these 4356 neuronal pools.

The ventral stream module (VM) represents memories of object classes and
is responsible for object categorization and recognition. Neurophysiologically,
this module might include TEO, TE and other areas of the inferotemporal
cortex. The module in our model has two excitatory pools of neurons, each
representing a particular object. A top-down bias input from prefrontal cor-
tex to the pool will select a particular object, initiating the effect of object
attention in a visual search task. Each VM unit is fully and symmetrically
connected to all neuronal pools in the early visual module. Their connection
weights are trained by Hebbian learning in a learning phase.

3 Results

The system are tested in two scenarios: object attention and spatial at-
tention. In the object attention mode, as when the animal is looking for a
particular object in a visual search task, a top-down bias is imposed onto a
VM unit, tilting the balance of competition in VM. As the competition in
VM proceeds, the activity in VM will also propagate back to the early visual
module through recurrent feedback connection. The hypercolumns in EM that
exhibit a response pattern closest to the patterns corresponding to the ‘pre-
ferred’ unit in VM will be facilitated by the feedback and in turn inhibit other
hypercolumns in EM through lateral inhibition. Activities in EM will feed
forward to the units in DM, where the competitive interaction will further in-
tensify the spatial localization through the competition within DM. The three
modules mutually constrain each other’s computation, resulting in an increase
in the activity of the DM unit at the target position relative to that of the
units in the distractor positions (Fig. 2a), and an increase in the activity of the
VM unit corresponding to the target relative to the activity of the distractor
unit (Fig 2c). Fig 2b shows the activities of the same hypercolumns with and
without object attention, indicating the effect of object attention emerges at



the late response of the EM neurons.
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Fig. 2.

In the spatial attention mode, the top down bias is imposed on a unit in the
dorsal module’s spatial map to specify the locus of spatial attention. This unit
will enhance the activities at a specified region in the early visual area. The
simulation shows the effect of spatial attentional bias on the DM unit (Fig
3a) and its impact on the early module units (Fig 3b). The effect of spatial
attention also emerges at the late response of the neurons. The highlighted
hypercolumns provides a stronger bias to the VM unit coding for the object an-
alyzed by these hypercolumns under the attentional spotlight. Figure 3¢ shows
the increase in activity of the VM unit corresponding to a particular object
when it is under the spotlight relative to when it is not. The bias from EM will
eventually allow the target unit in VM become the winner, corresponding to
the recognition of the object by the visual system. By successively introducing
top-down bias to different spatial units in the dorsal module, the system can
effectively highlight and gate information from different retinotopic locations
of the early visual areas to the object recognition module. This mechanism
implements translation invariant object recognition without the need for dy-
namic synaptic modifications in the other models [12,13] such as the shifter
circuit or the need for attention gain field cells [14]. The DM map in our model
encodes spatial location but is not an explicit saliency map [8,17]. Represen-
tation of saliency is distributed across multiple modules in our model.

Our simulation shows that a small enhancement due to object attention or
spatial attention at the level of V1 and V2 is sufficient to communicate the
bias between VM and DM, causing dramatic symmetry breaking in the higher



modules. The mutually constrained computations in the three modules lead
to simultaneous localization of the target in the DM map, the identification of
target in the VM map, highlighted features in the EM map, binding an object’s
identify, spatial location and its detailed features into one unified percept in
our brain.

References

[1] G.T. Buracas, T.D. Albright & T.J. Sejnowski Varieties of attention: a model
of visual search, Proceeding of 3rd Joint symposium on neural computation,
Institute Neural Computation, 6, (1996), 11-25.

[2] J.Duncan, J, The locus of interference in the perception of simultaneous stimuli,
Psychological Review, 87, (1980) 272-300.

[3] Grossberg, S. Competitive learning: from interactive activation to adapative
resonance. Cogn Sci, 11 (1987), 23-63.

[4] H.V. Helmbholtz, H.V. Handbuch der physiologischen Optik. Leipzig: Voss, 1867.

[6] M. Ito, & C. Gilbert, Attention modulates contextual influences in the primary
visual cortex of alert monkeys. Neuron, 22, (1999) 593-604.

[6] T.S.Lee, D. Mumford, R. Romero & V.A.F. Lamme, The role of primary visual
cortex in higher level vision. Vision Research 38, (1998) 2429-2454.

[7] W. James, The principles of psychology. New York: Henry Holt, 1890.

[8] C.Koch & S. Ullman, Shifts in selective visual attention: towards the underlying
neural circuitry. In: Vaina, L.M. Matter of Intelligence, D Reidel Publishing
Company, (1987) 115-141.

[9] J.L. McCelland, & D.E. Rumelhart, An interactive activation model of context
effects in letter perception. Part I: an account of basic findings. Psych. Rev, 88,
(1981) 375-407.

[10] J. Moran, & R. Desimone, Selective attention gates visual processing in the
extrastriate cortex. Science, 229, (1985) 782-784.

[11] B. Motter, Focal attention produces spatially selective processing in visual
cortical areas V1, V2 and V4 in the presence of competing stimuli. Journal of
Neurophysiology 70 (1993), 909-919.

[12] B. Olshausen, C. Andersen, & D. Van Essen, A neural model for visual atten-
tion and invariant pattern recognition. J. Neuroscience, 13(11), (1993) 4700-
4719.

[13] J. Reynolds, L. Chelazzi and R. Desimone, Competitive mechanisms sub-serve
attention in macaque areas V2 and V4. Journal of Neuroscience, 19 (1999)
1736-1753.

[14] E. Salinas, & L. Abbott, Invariant visual perception from attentional gain
fields. J. Neurosphysiology, 77 (1997), 3267-3272.

[15] M. Usher, & E. Niebur, Modelling the temporal dynamics of IT neurons in
visual search: A mechanism for top-down selective attention. J. Cognitive Neu-
roscience, 8, (1996) 311-327.

[16] H. Wilson, & J. Cowan, (1972). Excitatory and inhibitory interaction in local-
ized population of model neurons. Biological Cybernetics, 12 (1972) 1-24.

[17] J.M. Wolfe, Guided search 2. Psychonomic Bulletin € Review, 1 (1994), 202-
238.



