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Abstract. To segregate overlapping objects into depth layers requires

the integration of local occlusion cues distributed over the entire image

into a global percept. We propose to model this process using hierar-

chical Markov random �eld (HMRF), and suggest a broader view that

clique potentials in MRF models can be used to encode any local decision

rules. A topology-dependent multiscale hierarchy is used to introduce

long range interaction. The operations within each level are identical

across the hierarchy. The clique parameters that encode the relative im-

portance of these decision rules are estimated using an optimization tech-

nique called learning from rehearsals based on 2-object training samples.

We �nd that this model generalizes successfully to 5-object test images,

and that depth segregation can be completed within two traversals across

the hierarchy. This computational framework therefore provides an in-

teresting platform for us to investigate the interaction of local decision

rules and global representations, as well as to reason about the rationales

underlying some of recent psychological and neurophysiological �ndings

related to �gure-ground segregation.

1 Introduction

Figure-ground organization is a central problem in perception and cognition. It
consists of two major processes: (1) depth segregation - the segmentation and

ordering of surfaces in depth and assignment of border ownerships to relatively
more proximal objects in a scene [15, 26, 27]; (2) �gural selection - the extraction
and selection of a �gure among a number of `distractors' in the scene. Evidence of
both of these processes have been found in the early visual cortex [17, 19, 20, 36].

In computer vision, �gure-ground segregation is closely related to image seg-
mentation and has been studied from both contour processing and region pro-
cessing perspectives. Contour approaches perform contour completion based on
good curve continuation [11, 12, 24, 32, 33], whereas region approaches perform
image partitioning based on surface properties [28, 30, 37, 39].

Here, we focus on the issue of global depth segregation based on sparse oc-
clusion cues arisen from closed boundaries. The importance of local occlusion



cues in determining global depth perception can be appreciated in our remark-
able ability in inferring relative depths among objects in cartoon drawings (Fig.

1a). These sparse occlusion cues provide important constraints for the emergent
global perception of �gure and ground. The formation of global percepts from
such local cues and the computation of layer organizations have been modeled
as an optimization process with a surface di�usion mechanism [8, 9, 22].

In this paper, we extend these earlier works [8, 9, 22] by embedding explicit
decision rules for contour continuation and surface depth propagation in local
units of a Hierarchical Markov random �eld model. The multiscale hierarchy is
sensitive to the topology of image structures and is used to facilitate rapid long
range propagation of local cues. We also develop a parameter learning method
using linear programming to estimate the parameters that encode the relative
importance of those decision rules. Results show that parameters learned on a
few two-object training samples can generalize successfully to multiple-object
images.

The rest of the paper is organized as follows. Section 2 describes the problem
and expands our method in detail. Section 3 shows our results on a new test
image. Section 4 concludes the paper with a discussion.

2 Methods

2.1 Problem formulation

For simplicity, we take an edge map (Fig. 1b) with complete and closed contours
of rectangular shapes as input to our system. These shapes can overlap and
occlude one another. The occluded part of an object is not visible. The system
is to produce two complementary maps as output (Fig. 1f): a pixel depth map
(Fig. 1d) where a higher depth value is assigned to pixel depth units of a more
proximal surface and a lower value to pixel units of a more distant surface;
and an edge depth map in which the edge depth units at the border of a more
proximal surface assume a higher value. The edge depth units assume the same
depth value as the pixel depth units of the surface to which they belong (Fig. 1e).
These two representations are suÆcient to specify the depth ordering sequence
of objects in the scene.

In general, it is not possible to recover the exact depth ordering or overlap
sequence in the scene since the solution is not unique. For example, there can
be multiple choices when objects do not occlude each other directly (object 1
and 2 in Fig. 1b) and when we cannot tell which object is occluding which
(object 3 and 4 in Fig. 1b). If we represent visible pairwise object occlusion
relationships in a directed graph (Fig. 1c), these two cases correspond to the
existence of unconnected siblings of the same parent. Instead of recovering the
overlap sequence, we can sort object depths into layers, ordered by occlusion.
This problem is called the 2.1D sketch in [28]. If there is a directed cycle in the
graph, then the depth cannot be segregated into layers. We de�ne the depth
assignment solution to be the set of smallest depth labels that satisfy all the
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Fig. 1. Segregate depth into layers. Rectangular objects are numbered in b. Darker

object surfaces/edges are in front of lighter object surfaces/edges in d/e. Given an

edge map as input, our model produces two complementary depth maps as output.

visible occlusion relationships. For example, object 4 in Fig. 1c is on layer 1
rather than layer 2.

2.2 MRF model

Segregating depth into layers is a global process which requires the information
to be integrated over the entire image. A change of con�guration in a small area
can in
uence the depth labeling at a distance. On the other hand, there exist
critical local cues such as T and L junctions which give rise to 3D percepts. If
each of these cues can be clearly classi�ed and labeled, and there is an unique
association between these cues and 3D depth, depth labeling can be solved by
logical inference, for example, using the occlusion graph in Fig. 1c. However,
there is always uncertainty in identifying local cues in real images and there is
no universal rule of association between a low level cue and a high level percept.
The ambiguity in this association is reduced with an increase in the range of in-
tegration. For example, two L-junctions can be con�gured to form a T-junction
which is not related to occlusion. The meaning of this T-junction can be disam-
biguated by gathering information from the origins of the arms and stem of the
T-junction.

Long range in
uence can be mediated by local computation using MRF [10,
21]. An MRF is de�ned over a graph G, which is determined by its site set S
and neighborhood system �. S = Z

m
[ Z

0
m
, where Z

m
is an m�m pixel lattice

and Z
0
m

is its dual lattice consisting of an m � (m � 1) and an (m � 1) � m

interleaved grids for line sites [10]. The coupled neighborhood of a site includes
both its peer sites and dual sites, as illustrated in Fig. 2.
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Fig. 2. The neighborhood system � used in the model.

Given an edge map, g : Z 0
m
7! f0; 1g2m(m�1), with 1 and 0 indicating the

presence and absence of an edge respectively, we would like to �nd a depth map
on both pixel and line sites, h : Z

m
[ Z

0
m
7! f0;1gm

2

[ f1;1g2m(m�1), with
the depth layer numbered from 0 (for background). To model the depth segre-
gation by MRF, we need to specify clique potentials V

c
(!), ! being a particular

con�guration of an MRF, and c being a clique de�ned as a subset of sites, which

consists of either a single site or more sites where any two of them are neighbors.
The probability P (!) can be written as

P (!) =
e
�U(!)

Z
; Z =

X
!2


e
�U(!)

; U(!) =
X
c2C

V
c
(!);

where Z is called the partition function and U(!) the energy function.

MRF's have been widely used in texture modeling [5], as well as in image
segmentation [10, 13]. In texture modeling, the clique potentials are used to
model the probability of co-occurrence of subsets of pixels [5] or capture marginal
probability distributions in terms of �lter responses [38]. In image segmentation,
it is closely related to the energy functional approaches [4, 10, 25] and the clique
potentials are used to encode smoothness priors [10]. In our formulation below,
we generalize the idea of multi-level logistic models, and suggest a broader view
that clique potentials can be more general so that they can encode arbitrary
local decision rules.

2.3 Encoding Local Decision Rules

To model depth segregation process in MRF, we seek to make correct depth
labeling correspond to the most probable con�gurations or equivalently con�g-
urations of the minimum energy.

Let � and 
 denote two indicator functions, which map from fTrue, Falseg to
f1; 0g and f�1; 1g respectively. 
(�) = 1� 2�(�). Let � denote the sign function,
which takes on �1; 0; 1 for negative, zero and positive numbers respectively. The
line site a between pixel i and j is denoted by a = i Æ j and conversely, the set
of pixels associated with the line is denoted by a

Æ = (i; j), with i and j ordered
from left to right or from top to bottom. In particular, (i; j) Æ (i; j + 1) and
(i; j) Æ (i + 1; j) are abbreviated as (i; jÆ) and (iÆ; j) respectively. Using these
symbols and notations, we can de�ne V

c
(hjg) to encode our prior knowledge in



terms of 10 local rules.

V
c
(hjg)

=
P

a=(iÆj)2c �1 � 
(hi = h
j
) � �(g

a
= 0) (rule 1)

+
P

a=(iÆj)2c �2 � 
(hi 6= h
j
) � �(g

a
= 1) (rule 2)

+
P

a=(iÆj)2c �3 � 

�
h
a
= max(h

i
; h

j
)
�
� �(g

a
= 1) (rule 3)

+
P

(a=iÆj;b=kÆl)2cl �4 � 
(ha = h
b
) � �(g

a
= g

b
= 1) (rule 4)

+
P

(a=iÆj;b=kÆl)2cl �5 � 

�
�(h

i
� h

j
) = �(h

k
� h

l
)
�

(rule 5)

��(h
i
6= h

j
; h

k
6= h

l
) � �(g

a
= g

b
= 1)

+
P

(a=iÆk;b=jÆk)2cc �6 � 
(ha = h
b
) � �(g

a
= g

b
= 1) (rule 6)

+
P

(a=iÆk;b=jÆk)2cc �7 � 

�
�(h

i
� h

k
) = �(h

j
� h

k
)
�

(rule 7)

��(h
a
= h

b
) � �(g

a
= g

b
= 1)

+
P

(a=iÆj;b=kÆl;u=jÆl;v=iÆk)2ct �8 �
�

(h

a
> h

u
) + 
(h

b
> h

u
)
�

(rule 8)

��
�
�(h

i
� h

j
) = 1 [ �(h

k
� h

l
) = 1

�
� �(g

a
= g

b
= g

u
= 1 \ g

v
= 0)

+
P

(a=iÆj;b=kÆl;u=jÆl;v=iÆk)2ct �9 �
�

(h

i
> h

j
) + 
(h

k
> h

l
)
�

(rule 9)

��
�
�(h

i
� h

j
) = 1 [ �(h

k
� h

l
) = 1

�
� �(g

a
= g

b
= g

u
= 1 \ g

v
= 0)

+
P

(a=iÆj;b=kÆl;u=jÆl;v=iÆk)2ct �10 � 
(hi = h
l
) (rule 10)

��(g
a
= g

u
= 0 [ g

b
= g

v
= 0)

where cl; cc; ct are the sets of cliques for aligned lines, corners and crosses:

c
l = f(a; b) : a = (iÆ; j); b = (iÆ; j + 1); a = (i; jÆ); b = (i+ 1; jÆ); a; b 2 cg;

c
c = f(a; b) : a = (iÆ; j); b = (k; lÆ); ji� kj � 1; jj � lj � 1; a; b 2 cg;

c
t = f(a; b; u; v) : (a; b) 2 c

l

; (u; v) 2 c
l

; fa; bg \ fu; vg = ;; aÆ [ b
Æ = u

Æ [ v
Æg:

The two indicator functions, � and 
, enable us to embed the conjunction of
if conditionals into the clique potentials. Let us decode rule 1 as an example.
Consider the line site a between pixel i and j. If the clause (g

a
= 0) is not

true, i.e. there is an edge between the two pixels, then this �rst term is zero,
no action will be taken; otherwise, if the clause (h

i
= h

j
) is also true, i.e. the

pixel depth values at the two sites are equal, then the term produces a reward of
��1, lowering the energy. However, if it is not true, i.e. the depth values at the
two pixel sites are di�erent, then V

c
(hjg) gets �1 on this term as a punishment,

increasing the energy. Here we require all �s to be positive. These 10 rules are
summarized in Table 1 and they can be classi�ed into 6 groups as follows.

Group 1: Depth continuity within surface. Rules 1 and 10 assert that surface
depth units in adjacent locations should be continuous. Adjacency is de�ned
on two kinds of neighborhood. Rule 1 is concerned with the �rst order neigh-
borhood (up, down, left and right neighbors), and rule 10 is concerned with
the second order neighborhood (diagonally adjacent pixels).

Group 2: Depth discontinuity across edges. Rule 2 asserts that when there is an
edge between two adjacent locations, the surface depth units in those two
locations must have di�erent depth values.



Con�guration Condition A Pattern B Score C # Meaning

ga = 0 hi = hj �1 1 Depth continues in surface.
b b
i ja

ga = 1 hi 6= hj �2 2 Depth breaks at edges.

ga = 1 hi 6= hj �3 3 Edges belong to surface in front.

ga = gb = 1 ha = hb �4 4 Depth continues along contour.

ga = gb = 1 �(hi � hj)
b b
i ja

b bk lb

hi 6= hj = �5 5 Depth polarity continues

hk 6= hl �(hk � hl) along contour.

ga = gb = 1 ha = hb �6 6 Depth continues around corners.

ga = gb = 1 �(hi � hk)
b b
i ka

bj
b = �7 7 Depth polarity continues

ha = hb �(hj � hk) around corners.

ga = gb = 1 ha > hu �8 8 Depth breaks on edges

gu = 1; gv = 0 hb > hu �8 at T-junctions.

�(hi � hj) = 1 or hi > hj �9 9 Depth breaks in surface
b b
i ja

b bk lb

v u
�(hk � hl) = 1 hk > hl �9 at T-junctions.

ga = gu = 0 or

gb = gv = 0 hi = hl �10 10 Depth continues in surface.

Table 1. Encoding rules in clique potentials. Each of these � terms encodes a logic

rule, which in general reads like this: if current clique con�guration does not satisfy

condition A, it gets a score of 0; otherwise, if condition A is satis�ed, pattern B is

expected; if B is also satis�ed, then it gets a negative score �C; otherwise it gets a

positive score C. a, b, u and v are labels for line sites while i, j, k, l are labels for pixel

sites in the cliques.

Group 3: Border-ownerships. Rule 3 speci�es that an edge depth unit shares
the same depth value as the surface that owns it.

Group 4: Depth continuity along contour. Rules 4 and 6 specify the edge depth
value along contour or corners should be continuous.

Group 5: Depth polarity continuity along contour. Rules 5 and 7 specify the
depth polarity of surface units across an edge unit should be continuous

along contour and corners.

Group 6: Occlusion relationships at T-junctions. At those T-junctions, rule 8
and 9 specify that the arms of the T are in front of the T stem.

In this formulation, the clique potentials no longer simply specify local co-
occurrence, smoothness constraints or �lter response histograms as in other MRF
models, but are generalized to encode a set of local decision rules. From neural
modeling perspective, the units in the network are not neurons with linearly
weighted inputs and sigmoidal activation functions, but are capable of perform-
ing complicated logical computations individually. Recent �ndings and models in
cellular neurophysiology [1, 18, 23] suggest neurons are capable of computations
more sophisticated than previously assumed.



The relative importance of the weights �s in the depth segregation can be
estimated using a variety of methods. We will describe a particular supervised

learning method we use in a later section.

2.4 Multiscale Hierarchy

The MRF model described above su�ers from being myopic [14] in local com-
putation and sluggish at propagating constraints between widely separated pro-
cessing elements [31]. This problem can be overcome by embedding the MRF in
a hierarchy using multigrid techniques.

We build an edge map pyramid by down-sampling with a factor of 2(Fig.
3). Assuming m = 2k + 1, we preserve spatial locations at the center and
the boundary of the lattices throughout the levels of the hierarchy. Let �

l

and Z
l

m
denote the neighborhood and lattice at level l. Let ^ and � address

the correspondence between pixels at level l and l + 1, such that î 2 Z
l+1
m

and i 2 Z
l

m
, or, �i 2 Z

l

m
and i 2 Z

l+1
m

point to the same spatial location on
the sampling grid (Figure 3c). The edge map at a high level is determined by
g
l

îÆĵ
= �

�
(gl�1

iÆk
+ g

l�1
kÆj

) � j�(hl�1
k

� h
l�1
i

) + �(hl�1
j

� h
l�1
k

)j
�
:
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Fig. 3. Hierarchical edge maps and illustration of sampling. a. Edge map at some level

l. b. Edge map at a higher level l+1. c. The hierarchy is built by downsampling pixels

(�lled circles) by a factor of two and inferring new lines (darker lines) between sampled

pixels based on the depth and edge maps at a lower level.

If an edge is considered to disconnect two neighboring pixels, the above oper-
ation preserves connectivity when there is only one edge separating two sampled
pixels. However, when there are two edges in a local neighborhood, the depth
polarity of the edges has to be considered (Fig. 4). When two nearby edges have
the same polarity, they can be merged into one edge of the same polarity as in
(Fig. 4a). When the two edges have opposite depth polarities as in (Fig. 4b),
they would disappear at the next level of the hierarchy. In this way, relaxation at
each resolution deals with topologically equivalent di�usion processes and thus
the same procedure can be applied.

The intergrid transfer functions involve restriction * and extension +.

h
l =* (hl�1; gl�1); h

l =+ (hl; gl; hl+1):



a. b.

Fig. 4. The operation in the multiscale hierarchy takes edge depth polarity into consid-

eration. a. Edges of overlapping shapes have the same depth polarity and are preserved

at a coarser resolution. Edges of abutting shapes that have opposite depth polarities

will disappear at a coarser resolution, as indicated by the disappearance of the two

edges between the two shapes at the coarser scale. In this way, relaxation at each

resolution deals with topologically equivalent di�usion processes and thus the same

procedure can be applied. In both a and b, the pictures on the left and right indicate

the images at a �ne and coarse resolution respectively.

During the restriction, smoothing is carried out on connected pixel sites. For
line sites, the smoothing on aligned horizontal (vertical) edges is blocked by
vertical(horizontal) edge neighbors:

h
l

î
= max

n
h
l�1
k

: g
l�1
iÆk

= 0; k 2 Z
l�1
m \ �

l�1
i

o
h
l

(̂i;ĵÆ)
= max

n
h
l�1

(p;qÆ) : g
l�1

(p;q)Æ(i;q) = g
l�1

(p;q+1)Æ(i;q+1) = 0; p 2 [i� 1; i+ 1]; q 2 [j; j + 1]

o
:

h
l

(̂iÆ;ĵ)
can be de�ned in a similar fashion. Median �ltering can also be used

in the above. During the extension, the information is selectively transferred to
a �ne grid. The dual operation of smoothing is di�usion, which is subject to
boundary blockage:

h
l

�
i

= h
l+1
i

h
l

(�i;�jÆ)
= h

l+1
(i;jÆ)

; if gl+1
(i;jÆ)

= 1; gl
(i;jÆ)

= 1; gl
(i;(j+1)Æ)

= 0 or hl
(i;j)

> h
l

(i;j+2)

h
l

(�i;(�j+1)Æ)
= h

l+1
(i;jÆ)

; if gl+1
(i;jÆ)

= 1; gl
(i;(j+1)Æ)

= 1; gl
(i;jÆ)

= 0 or hl
(i;j)

< h
l

(i;j+2)

h
l

i
= max

n
h
l+1

k̂

: gl
iÆk = 0; k 2 Z

l

m
\ �

l

i
; k̂ 2 Z

l+1
m

o
h
l

(i;jÆ) = max
n
h
l+1

(p̂;ĵÆ)
: gl(p;j)Æ(i;j) = g

l

(p;j+1)Æ(i;j+1) = 0; p 2 [i� 1; i+ 1]
o
:

Finally, to complete our HMRF model, we provide site visitation and a multi-
level interaction scheme. A complete sweep of all the sites includes four checker
board update schemes on �rst pixel sites and then line sites. The separate vis-
itation to pixel sites and line sites allows each of the two MRF's to develop
fully in itself so that the resultant con�guration provides enough driving force
for the other to change accordingly. The hierarchy is visited bottom-up through



restriction and then top-down through extension. The MRF at each level carries
out a relaxation process until its con�guration converges. When the con�gura-

tion at the lowest level does not change after visiting the entire hierarchy, that
con�guration is the �nal result.

In summary, multiscale not only helps to speed up computation, but also
helps propagating sparse depth cues at boundary to the interior of the surface
by longer range interactions at higher levels of the hierarchy. In addition, at each
level of the hierarchy, we repeat the same relaxation operation of local decision
rules. This relies on the consistency of topology in the restriction and extension
operations.

2.5 Parameter Estimation

The above HMRF model has unknown parameter � = [�1; � � � ; �10]
T . The major

diÆculty in estimating MRF parameters lies in the evaluation of the partition
function. There are several approaches to deal with the problem [21]. One way is
to avoid the partition function in the formula, such as pseudo-likelihood [3] and
least squares(LS) �t [5]. Another way is to use some estimation techniques such
as the coding method, mean �eld approximation [35] and Markov Chain Monte
Carlo maximum likelihood [6]. The approach we take here is to derive a set of
constraints on � using a method called learning from rehearsals and use linear
programming to obtain the � that satisfy these constraints.

This perturbation-based method is most closely related to the LS �t approach
[5]. Let U

k
(!) denote the sum of clique potentials V

c
(!) over all cliques containing

site k. Since V
c
(!) is a linear function of �, so is U

k
(!). In general, it can be

written as U
k
(!) = x(!; k) � �, where x(!; k) can be obtained by evaluating

clique potentials on the con�guration ! con�ned to the neighborhood of k. In
the LS approach, the probabilities of training samples are utilized to derive a
set of equalities based on the formula below.

ln
�
P (!

k
= ij!

�k
)

P (!
k
= jj!

�k
)

�
= �[U

k
(!)� U

k
(!0)] = �

h
x(!; k)� x(!0; k)

i
� �;

where !
k
= i; !

0
k

= j; !Snfkg = !
0
Snfkg

are given. However, this is only applicable

to the case where P (!
k
= jj!

�k
) > 0. This condition may not be very restrictive

in texture modeling, but it is in our model because when !
�k

is set, !
k
is often

determined as well. Another problem concerns numerical stability. When P (!
k
=

jj!
�k
) is small, the estimation is not accurate. To relax this condition, we derive

inequality constraints on � instead:h
x(!; k)� x(!0; k)

i
� � < 0; if P (!

k
= ij!

�k
) > P (!

k
= jj!

�k
):

We do not need to know the exact sizes of the two probabilities, but rather the
relative order of the two quantitities. In other words, for a given neighourhood
con�guration !

�k
, if we know label i is preferred to label j for site k, we obtain a

constraint which ensures that site k assuming value of i leads to a lower energy.



We obtain two sets of constraints on � in the form of above inequalities. We
generate a set of images which have two randomly positioned rectangular shapes.

Both the edge map g and the �nal depth map h are known for each training
image. The �rst set of constraints come from the fact that given neighbors of
a site assuming correct labels, this site prefers its own correct label. This will
map the correct labeling into a local minimum in the con�guration space. We
summarize all such constraints into A � � < 0, where the rows of A come from
the perturbation on the teacher map h at all sites:h

x(!; k)� x(!0; k)
i
� � < 0; for P (!

k
j!

�k
) > P (!0

k
j!0

�k
);

where !
k
= h

k
; !

0
k
= h

k
� 1; !Snfkg = !

0
Snfkg

= hSnfkg. An example on an
L-junction is given in Fig. 5. As can be seen in the example, the �rst set of
constraints are usually satis�able as the correct label is far better than any
other choices according to the rules we encode in the energy function.
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a. Con�guration. b. Constraints.

Fig. 5. Derive the �rst set of constraints from teacher depth maps. a. An L-junction

at a pixel site's neighborhood. The teacher depth map in this neighborhood is 0 for

un�lled circles and 1 for all the line sites and �lled circles. b. Two constraints obtained

by perturbation on the depth value of the center pixel site. The �rst constraint comes

from the di�erence in the energy functions for labeling 1 and 0 at the center pixel. The

second constraint comes from the di�erence in the energy functions for labeling 1 and

2 at the center pixel, all its neighbors assuming correct labels. These two constraints

on � are trivial as any � > 0 is feasible.

The �rst set of constraints only guarantee local behaviors when the sys-

tem is close to the optimal con�guration. They may not be enough to drive
an initial con�guration toward that �nal optimal con�guration. A second set of

constraints are derived for this purpose. This is not easy because there are many
possible di�erent paths of evolution from one con�guration into another, and
we do not necessarily know the intermediate con�gurations that the system has
to go through in order to arrive at the �nal state. We develop a method called
learning from rehearsals to overcome this diÆculty. Not knowing � in advance
or teacher depth maps at intermediate steps, we use the following principle to
choose a preferred label during the learning process and to establish its validity
by rehearsing. The principle is that a site's depth value should be as close as
possible to its �nal target value at that site subject to the dragging force from
its current neighborhood con�guration. That is, the derivation of the second
set of constraints is based on �nding the most e�ective intermediate states that



will move the system from the initial state to the �nal state with a minimum
number of steps. Once a preferred depth label is chosen, we can derive plausible

constraints in a similar way as we did in Fig. 5. We build a constraint database
during learning. Whenever a new constraint is to be added into the database,
we check its own feasibility as well as its compatibility with those already in the
database. We implement two simple checks on these two properties by testing
if new constraint � � � < 0 leads to � < 0, or some other constraint requiring
�� � � < 0 already exists in the database. If either of these conditions is true,
the constraint is removed and accordingly the hypothesized teacher is aban-
doned and next candidate depth value, which is not so close to the target value
as this one, is chosen. When new constraints can be checked into the database,
the intermediate teacher is instantiated. We make the depth assignment at the
site and continue the learning process as if all the conditions were satis�ed. We
call this process rehearsal because we carry out the relaxation without knowing
whether there is a feasible set of �. We summarize the second set of constraints
in eA � � < 0.

The system will rehearse and practice, like a baby learning to walk, trying to
reach the �nal goal from an initial state, while generating constraints on its gaits
at each step along the way. Having obtained these two sets of constraints on �,
we can proceed to �nd the set of � that satisfy most constraints by optimizing
the following linear programming problem,

LP : minimize: �
X
i

Æ
i
+
X
j

~Æ
j
;

subject to: A � � � Æ � �1; ~A � � � ~Æ � �1; Æ � 0; ~Æ � 0; � � 1;

where � � 1 is a weighting factor between the two sets of constraints, here
we simply set it to 1. Since not every constraint can be satis�ed, we introduce
slack variable Æ and ~Æ to turn them into soft constraints. Linear programming
is used to �nd the set of � that minimizes the total amount of violation of the
constraints.

Once LP yields a set of �, we examine the constraints' slack variables to see
which constraint is most severely violated (the largest positive Æ or ~Æ). We �nd
that a bad constraint is typically generated by making a hasty jump before the
condition is mature, putting an unnecessarily harsh constraint on �. We go back
to the constraint database and remove this constraint and choose alternative
teachers for all the patterns that give rise to this constraint. This prevents that
constraint to be selected again in subsequent rehearsals. We remove enough bad
constraints till a feasible � is found. We test its validity by relaxation using
this � to see if it can actually drive the system from the initial state to the
�nal state for each training example. The learning and checking processes are
iterated until �nal con�gurations for all the training images are correct. The
learning proceeds from simple to complex images, to gradually build up a set of
reasonable constraints. Most time when a new image is learned, only a couple
of iterations is suÆcient to obtain a new � such that all Æ and ~Æ = 0.



3 Results

Learning on a small set of training images containing two objects singles out a
unique value for �, where � = [18; 9; 97; 23:3; 3:2; 86:7; 3:35; 16:5; 42:5; 137; 20:8].
With this set of parameters, the model produces reasonable results for a set of
test images that the system has never been exposed to before.

Figure 6 shows how the system responds to a test image with �ve overlap-

ping rectangles in the scene. The system generalizes very well in its response
to this new input con�guration. A sequence of 8 snap shots are taken at dif-
ferent time points during the evolution of the system. Snap shot 1 shows the
system detecting T-junctions and starting propagating its initial result one level
up the hierarchy. Snap shot 2 shows the information has propagated to the third
level, and propagation of depth information within surface is now evident at the
second level. Snap shots 3 and 4 show the information has propagated to the

fourth and �fth levels respectively. Snap shot 5 shows the information starts to
propagate down the hierarchy, introducing rapid �lling-in of surface depth and
depth segregation in snap shot 6. Snap shots 7 and 8 show the completion of
surface/contour depth interpolation and segregation. All these are completed
very rapidly in two iterations up and down the hierarchy.

4 Discussion

In this paper, we present a hierarchical MRF model to perform depth segrega-
tion of region edge maps. The model is hierarchical rather than simply multiscale
because its �ne-to-coarse transform is topology-dependent. In this work, we pro-
pose a broader view that clique potentials in MRF can be used to encode any
local logical decision rules. By introducing a set of rules that asserts continuity
of depth assignment values along contour and within surfaces, and discontinuity
of depth assignment values across contours, we demonstrate a system that au-
tomatically integrates sparse local relative depth cues arisen from T-junctions
over long distance into a global ordering of relative depths. Interestingly, because
the rules we set are encoding relative relationships between objects, the system
trained on scenes containing two objects can actually generalize and perform
correctly when a scene containing �ve objects is �rst encountered.

We also propose a new method called learning from rehearsals for estimat-
ing MRF parameters. In this method, we derive a set of constraints based on
perturbation of target solutions and the rehearsals of relaxation processes, and
then use linear programming to obtain feasible solutions. Con
icting constraints
are removed and constraint derivation by rehearsals and parameter solving are
repeated until there is a set of parameters that work correctly for every test
image. We do not have a theoretical proof that the learning of this system will
actually converge. We have restricted our domain of investigation to a world of
simple shapes so that we can gain a better understanding of the system and
associate constraints with their origins.

Another assumption we made is that the input edge maps are closed contours.
There is no technical diÆculty here in so far as there exist a number of algorithms
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Fig. 6. Dynamics of the HMRF's response to a 5-object test image. The parameters

are learned on a few 2-object images. Shown here are a number of snaps shots taken

at di�erent time points during the depth segregation computation. The hierarchy is

traversed twice till its complete convergence to the correct labeling.



such as active contours [16] and region competition algorithms [37, 39] that can
produce complete and closed contours. However, depth segregation and order-

ing can potentially help segmentation by feeding back additional constraints to
organize the contour detection and completion process itself. Earlier work by
Belhumeur [2] and recent work by Yu and Shi [34] are examples of how depth
cues and intensity cues can be integrated simultaneously into the segmentation
process. These are potential directions for future research.

We think this HMRF model for depth segregation might provide a plausi-
ble computational framework for reasoning about and understanding the basic
computational constraints and neural mechanisms underlying local and global
integration and �gure-ground segregation in the brain. This work provides us
with several insights to some psychological and neurophysiological phenomena.

First, brightness has been observed to propagate in from the border in the
psychophysical experiment by Paradiso and Nakayama [29]. Such phenomenon
has been postulated to be mediated by horizontal connections in V1, for exam-
ple in Grossberg and Mingolla's model [11]. Here, we show that a hierarchical
framework can speed up the di�usion of depth assignment process considerably.
In fact, traversing up and down the hierarchy twice is suÆcient to complete the
computation. This suggests that both the brightness perception and the depth
segregation could be mediated by the feedback from V2 and V4, which are known
to have receptive �elds two and four times larger than those of V1 respectively.

Second, while Paradiso and Nakayama's experiment suggests di�usion in the
brightness domain, the similarity in dynamics between brightness di�usion and
our depth assignment suggests depth segregation and assignment might be the
underlying process that carries the brightness di�usion along. By the same rea-
soning, one would expect other surface cues such as color, texture and stereo
disparity should also be accompanying, if not following, the depth assignment
process. It will indeed be interesting to examine experimentally whether the
propagation of surface cues follows the depth assignment process or occurs si-
multaneously. That Dobbins et al. [7] found a signi�cant number of V1, V2 and
V4 cells sensitive to distance even in monocular viewing conditions suggests that
depth assignment might be intertwined with many early visual processes.

Finally, the hierarchy presented is not simply a multiscale network in that,
when the information travels up, the topological relationships between di�erent
objects are taken into consideration in such a way that the same relaxation
procedure can be applied at each level. For example, edges of overlapping shapes
are kept (Fig. 4a), whereas the edges of two nearby shapes appearing side by side
would disappear at a coarser resolution(Fig. 4b). This operation can be achieved
by taking the sum of depth polarities during the down-sampling process. In order
to accomplish this in the network, depth polarity of edges needs to be computed
and represented explicitly. This might provide a computational rationale for the
existence of the depth-polarity sensitive cells von der Heydt and his colleagues
found in V1, V2 and V4 [36].
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