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Abstract

This paper presents a model on the potential functional roles of the early visual cortex in the primate visual system. Our hypothesis is
that early visual areas, such as V1, are important for continual interaction among various higher order visual areas during visual
processing. The interaction is mediated by recurrent connections between higher order visual areas and V1, manifested in the long-
latency context-sensitive activities often observed in neurophysiological experiments, and is responsible for the re-integration of
information analysed by the higher visual areas. Specifically, we considered the case of integrating ‘what’ and ‘where’ information
from the ventral and dorsal streams. We found that such a cortical architecture provides simple solutions and fresh insights into the
problems of attentional routing and visual search. The computational viability of this architecture was tested by simulating a large-
scale neural dynamical network.

Introduction

Primary visual cortex has traditionally been considered as a processing
module in a feedforward hierarchy, extracting local features, such as
oriented edges or bars (Hubel & Wiesel, 1978) or performing a Gabor
wavelet transform (Daugman, 1988; Lee, 1996), and then handing
over the information to higher order visual areas for further
processing. Significant progress has been made based on such
feedforward schemes (Riesenhuber & Poggio, 2000). However, many
recent neurophysiological experiments have demonstrated that the
long-latency responses of V1 neurons reflects top-down attention
(Motter, 1993; Hupe et al., 1998; Roelfsema et al., 1998; Ito &
Gilbert, 1999) or other higher order perceptual context, such as
‘figure-ground’ (Lamme, 1995; Zipser et al., 1996), sensitivity to
subjective contour (Lee & Nguyen, 2001) and shape from shading
(Lee et al., 2002). These observed effects are presumably indicative of
the influence of recurrent feedback from higher visual areas on V1.
However, are these effects simply epiphenomena, a reflection of the
heightened activities higher up, or do they serve a useful purpose?
More generally, does V1 play a role beyond simple image processing?

In this work, we propose a neural architecture to explore these
questions. Our basic thesis is that V1 might play a central role in
integrating and coordinating computations amongst the higher visual
areas utilizing the recurrent network connections in the visual system.
Conceptually, similar ideas have been proposed earlier as the high-
resolution buffer hypothesis (Mumford, 1996; Lee et al., 1998). The
rationale behind this hypothesis is that, because explicit and precise
encoding of features and spatial information is only represented in V1
(and the LGN), higher level perceptual computations that involve high
resolution details, fine geometry and spatial precision, such as the

inference of abstract contour and shape, necessarily involve V1.
Furthermore, as V1 is an area where all the information is implicitly
available in retinotopic coordinates, it naturally provides a spatially
registered common forum for all the higher order perceptual inferences
to come back together. Thus, it could play the role of facilitating the
integration of information from the different higher order modules.
Here, we investigated how V1 could serve to integrate and

coordinate the computation of the identity (WHAT) and the location
(WHERE) of objects in a visual scene, using the recurrent interaction
between V1 and the dorsal and ventral streams. The system, as shown
in Fig. 1, is minimal and serves primarily to illustrate the basic
principle. It consists of three major modules, a ventral stream module
(VM), a dorsal stream module (DM) and an early visual module (V1).
Neurons in both the VM and DM are reciprocally connected to V1
neurons in many hypercolumns and thus have large receptive fields.
Neurons in the DM compute and represent the positional information
of an object, while neurons in the VM compute and represent the
identity of objects. This decomposition of functions is consistent with
the proposal of Ungerleider & Mishkin (1982).
In this model, for simplicity, computation within each module is

mediated by winner-take-all competitive mechanisms using lateral
inhibition. This, together with reciprocal connections between V1 and
higher modules, implements the so-called biased competition
mechanism as recently popularized by the work of Usher & Niebur
(1996) and Reynolds et al. (1999) who used such a mechanism to
model attention phenomena observed experimentally in V4 and
inferotemporal cortex (IT). Our contribution is to extend this
framework by bringing the dorsal stream and V1 into a recurrent
interactive architecture for integrating ‘what’ and ‘where’ information.
Our simulations provide new insights into two long-standing

problems: attentional routing and visual search. First, the dominant
neural model for routing control is the shifter circuit (Olshausen et al.,
1993), which allows selection and channeling of information from
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different retinotopic locations to the object recognition areas by
dynamically modifying the synaptic weights of the feedforward
connections. The shifter circuit provides an ingenious model for
translation and scale invariant object recognition. While the shifter
circuit is not impossible, it is rather complicated and primarily
grounded on the idea of the router in electrical engineering. The model
advanced here provides a much simpler and more neurally plausible
alternative, in that no dynamic synaptic weight modification is needed
in real time and routing is achieved by enhancement of V1 activities
through recurrent interaction between V1 and the two streams.
A second insight provided by our model regards the possible

mechanisms underlying visual search. Visual search has always been
classified into serial search or parallel search in psychological
literature as illustrated in Fig. 2 (Treisman & Gelade, 1980; Wolfe,
1998). When the target and distractors are different in their elementary

features, the detection of the target is immediate and independent of
the number of distractors. This suggests a parallel and ‘preattentive’
mechanism that can be implemented by the early retinotopic visual
areas. On the other hand, when both target and distractors are
composed of similar elementary features, the amount of time required
to distinguish between them increases linearly with the number of
distractors. This is said to suggest a serial attentional process. In our
model, all of the bottom-up and top-down proposals about target are
propagated and computed in parallel. Serial and parallel visual search
phenomena could emerge from the same parallel mechanism without
the need for two different and separate mechanisms.
In the following sections, we will first describe the basic

architecture and operations of the model and then discuss how the
model can address the issues of routing and visual search in a unified
framework. We will then examine and interpret some of the
neurophysiological findings in the early visual areas in the context
of this framework and venture some experimental predictions and
lastly, compare this architecture with the shifter circuit and other
attentional and cortical models. A preliminary version of some of
these ideas has been presented in Deco & Lee (2002).

The model

The model presented is a minimalist model designed to illustrate how
interactions between early and higher visual areas can mediate routing
and search in a recurrent interactive architecture. The model is
composed of three modules (as shown in Fig. 1): an early visual
module (or simply V1), which conceptually includes V1 and several
other early visual areas such as the LGN and V2, a ventral stream
module (VM) and a dorsal stream module (DM). These three modules
are reciprocally connected in a parallel hierarchy in accord with
anatomical data (Felleman & Van Essen, 1991).

Fig. 1. The architecture of the proposed model depicting the three interacting modules of the system. The dorsal and ventral stream modules interact with V1 in this
recurrent interactive architecture.

Fig. 2. Visual search can be classified into two types: (a) parallel search in
which the time to find an E in a field of X’s is constant regardless of the number
of X’s and (b) serial search in which the time to find an E in a field of F’s
increases linearly with the number of F’s.
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Each unit in the modules represents a pool of spiking neurons with
similar tuning properties. The activity of the unit is described by a
dynamical equation derived from the mean-field approximation
(Wilson & Cowan, 1972; Amit & Tsodyks, 1991). The mean-field
approximation consists of replacing the temporally averaged dis-
charged rate of a cell with the instantaneous ensemble average of the
activity of the neuronal pool that corresponds to the assumption of
ergodicity. According to this approximation, the activity of a cell
assembly A(t), without external input, is given by

s
oAðtÞ
ot

¼ �AðtÞ þ lF ðAðtÞÞ ð1Þ

where the first term on the right hand side is a decay term and the
second term takes into account the excitatory recurrent stimulation
among the excitatory neurons within the pool.

F ðxðtÞÞ ¼ 1

ðTr � s logð1� 1
sxðtÞÞÞ

ð2Þ

is a nonlinear input–output function for a spiking neuron with
deterministic input x(t), membrane time constant s and absolute
refractory time Tr. Equation 1 was derived by Gerstner (2000)
assuming adiabatic conditions, i.e. that the activity changes slowly
compared with the typical interval length.

Early visual module

The units in the V1 module are modelled as complex cells. The
bottom-up input to a complex cell is given by the energy or the power
modulus of the Gabor filters (Pollen et al., 1989),

IEmlpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGmlpq;Ci

�� ��2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

Xn
j¼1

Gmlpqði; jÞCði�
n
2
þ 2p; j� n

2
þ 2qÞ

�����

�����
2

vuut ð3Þ

where G is the input image and n is the number of pixels in the image
covered by the receptive field of the cell along each dimension. Gmlpq

is a family of Gabor wavelets (Lee, 1996) defined below

Gmlpq ¼ a�mwh1ða
�mðx� 2pÞ � a�mðy � 2qÞÞ ð4Þ

wh1 ¼ wðx cosðlhoÞ þ y sinðlhoÞ;�x sinðlhoÞ þ y cosðlhoÞÞ ð5Þ

and w, called the mother wavelet, is given by

wðx; yÞ ¼ 1ffiffiffiffiffiffi
2p

p e�
1
8ð4x2þy2Þ � eikx � e�

k2
2

h i
ð6Þ

The whole family of 2D Gabor wavelets Gmlpq is generated by
rotating and scaling the mother wavelet. In the above equations,
ho ¼ pL denotes the step size of each angular rotation where L is
the number of orientations in the family of filters, l is the index of
rotation, generating a preferred orientation h¼ lpL and m denotes a
scaling factor.

In our implementation, a ¼ 2, L ¼ 8 and m ¼ 1, 2 and 4 are used,
generating filters spanning three octaves with one octave step in scale

(spatial wavelength, 2, 4 and 8 pixels) and eight orientations for each
scale; (x, y) ¼ (2p, 2q) are the positions of the receptive field center.
The input image G is a 66 · 66 pixel gray-level image with intensity
values ranging from 0 to 255. The V1 module is composed of a lattice
of 33 · 33 hypercolumns. Each hypercolumn contains 24 (eight
orientations · three scales) excitatory units (pools). One inhibitory
pool per scale is used to mediate competition among neurons (of
different orientations and positions) within each scale. A total of three
inhibitory pools are used.
The activity level of an excitatory pool unit in V1 is given by

s
oAV1

mlpqðtÞ
@t

¼�AV1
mlpqðtÞ þ lF ðAV1

mlpqðtÞÞ � cF ðAV1;I
mlpqðtÞÞ þ IV1;Emlpq ðtÞ

þIV1�DM
pq ðtÞ þ IV1�VM

mlpq ðtÞ þ Io þ mðtÞ
ð7Þ

where m, l, p and q are indices of scales, orientation selectivity and
(p, q) are indices of spatial location in the retinotopic hypercolumn
coordinate. The first two terms are decay and self-excitation as before
and the third term is the competitive interaction (l ¼ 0.95, c¼ 0.8).
The fourth term is the input current to the complex cell, the fifth term
is the feedback from the DM to V1 and the sixth term is the feedback
from the VM to V1. These feedback terms will be defined later when
we describe the DM and VM. Io is an additive Gaussian noise input to
the unit, drawn from a normal distribution with zero mean and
r ¼ 0.02. Io ¼ 0.025 is a bias current representing diffuse sponta-
neous background input to the unit. Note that when the same symbols
are used in the subsequent equations, the parameter values are kept the
same. The I or E in the exponents of the different terms indicates the
activity of inhibitory or excitatory neurons, respectively.
The activity level of the inhibitory unit is given by

sI
oAV1;I

m ðtÞ
ot

¼ �AV1;I
m þ kF ðAV1;I

m ðtÞÞ þ j
X
l;p;q

F ðAV1
mlpqðtÞÞ ð8Þ

wherem is the scale index,j¼ 0.1,k¼ 0.1 and sI ¼ 7 ms. The first two
terms are decay and self-excitation and the third is a function of the sum
of the activities from all the excitatory pools at a particular scale within
thewholemodule. This inhibitory pool receives input from all excitatory
neurons from a particular scale and inhibits those neurons uniformly.
There are 26136 excitatory cell pools in the 33 · 33 hypercolumns.

They are necessary to completely encode features and positions within
an image (Lee, 1996). While inhibitory connections are more local and
fine tuned for implementing precise computations in real V1 and V2
neuronal circuits, we found that one inhibitory neuron per scale is
sufficient to mediate the basic competition between neurons in the
same scale to produce the effect that we are seeking.

Dorsal visual module

The DM encodes spatial location and computes object location in the
spatial domain. Spatial attentional selection is initiated by biasing a
particular unit in the DM. The DM is a lattice of 66 · 66 units, each of
which receives input from a number of the V1 hypercolumns. All the
excitatory units in a spatial neighborhood (5 · 5 hypercolumns) in V1
are connected to a particular neuronal pool in the DM with a center-
excitatory, surround-inhibitory weight profile. The connection weight
between a DM unit at location (i, j) and a V1 unit at location (p, q) in
the V1 lattice of a particular scale m and orientation l is defined by
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Wpqij ¼ Ce
�ði�2pÞ2þðj�2qÞ2

2r2w � B ð9Þ

where C ¼ 1.5 and B ¼ 0.5. The weight is most positive when i ¼ p,
j ¼ q (i.e. the same retinotopic position) and decays in a Gaussian
fashion spatially, with rw ¼ 2, covering a spatial area of about
five V1 hypercolumns along each dimension. As the largest receptive
field size in each V1 hypercolumn extends to about 8 · 8 pixels, the
diameter of the receptive field (defined as the 2 SD envelope of the
Gaussian connections) of a DM neuron is about 17 pixel units.
The activity of an excitatory unit in the DM is given by

s
oADM

ij ðtÞ
oðtÞ ¼�ADM

ij ðtÞ þ lF ðADM
ij ðtÞÞ � cF ðADM;IðtÞÞ

þIDM�V1
ij ðtÞ þ IDM;A

ij ðtÞ þ Io þ mðtÞ
ð10Þ

Most term definitions are similar to those of the V1 unit. IDM;A
ij is the

top-down external attentional bias that can be imposed on the unit and
IDM�V1
ij is the input from V1.
The feedforward input IDM�V1

ij from the V1 to a DM pool at location
(i, j) is given by

IDM�V1
ij ðtÞ ¼

X
m;l;p;q

WpqijF ðAV1
mlpqðtÞÞ ð11Þ

The feedback from the DM to V1 is mediated by connections with
weights specified by a Gaussian distribution as given below

IV1�DM
pq ðtÞ ¼ 0:6

X
i;j

WijpqF ðADM
ij ðtÞÞ ð12Þ

where

Wijpq ¼ Ae
�ðp�i=2Þ2þðq�j=2Þ2

2r2w � B ð13Þ

Note that the feedback to V1 is 0.6 of the feedforward connection in
weight. The weaker feedback is important as it prevents V1 from
being a mere slave to a higher order bias and allows lower level
representations to change the ‘opinion’ of the higher order modules.
Neurophysiologically, the efficacy of the feedback stimulation at
evoking a postsynaptic response has also been found to be smaller
than the efficacy of the feedforward connection (Salin & Bullier,
1995).
In this module, there is only one inhibitory cell pool that receives

input from all excitatory pools and feeds back to inhibit every pool
uniformly. This is sufficient for mediating the winner-take-all
competition in the DM. Its activity is given by

sI
oADM;IðtÞ

ot
¼ �ADM;I þ kF ðADM;IðtÞÞ þ j

X
ij

F ðADM
ij ðtÞÞ ð14Þ

Ventral visual module

The VM encodes object class or categorical information. Selection of
a winner within the VM through competition corresponds to the
identification of an object in the visual image. The VM contains a
finite set of units, storing V1 response patterns (in the learned

connection) on a number of objects. These include the tower and
sculpture in the Paris scene (Fig. 3), the letters E, F, X, T and L and
bars of different orientations. Each unit is connected to all neuronal
units in V1.
The activity of an excitatory VM unit, coding object category c, is

given by

s
oAVM

c ðtÞ
ot

¼�AVM
c ðtÞ þ lF ðAVM

c ðtÞÞ � cF ðAVM;IðtÞÞ

þIVM�V1
c ðtÞ þ IVM;A

c ðtÞ þ Io þ mðtÞ
ð15Þ

where IDM;A
c is the top-down external attentional bias imposed on the

VM pool for object class c and IDM;A
c is the forward input from V1 to

the VM unit c and is given by

IVM�V1
c ðtÞ ¼

X
m;l;p;q

wcmlpqF ðAV1
mlpqðtÞÞ ð16Þ

The feedback from the VM to V1 is also mediated by symmetrical but
attenuated reciprocal connections

IV1�VM
mlpq ðtÞ ¼ 0:6

XNc

c¼1

wcmlpqF ðAVM
c ðtÞÞ ð17Þ

The activity of the inhibitory VM unit is given by

sI
oAVM;IðtÞ

oðtÞ ¼ �AVM;I þ kF ðAVM;IðtÞÞ þ j
X

F ðAVM
c ðtÞÞ ð18Þ

The memory of a particular object class c is encoded in the connection
weight wcmlpq between the VM unit (c) and the V1 units (m, l, p, q).
The connection weights are trained by supervised Hebbian learning;
the image containing the target is presented in V1 while a top-down
bias is imposed on the VM unit coding for that object and a top-down
bias is imposed on the DM unit coding for the spatial location where
the object appears in the image. The active DM unit highlights the

Object 1

Object 2

(Tower-top)

(Sculpture)

Fig. 3. A Paris scene, one of the test images used. The system has been
trained by Hebbian learning to recognize the image of the tower top and
sculpture in this scene.
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corresponding hypercolumns in V1. The coactivation of the corres-
ponding parts of V1 and the VM reinforces the association of the VM
pool c and the appropriate V1 pools. The system is allowed to settle
into a steady state for each presentation of the stimulus and the top-
down bias signals. After convergence, all the relevant V1–VM
connections are updated using the following Hebbian learning rule

dwcmlpq ¼ gF ðAVM
c ðtÞÞF ðAV1

mlpqðtÞÞ ð19Þ

where dw is the change inweight andg is the learning coefficient.AVM
c is

the activity of a neuronal unit for object c in the VM and AV1
mlpqis the

activity of a pool inV1with a particular spatial frequency and spatial and
orientation tuning. The image patch for each object is presented and
learned at every possible position in the input coordinate. Thirty
different presentations of each object per position are required to achieve
convergence of the V1–VM connection weights.

A more complete hierarchy that resembles the ventral stream would
consist of a cascade of areas each linked by local connections. Here we
limit the VM–V1 interactions to a two-layer recurrent network
because the Hebbian learning algorithm is better understood in this
context. Note that most of the parameters are independent of our
models, characterizing generic neuronal parameters such as membrane
time constants. The parameters are chosen so that the system will
arrive at a stable solution with a clear winner in both the VM and DM.
Once chosen, the parameters are used throughout all simulations. The
model does not critically depend on these parameters. This is the main
justification for using the simplest model.

Results

The current system can operate in three modes: (i) spatial attention
mode when a top-down bias is imposed on a DM unit; (ii) object
attention mode when a top-down bias is imposed on a VM unit and
(iii) preattentive mode in which no top-down bias is imposed. We will
use the processing of the Paris scene (Fig. 3) to illustrate how the
system works in these scenarios (Fig. 4). We will then compare the
pool activities of the model with neural activities observed in V1 and
V4 in electrophysiological experiments.

Spatial attention and routing

In the spatial attention mode (Fig. 4a), when a DM unit is excited by a
top-down signal presumably coming from the executive control area
in the prefrontal cortex, this positional bias signal will propagate down
to activate and enhance the corresponding units in V1 as if there is a
spatial attention beam. When an image (Fig. 3) is presented in a
sustained fashion, V1 units will be excited by both the bottom-up
input signals and the top-down DM signals. All the V1 neurons project
their signals simultaneously and in parallel to all the units in the VM.
Those that are biased positively by the DM units will provide a
stronger input to the VM units, whose connection weights best match
their activities pattern ultimately leading to the dominance of this VM
unit over other VM units through the winner-take-all mechanism. As
this winner unit is coding a particular object, the dominance of its
response over other VM units corresponds to the system’s recognition
of the object at the location as highlighted by spatial attention.

Fig. 4. (a) Recognizing the sculpture in the attended location. In the spatial attention mode, a top-down bias on a dorsal module unit covering the sculpture
location can enhance the responses of the V1 units at the sculpture’s location. The highlighted V1 (early module) hypercolumns suppress the other hypercolumns and
provide stronger input to the sculpture neuron in the ventral module. Due to the stronger bottom-up bias, the sculpture unit in the ventral stream module (VM)
becomes the winner through competition, corresponding to recognition of the object in the attended area. (b) Finding the tower in the scene. In the object attention
mode, a top-down bias activates the tower unit in the ventral module. The tower unit in the VM back-projects the activity pattern associated with the tower image to
all V1 units. The V1 hypercolumns that encode the tower image will be enhanced by the feedback from the VM. V1 units project their activities in parallel to the
dorsal stream module (DM). The enhanced V1 units, however, exert a greater influence, resulting in a contraction of activity in the dorsal module’s lattice to the
location of the searched object, i.e. the tower.
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Figure 5 shows the temporal evolution of averaged population
activities in the form of a spatial map in the three different modules
during spatial attention to the sculpture location in the Paris scene. We
found that spatial attention bias can increase the spontaneous firing
rate of the V1 units at the ‘attended’ location when it is applied
100 ms before stimulus onset, as observed by Luck et al. (1997).
When the bottom-up input arrives at V1, the neuronal activity at the
sculpture location is enhanced, providing a stronger drive to the VM
sculpture unit and helping it to overcome the tower neuron and other
object neurons in the VM. Conversely, when the spotlight is directed
toward the tower location, the tower neuron eventually becomes the
winner. These results demonstrate the effectiveness of the routing
mechanism based on recurrent enhancement of V1 activities.
Our scheme of routing is distinct from the shifter circuit which

mediates spatial attention by dynamically modifying synaptic con-
nections along the ventral stream hierarchy with the pulvinar as the
routing controller. In our scheme, no synaptic modification or delicate
control is required; routing is accomplished simply by recurrent
interaction between V1 and the DM and VM modules. Thus, this
seems to furnish a simpler and more neurally plausible explanation.
We will show later that this mechanism is sufficient to account for
several spatial attentional phenomena observed in V4 and IT.

Object attention and visual search

In the object attention mode (Fig. 4b), a bias to a specific VM pool
specifies the object to be searched in the visual scene. Let us illustrate
how the system performs search with the following examples. To
search for the sculpture in the Paris scene, a bias is imposed on the
sculpture pool unit in the VM. As each VM unit is reciprocally
connected to all units in V1, the activity of the biased VM unit
effectively back-projects a response pattern that is associated with the
image of sculpture simultaneously across all retinotopic locations in
V1 in parallel. The V1 hypercolumns covering the sculpture location
will resonate best with the feedback signals and their units’ responses
will be enhanced. The DM units at the sculpture location will,
therefore, be activated more strongly because of the enhanced
feedforward projection from V1. The winner-take-all mechanism in
the DM will then be biased to choose the unit at the sculpture location
to be the winner in the DM map (Fig. 6). When the VM tower neuron
receives a top-down bias, the same mechanism will select the DM unit
coding for the tower location to be the winner (Fig. 7). This
demonstrates the visual search capability of the system.
Next, we consider the phenomena of serial and parallel search.

Figure 8a contains an E in a field of X’s. As the elementary features in E
and X are quite distinct in orientation, V1 neurons of different
orientation columns are activated. Hence, the difference between E
and X is evident even at the level of V1 responses, allowing the E to pop
out from the X’s readily, independent of the number of X’s in the image.
This suggests that this computation is parallel, hence the name parallel
search. On the other hand, Fig. 8b contains an E in a field of F’s. These
two characters share features of similar orientations and are detected by
the same class of neurons in V1. Hence, E does not pop out readily from
the F distractors. In human psychophysical experiments, the time
required to localize E in a field of F’s increases linearly with the number
of F’s. It has been suggested that this linear increase in time is a result of
the engagement of a serial attentional search mechanism.
Interestingly, we found that both the serial and parallel search

phenomena emerge from the same mechanism in this recurrent
interactive architecture. We monitor the time required for the DM units
at the E location to become the winner when the VM unit coding for E

is biased. The time required for the difference between the maximum
activities at the target location and the maximum activities in all the
distractor locations (called polarization) to exceed a certain threshold
is considered the search time, to be compared with the visual search
time in psychophysical experiments. We found that the time for the
system to search for an E in a field of X’s is basically constant but the
time to search for an E in a field of F’s increases linearly at the rate of
25 ms per distractor (Fig. 8c) and to search for an E in a field of F’s
increases linearly at the rate of 25 ms per distractor (Fig. 8c and d). We
also tested the system searching for L in a field of X’s or in a field of
T’s. We found that the time required to find L is independent of the
number of X’s but increases linearly with the number of T’s (Fig. 8e)
for up to 16 T distractors.
Intuitively, E and F (or L and T) share very similar features and

hence their differences cannot be detected by VM by one feed forward
pass, as in the case of discriminating E or L from X’s. However, the
ambiguity between E and F (or between L and T) can be resolved by
recurrent interaction between V1 and higher areas, resulting in
additional time cost. The interaction between V1 and higher areas
produces the emergent phenomenon of feature integration. The
behavior of the model is consistent with the proposal of Duncan &
Humphreys (1989) that serial visual search can potentially be solved
by a parallel competitive mechanism. Exactly why the search time
increases ‘linearly’ with the number of distractors in this system,
however, is not understood and requires more investigation.

Comparisons with neurophysiological observations

Is this model relevant to our understanding of the visual system? By
design, our model attempts to explain a potential functional role of the
known feedback connections in the visual cortex but do the units in
this system behave in a similar way as the neurons observed in
electrophysiological experiments? We studied the temporal responses
of the model’s units and found that they are qualitatively similar to the
observed temporal evolution of the responses of cortical neurons in
several aspects.
The V1 units in our model exhibited a long-latency enhancement

effect under top-down attentional modulation. Figure 9 shows
the effect of top-down attention on V1 activities of neurons in both
the object and spatial attention scenarios. Figure 9a compares the
responses of V1 units with andwithout top-down object attention for the
sculpture (Fig. 6). We noted that the initial (40–80 ms) responses of the
V1 units are similar for the two cases but the units’ responses are
enhanced in the attention case at around 90 ms poststimulus onset. Note
that the top-down attention signals and the bottom-up signals arrive at
the V1 units at the same time. Nevertheless, it takes another 50 ms
before the attentional effect becomes evident, suggesting that this
contextual enhancement effect is not simply due to a top-down bias but
rather involves continuous recurrent interaction of V1with both the DM
and VM modules in conjunction with competition within V1 itself.
Figure 9b shows that a similar delay in attentional modulation

can also be seen in the case of spatial attention. Note that the
attentional effect occurs earlier in V1 in Fig. 5 because the top-
down attention was applied 100 ms prior to stimulus onset. For
stimulus-triggered spatial attention, as in this case, we have
assumed that the top-down signal arrives at V1 at the same time
as the bottom-up signal. This delay in attentional enhancement
effect resembles the long-latency contextual modulation effects
observed in the early visual cortex (Lamme, 1995; Zipser et al.,
1996; Lee et al., 1998, 2002). In those experiments, it was found
that the responses of V1 neurons were significantly enhanced when
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their receptive fields were situated within a figure in a visual scene
compared with when they were located in the background (Lamme,
1995; Zipser et al., 1996; Lee et al., 1998) or as a part of the
distractors (Lee et al., 2002). Lee et al. (1998) have suggested that
this figure-ground effect, as reproduced in Fig. 9c, might be a
highlighting signal that colors the figure to enhance its saliency.
Our results suggest that the mechanisms underlying this long-
latency contextual enhancement effect might be related to spatial
and ⁄ or object attention feedback mechanisms. Further, this evidence
suggests that such an enhancement effect might not simply be
reflecting perceptual saliency per se (Lee et al., 2002) but might be
serving a deeper purpose of allowing the different higher order

visual areas to communicate and coordinate their computations
through recurrent interactions. Interestingly, in our simulation, we
found that the observed spatial or object attentional enhancement is
stronger for weaker stimuli; this surprising result has been recently
confirmed experimentally by the work of Reynolds et al. (1999).
Figure 10a and b reveals similarities between the responses of the

VM units and activities of V4 or IT neurons observed in electrophys-
iological experiments on spatial attention. Desimone and colleagues
(Moran & Desimone, 1985; Chelazzi et al., 1993; Reynolds et al.,
1999) had observed the following phenomena in V2, V4 and IT
neurons. Consider a neuron that prefers a vertical over a horizontal bar
in its receptive field in Fig. 10a. When stimulated by a vertical bar
alone, the neuron responds well. When stimulated by a horizontal
bar alone, the neuron responds poorly. When both the vertical and the
horizontal bar are present inside the receptive field, the neuron
responds moderately. This suggests that the presence of the horizontal
bar exerts an inhibitory effect. It is believed that a horizontal neuron at
the same spatial location competes with the vertical neuron, thus
suppressing its activity. When the animal is cued to pay attention to
the vertical bar or the location of the vertical bar, the neuron’s response
is restored to its earlier rigor as if the horizontal bar does not exist.
This has been attributed to a top-down bias imposing on the vertical
neuron, compensating for the inhibition from the horizontal neuron.
The behavior of the vertical VM neuron in our model exhibits a
qualitatively similar phenomenon when it is stimulated by the same set
of stimuli (Fig. 10b). It is worth noting that spatial attention shrinks
the effective receptive field of the VM unit. These similarities to
neurophysiological findings add to the plausibility of our model as a
reasonable approximation to the biological system, suggesting that the
attentional effect observed in V1 and higher ventral visual areas might,
in part, be coordinated by the dorsal stream via V1.

Discussion

The main hypothesis that this paper explores computationally is that
early visual cortex can act as a high-resolution buffer for the dorsal
and ventral streams to integrate ‘higher level’ spatial and object
information. Our work demonstrates that interaction of ‘what’ and
‘where’ information can occur early in the visual system and that
recurrent interaction between higher order areas and the early visual
areas, such as V1 and V2, may play an important role in mediating
visual search and attentional routing.
On the issue of visual search, we demonstrate that a parallel

recurrent interactive mechanism is sufficient to produce the so-called
serial and parallel effects in visual search. When the component
features of compound objects are similar, more time is apparently
needed for recurrent interaction with the higher area to disambiguate
the different objects in the visual scene. In this context, feature
integration (Treisman & Gelade, 1980) can be thought of as a process
emerging from recurrent interaction between early visual cortex and
the various extrastriate areas, rather than a process in some
intermediate stages in the visual hierarchy. However, this parallel
dynamic is limited to processing within each fixation and should thus
be limited in spatial scope. The visual system clearly moves the eyes
to scan and search for objects in a visual scene in a serial fashion.
On the issue of routing, thismodel provides a simpler alternative to the

shifter circuit (Olshausen et al., 1993). The shifter circuit achieves
routing by dynamically selectively modifying the feed-forward synaptic
connections from V1 to IT. We show that a recurrent interactive
architecture can produce this dynamic routing simply by enhancing and
suppressing neural responses in the early visual cortex, such as V1. Our

(b)(a)

P
A

TD
M

A
DD

M
–

=

θ

0 1 2

(Number of distractor “X”) (Number of distractor “F”)

0 2

P
A

TD
M

A
DD

M
–

=

100

0

50

0 50 100
Time (ms) Time (ms)

100

0

50

0 50 100

1

(S
pi

ke
s/

se
c)

(S
pi

ke
s/

se
c)

E F

X

X

F

E

(c) (d)

0 5 10 15
0

100

200

300

400

500

600

Number of Distractors

R
ea

ct
io

n 
Ti

m
e 

(m
se

c)

(e) # Distractors versus Reaction Time

LT serial search  
LX parallel search

Fig. 8. Serial and parallel search emerge from the same mechanism. (a and b)
Parallel and serial search stimuli, respectively. (c and d) Difference in the
activation at the target location relative to the distractor locations as time
evolves. The time required for this signal to cross threshold is assumed to be
related to the time required by humans to find the target. The time required to
find the E in X’s is constant while the time required to find the E in F’s
increases linearly with the number of F’s. (e) The visual search experiment is
repeated for other stimuli with a large number of distractors. Finding the L in
X’s requires constant time (parallel), while finding the L in T’s increases
linearly with the number of T’s (serial). DM, dorsal stream module.

1096 G. Deco and T. S. Lee

ª 2004 Federation of European Neuroscience Societies, European Journal of Neuroscience, 20, 1089–1100



model is unique in three aspects: (i) the dorsal stream and the early visual
cortex are involved in our model for mediating spatial attention; (ii) the
computation in the ventral stream is completely parallel and (iii) top-
down position signals and top-down object pattern signals interact
through V1. The combination of these ideas makes routing possible
without dynamic modification of the synapses.

A shortcoming of our current model is that it requires the
presentation of all the training examples in all spatial locations during
the training process. This makes the training process unnecessarily
long and redundant as all the V1–IT connections are essentially
learning the same weights. A simple weight replication algorithm that
generalizes the connections learned at one location to all locations can
solve this problem, although how this replication is carried out by the
visual system is an open question. Another shortcoming of our model
is that, for simplicity, we have modelled the VM pathway as a two-
layer network rather than as a hierarchy. Thus, the number of objects
that the system can be trained to recognize is severely limited. There is
ample evidence suggesting that the visual system uses a hierarchy to
solve this problem (Logothetis & Sheinberg, 1996; Pasupathy &
Connor, 2002) and such ideas have already been explored by some
existing neural models (Riesenhuber & Poggio, 2000). The shifter

circuit of Olshausen et al. (1993) decomposes the task of scale and
translation invariance from the task of object recognition which, in
their model, is deferred primarily to IT. The forward connections
between cortical areas along the visual hierarchy in their model serves
primarily for routing. Our model emphasizes the fact that the forward
connections are used primarily for encoding objects and that routing
emerges as a result of recurrent interaction of the ‘what’ and ‘where’
pathways in the early visual cortex. This view is more consistent with
neurophysiological findings as well as existing neural models. Many
aspects of vision have not been addressed in our model, such as
contrast invariance and scale invariance. Contrast normalization can
be achieved by simple normalization of responses within each
hypercolumn (Heeger, 1992) and scale invariance can potentially be
solved by training the network with input of a same object in multiple
scales and in the framework of hierarchy. An interesting question is
whether a top-down bias, such as object attention bias, can propagate
down a hierarchy of visual areas without losing its effectiveness. A
generalization of Hebbian learning to multiple layers is not trivial.
Recent integration of our model with the VisNet model of Wallis &
Rolls (1997) has shown that it is possible for the top-down signals to
propagate down the hierarchy (Rolls & Deco, 2002).
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Recently, a more powerful ‘shifter circuit’, called a map-seeking
circuit, has been proposed by Arathorn (2002) which also bears a
strong resemblance to the proposals of Mumford (1992) and Ullman
(1995). His map-seeking circuit is similar to our model in that it allows
V1 to make parallel proposals to the ventral module and uses the
similarity between the feedback synthesis and the bottom-up proposals
to assess the fitness of the proposals. However, his circuit still requires
the dynamic adjustment of gain or weight of the feedforward pathways
rather than using a dorsal module or utilizing V1 activity modulation
as in our model. While his circuit is more powerful at this stage as it
can handle translation, scale and rotation invariance, our scheme is
more neurally plausible. It would be interesting to investigate whether
his map-seeking circuit can be implemented in the recurrent interactive
scheme proposed here.
The behavior of the units in our model has some qualitative

similarities to the behaviors of V1, V4 and IT neurons observed in
neurophysiological experiments (see Figs 9 and 10). Specifically, we
show that both stimulus-triggered spatial and object attention effects
can take 50 ms to develop in V1. This suggests that stimulus-evoked
attention might underlie some of the observed long-latency contextual
modulation in V1 and V2 neurons (Lamme, 1995; Zipser et al., 1996;
Lee et al., 2002). Further, our model also exhibits the biased-
competition attentional effect and receptive field-shrinking effect
observed in V4 and IT (Moran & Desimone, 1985; Reynolds et al.,
1999). Top-down feedback provides a mechanism for contextual effect
in the early visual cortex, resulting in the sensitivity of the neurons to
the stimuli outside their classical receptive fields, particularly in the
later part of the neurons’ responses (Lamme, 1995; Lee et al., 2002).
Although, in some cases, top-down spatial attention is shown to
increase the spontaneous activities of early visual neurons (Luck et al.,
1997), most of the contextual modulation observed requires visual
stimulus within the classical receptive field for the cells to spike. In
our model, even though top-down bias can increase the early cortical
neurons’ activities, without the bottom-up signals, the relatively
diffuse and weaker top-down signals might not be strong enough to
drive the recurrent circuit to form a stable representation in the early
visual cortex. Such qualitative consistency suggests that the basic
principles advocated here might be relevant to understanding the
visual system. In this paper, we have stressed the role of top-down
attentional effects in early visual processing. A complete model of
attentional control should include a more sophisticated component for
computing bottom-up saliency beyond the ‘winner-take-all’ lateral
inhibition mechanism in this paper (see Lee et al., 1999).
It should be noted that the model advanced here is a minimalistic

model. Parameters are chosen to drive the system to fixed points
corresponding to zero activity for the losers and large activation for the
winners (see Usher & Niebur 1996 for a description of the fixed point
attractor of the types of equations that we used). While the VM and
DM neurons in our model exhibit winner-take-all phenomena, the
responses of actual visual neurons in both the dorsal and ventral
streams are known to be more graded. Furthermore, the attentional
enhancement that we saw in model V1 units is also larger than that
commonly observed in vivo. We studied this model for its simplicity
and the parameters are generic so that their particular values are not
critical to the normal performance. Recent experimental evidence
suggests that selective attention might not need to be implemented by
enhanced firing rates but could be implemented by enhanced
oscillation or synchrony in neuronal ensembles, particularly in the
early visual areas (Murthy & Fetz, 1996; Fries et al., 2001; Steinmetz
et al., 2000). We have not explored this dimension in this study and
assume that activity in a neuronal pool indicates averaged firing rate.
However, synchrony could be another measure of activity level, as it is

known that synchrony can provide a stronger input to the postsynaptic
pool. Future research is needed to generalize this model to incorporate
the idea of synchrony as a measure of input current and pool activity in
the model (see also Niebur & Koch, 1994). Nevertheless, we show
that this very simple system is already able to demonstrate some basic
and interesting results qualitatively. Further research is necessary to
develop a quantitatively accurate model.
This paper makes three principal conceptual conjectures: (i) the

early visual cortex, including V1 and V2, plays a very central role in
mediating spatial attention ⁄ routing and in mediating visual search; (ii)
the dorsal stream is critical for mediating spatial attention in the
ventral stream and that, conversely, object attention can influence the
parietal area and (iii) the bottom-up and top-down computations in
the ventral stream are parallel and feature integration is a parallel
rather than a serial process. These conjectures yield some interesting
experimental predictions at a conceptual level. First, if V1 indeed
plays a critical role coordinating routing and search, disrupting the
activities in V1 up to 100 ms poststimulus onset should severely
undermine the visual search performance and spatial attention effect in
humans or monkeys by interrupting recurrent interaction in the
system. Such disruption can potentially be induced by trans-cranial
magnetic stimulation as in the work of Kamitani & Shimojo (1999).
Second, if the dorsal stream is responsible for the spatial attentional
effect observed in the ventral stream, deactivating the parietal cortex
pharmacologically should eliminate the biased-competition spatial
attentional effect in V4 in primate electrophysiological experiments.
The model also suggests that significant spatial attentional effects

should progress from the parietal cortex to V1 and then to the ventral
areas, while object attention effects should progress from ventral areas
to V1 and then to the parietal cortex. Finally, one might test whether
serial search is mediated by a parallel or serial mechanism by
examining the response dynamics of the visual neurons in V1 and V2
when the monkey engages in a conjunctive visual search task, using
either optical imaging or by simultaneously recording from multiple
neurons in different hypercolumns. For example, suppose a monkey
has to search for a shape with conjunctive features among similar
distractors in a delayed-match-to-sample paradigm. If the search
mechanism is serial, one might see the enhancement effect move from
one visual item to another in the course of a trial and the locus of
movement may vary randomly from trial to trial. However, if the
search mechanism is parallel, the enhancement effect should emerge in
multiple locations simultaneously, contract to the location of the
correct target and then be relatively constant across trials. Obviously,
clever experimental designs and rigorous statistical methods are
needed to test this hypothesis.
The prediction that attentional effects can be seen to propagate

through V1 between the dorsal and ventral stream might depend on the
resolution of analysis. For integration of information of fine details,
V1 needs to be involved. For integration of information of a larger
scale, V2 or V4 can serve as the integration buffer. Recent functional
imaging data (Martinez et al., 1999) seem to suggest that spatial
attention effects are first evident in the extrastriate cortex (V4 and IT)
and later in V1, rather than the other way around, suggesting that the
simplistic scheme of our model is not complete. These data might
suggest that, along the dorsal and ventral hierarchy, there could be
many layers of cross-talk but the cross-talk at the higher levels is more
coarse and more global. The interaction can first occur in the higher
areas and then penetrate back to V1, resulting in coarse-to-fine
processing. This scenario is very probable and can be seen as a
generalization of the current model. The general notion of V1 serving
as high-resolution buffer could still be correct but might only come
into play when precise spatial localization and precise feature
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discrimination are required, as suggested also by the mental imagery
experiments of Kosslyn et al. (1995).

This model is a synthesis of many existing ideas and thus shares
many features with existing cortical models that emphasize the
importance of parallel recurrent feedback in sorting out disambigu-
ities. These include the adaptive resonance of Grossberg (1987),
interactive activation of McClelland & Rumelhart (1981), pattern-
theoretic feedback proposals of Mumford (1992), counter-streams
model of Ullman (1995), Kalman filter model of Rao & Ballard (1999)
and map-seeking circuit of Arathorn (2002). This model also utilizes
mechanisms common to many existing biologically motivated
attentional models (Buracas et al., 1996; Usher & Niebur, 1996;
Braun et al., 2001; Horwitz et al., 1999; Lee et al., 1999; Reynolds
et al., 1999; Rolls & Milward, 2000; Deco & Zihl, 2001; Rolls &
Deco, 2002). The similarities among many of these ideas reflect a
convergence of thinking on the mechanisms of cortical computation.
A unique feature of our model is its suggestion that integration of
‘what’ and ‘where’ information can happen much earlier than
previously thought and that V1 might play a central role in the
registration and integration of various kinds of abstract higher level
information into a coherent percept. In the network model proposed
here, many apparently contradictory phenomena and processes, such
as spatial and object attention, serial and parallel search, selective
routing and top-down feedback, can be understood as different aspects
or manifestations of a single unified system.
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