ANALYSIS AND SYNTHESIS OF VISUAL IMAGES IN
THE BRAIN: EVIDENCE FOR PATTERN THEORY*

TAI SING LEEf

Abstract. At each moment in time, we perceive a very small fragment of the world
through our retinas, yet our subjective perception of the visual world in front of us is
rather clear, coherent and complete. Often we see things that are not even there. This is
because what we perceive is actually a ‘virtual’ visual world that is created in our minds
— a product of the interaction between our experience, prior knowledge and the incoming
sensory data. This world is dynamic and plastic. It depends on the behavioral demands
imposed on us and the statistics of our experiences. In this lecture, I will present
neurophysiological evidence that suggests that the early visual cortex participates in
many levels of visual processing underlying the generation and the representation of this
subjective visual world in our brain.
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1. Theory.

1.1. The nature of perception. The visual world we perceive is
a mental construction inside our brain, rather than the raw spots and
dots that photons create on our retinas. This mental construction is so
real and compelling that we rarely question or think twice about it. We
realize this fact through the painful examples of patients who have ‘visual
form agnosia’. These patients lost their ability to organize and construct
objects in the virtual visual world in their minds because of lesions in their
visual areas. For example, Benson and Greenberg (1969) reported a patient
whose vision is normal in discriminating fine features, color and motion but
couldn’t put all the tiny details back together to experience and perceive
coherent objects.

The raw image sampled by the retina at each of our glances provides
a very impoverished image of the outside world. Figure 1 illustrates a
sequence of images approximating what one of our retinas see at several
fixations. These images are severely limited — they are high-resolution only
in the fovea but are very blurry in the periphery. Yet, we do not ‘feel’ the
fuzziness in the surround, we realize it only when we pay attention to it
and ponder about it. However, by making saccadic eye movements three
or four times a second to constantly scan the visual scene, we somehow are
able to obtain enough samples of the external world to create an apparently
stable and complete visual world inside our brain.

*The work was supported in part by NSF CAREER 9720350 and NIH EY08098.
TCenter for the Neural Basis of Cognition and Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213.
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F1G. 1. (a) and (b) Raw input sampled by the retina in two fizations. (c) A ‘mental’
image created in our perception by integrating the retinal images from several fizations
(see also Lee and Yu 2000).

¢
¢ 9

©©
©©

Fig. 2. Illusory squares: we see subjective contour and surface at places where
there are actually no direct visual evidence for it.

Another piece of evidence supporting the idea of constructive processes
in vision is beautifully illustrated by Kanizsa with his famous visual illusion.
When viewing the display shown in Fig. 2a, we perceive a subjective square
and we see vivid borders of the square even in regions of the image where
there is no direct visual evidence for them. This is one example of the
phenomenon of illusory figure. Figure 2b show an even more stunning
example presented by Hoffman (1998). In this display, when parts of the
rings change their color from black to blue, a subjective perception of a
ghostly blue square surface is induced over the empty space.

1.2. Generative processes in unconscious inference. Helmholtz
(1867) had argued that perception is a product of unconscious inference:
what we perceive is our visual system’s best guess as to what is in the
world. This guess is based both on our prior experience and the retinal
image. Can this unconscious inference be accomplished simply through
association and memory? Or does it require the generation of an explicit
representation in our brain?
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Fi1G. 3. According to Grenander, inference is made through a combination of anal-
ysis and synthesis loops.

Marr (1981) would have favored an explicit representation, but he
would also say that it can be computed by a feedfoward chain of computa-
tional modules, each computing a more complex and abstract perceptual
structure. The perceived abstract structure, such as the illusory surface
and contour of the square, could be computed and represented by higher
visual areas. There is no need to reconstruct and represent them explicitly
in the early visual cortex.

On the other hand, Grenander (1976-81) would have argued that in-
ference is accomplished through the interaction of analysis and synthesis.
From this point of view, as articulated by Mumford (1992) and Lee et al.
(1998), vision is a series of interactive hypothesis testing. Prediction and
expectation continuously generated by the higher visual areas are tested
and matched with the representations in the earlier visual areas (Figure 3).
This feedback synthesis serves two purposes. First, it is useful for analyz-
ing ambiguous images in which a dialog between knowledge and perception
is required to disambiguate the scene, as in the example devised by R.C.
James in Figure 4. Second, having top-down expectation and prediction is
important for speeding up the inference process in real time. That is, if we
know what we are going to see, it is much easier and more efficient to verify
objects in a visual scene than to deduce them from sketch at each moment
in time. Vision is then considered an active process of generating and test-
ing hypotheses, very much like conducting a scientific experiment. This
construction is unconscious and the hypotheses constructed are our per-
ception of the visual world. Current important theories on brain functions
such as Grossberg’s adaptive resonance theory (1987), and McClelland and
Rumelhart’s (1981) interactive activation theory, Dayan et al.’s Helmholtz
machine (1995), and Rao and Ballard’s (2001) predictive coding model ba-
sically advocated the same fundamental view, particularly for the purpose
of disambiguation.

1.3. High-resolution buffer hypothesis. Mumford and I (Lee and
Mumford 1996, Lee et al. 1998) have suggested a new framework for con-
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Fic. 4. An image devised by R.C. James to illustrate how the interpretation of
some images relies on top-down knowledge.

ceptualizing the role of the primary visual cortex (V1) in visual processing
from this perspective. This very large region in the occipital cortex has
been traditionally considered the first stage of visual processing, extracting
edges and other low-level cues. We think that it might play a far more
important role than previously imagined. Because the receptive fields of
neurons in V1 are much smaller and more spatially localized than those
of neurons in the extrastriate cortex, V1 could furnish a unique high reso-
lution buffer or a sketch pad for the whole visual cortex to make detailed
geometric calculations and synthesize images through the generative pro-
cesses. For example, suppose we want to explicitly construct the precise
contour of the illusory square (Figure 2), V1 is an ideal place to do so
because it furnishes a precise representation for integrating the bottom-up
information from the raw images and the top-down hypotheses, generated
from prior experience, to construct and represent the sharp subjective con-
tour. As another example, suppose the brain needs to compute the axis
of symmetry of an object for shape discrimination; V1 could provide an
appropriate buffer for representing the axis explicitly. As in the case of
illusory contour, the axis of symmetry is a computation that requires the
integration of local information and global scene context.

More generally, we think that V1 is not limited to curvilinear geometric
computation as illustrated by the examples of illusory contour and symme-
try axes. Rather it serves as a high-resolution buffer for even more general
computation. We know that the information output by V1 is channeled into
the dorsal stream (or commonly known as the where pathway) for motion
processing and spatial analysis, as well as the ventral stream (or commonly
known as the what pathway) for form processing and object analysis. These
two streams are further subdivided into multiple modules or areas, each re-
sponsible for processing different aspects of the visual scene: color, form,
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motion, stereo, and spatial locations of objects in various coordinates. A
major question is how the brain combines all the processed information
back together to form an unified percept. There are at least three possible
loci of interaction for such an unification to occur. First, they could be me-
diated by the intercortical connections between modules in the two streams
(Baizer et al. 1991). Second, they could be mediated in the prefrontal cor-
tex such as area 46 where both the dorsal and ventral streams converge
to (Rao et al. 1997). Third, with the massive feedforward and feedback
connections it has with many extrastriate areas, V1 can potentially serve
as a sketch pad for integrating the higher level information, derived from
the different modules, including color, shape, depth, object identity and
spatial location. The high-resolution buffer hypothesis basically argues for
the importance of this third possible locus of interaction and emphasizes
that V1 participates in all levels of perceptual computations that require
high resolution image details and spatial precision.

2. Experiments. What evidence supports the high-resolution buffer
hypothesis and, more generally, the generative and constructive processes
in the brain? I will describe three experimental observations we made that
are in part both supportive and suggestive of these ideas.

2.1. Tllusory contour. The first experiment was to examine whether
V1 represents subjective contours of the Kanizsa square as shown in Figure
2. Seventeen years ago, von der Heydt and his colleagues (von der Heydt et
al, 1984) found that neurons in macaque V2 are sensitive to an illusory bar
moving across their receptive fields. This discovery was seminal because
it showed neurons possess a direct physiological correlate of a perceptual
phenomenon. Curiously, they didn’t found V1 neurons responding to the
illusory contour. Hence, they proposed a feedforward model that integrates
end-stopping signals in V1 to produce the illusory contour responses in V2.
In short, their evidence caused a problem for all the interactive models of
visual processing, as well as the high resolution buffer hypothesis which
predicts that we should be able to observe the emergence of illusory con-
tour at the later part of V1’s responses because of the generative feedback
processes in the visual system.

We decided to put the high-resolution buffer hypothesis to test. We
(Lee and Nguyen 2001) studied the responses of V1 and V2 neurons to five
sets of of stimuli, as shown in Figure 5. The set of test stimuli included a
Kanizsa figure with illusory contours (Figure 5a), an amodal figure in which
the contours are partially occluded (Figure 5b), and a variety of control and
comparison stimuli (Figures 5c-i). In each trial, while the monkey fixated,
a sequence of 4 stimuli was presented. The presentation of each stimulus
in the sequence lasted for 400 msec. Over successive trials, one of the
contours (real, amodal or illusory) in the figure was placed at 10 different
locations relative to the center of the receptive field, 0.25° apart, spanning
a range of 2.25% as shown in Figure 6. It is important to bear in mind
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F1G. 5. A subset of the stimuli used in the illusory contour experiment by Lee and
Nguyen (2001).

that the receptive fields of the neurons, as plotted by small oriented bars,
was less than 1 degree at that eccentricity (about 2 -3 degree away from
the fovea). The gap between the pac-men was 2 degree wide. The neurons
are considered to be sensitive to illusory contour if their response to the
illusory contour, at the precise location of that contour, was significantly
larger than their response to the amodal contour or other controls. We
found that a significant number of V1 neurons at the superficial layer of
V1 exhibited sensitivity to the illusory contour under our experimental
manipulation (Lee and Nguyen 2001).

Figure 7 presents the findings from a V1 neuron. This cell responded
significantly more to the illusory contour than to the amodal condition,
or the rotated corner disc configuration. The illusory contour elicited a
response precisely at the same location at which a real contour elicited
the maximum response. However, the response to the illusory contour ap-
peared at 100 msec after the onset of the subjective square, as compared
to 45 msec after the appearance of the square defined by lines or luminance
contrast. The averaged temporal response of 50 neurons in the superficial
layers of V1 to the illusory contour and to the controls (Figure 8) demon-
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F1G. 6. (a) The 10 different positions where the receptive field of a cell was placed
relative to the subjective contour. (b) Sequence of presentation: Abrupt onset of the
subjective square in front of the four discs helps to call attention to the square (Lee and
Nguyen, 2001).
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F1G. 7. Response of a V1 neuron. (a) Response at different spatial location relative
to the illusory contour. (b) The onset of response to illusory contour emerges at 100
msec, 60 msec later than the response to the real contours. (c) Response to the illusory
contour (Figure 5a) is significantly greater than the response to the amodal contour
(Figure 5b) and the other rotated pac-men controls (Figure 59—i) (Lee and Nguyen,
2001).

strated a significant response to the illusory contours at the population
level. The average temporal response of 39 neurons in the superficial layers
of V2 showed an earlier onset of illusory contour response. We will refer the
readers to our paper (Lee and Nguyen 2001) for the details of the experi-
ment. Suffice to say, the experimental finding suggests the illusory contour
is being explicitly ‘constructed’ and represented in V1.

If V2 neurons are already detecting and encoding information about
illusory contours, what is the advantage of feeding it back to V1? One
reason is that V2 neurons’ receptive fields are twice the diameter of V1
neurons at the same spatial location. Hence, V2 neurons can integrate
information more globally, but it can no longer represent precise spatial
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Fi1Gc. 8. Comparing the responses of the neurons at the superficial layers of V1
and V2 to the stimuli, we can see the illusory contour signal, which is indicated by
the difference between the response to illusory contour over the response to amodal or
rotated pac-men control, emerges 100 msec after stimulus onset for V1 neurons, and at
65 msec for V2 neurons (Lee and Nguyen, 2001, with permission from PNAS).

information. That is, it can detect the existence of the contour but cannot
know explicitly and precisely where the contour is. The feedback from V2
to V1 is spatially diffuse but orientation-specific. It only informs V1 of
the existence and orientation of a long contour, but not its precise spatial
location. The feedback of this global information, when combined with the
bottom-up cues that are represented precisely in V1 (i.e. the edges of the
pac-men), will enable the neural circuit within V1 to complete a spatially
precise and complete contour (Figure 9).

2.2. Axis of symmetry. The second observation I now describe con-
cerns evidence suggestive of a possible medial axis representation at V1.
Medial axis transform, or skeletonization, is a powerful way of represent-
ing shape. Blum (1973) proposed to describe the complex biological forms
using the skeleton and a small finite set of shape primitives. The skele-
ton links these elementary parts together hierarchically like the clauses in
a sentence. This method is particularly useful for encoding the infinite
variety of biological forms, in which relationships between body parts pos-
sessing flexible joints can change drastically along with changes in view
point and motion. Blum suggested a region-based description using skele-
tons or axis of symmetry of the objects might be more robust and stable
than a boundary based description against such variations (see Figure 14).

Our experiment (Lee et al. 1998) was designed to investigate the neural
representation of texture contours and surface. We examined the responses
of the neurons to the strip stimuli defined by texture contrast (Figure 10).
The texture defined strip was presented in a randomized series of sampling
positions relative to the cell’s receptive field. The cell’s response at one
position was sampled at each trial. In each recording session, the cell’s
response was sampled along a horizontal cross-section of the image at a
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Fig. 10. (a) A vertically textured strip in front of a horizontally textured back-
ground. (b) A 4 degree width horizontally textured strip in front of a vertically textured
background. Both strip widths were 4 degree visual angle, which is 4—6 times larger than
the diameter of the classical receptive fields of the cells.(c) The receptive fields of the
neurons were placed at 16 locations in each of the stimulus images.

0.5° visual angle step interval (Figure 10c). The size of the receptive field
of the cell ranged from 0.5° to 0.8° in visual angle.

We found that there were several stages in the responses of V1 neurons,
each with distinct spatial response profiles at different temporal windows.
Typically, V1 neurons started to respond about 40 msec after the stimulus
was displayed on the screen. From 40 to 60 milliseconds after stimulus on-
set, the cells behaved essentially as local feature detectors or linear filters
(Hubel and Wiesel 1978, Pollen et al 1989). The responses to the texture
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F1g. 11. Spatial response profiles of a wertically oriented V1 neuron to different
parts of the vertically textured strip (Figure 10a). The abscissa is the distance in visual
angle from the RF center to the center of the figure. The solid lines in these graphs
indicate the mean firing rate within the time window, and the dashed lines depict the
envelope of standard error. The later response of the neuron echibits response peaks at
the boundaries and at the azis of the strip.

stimuli were therefore initially uniform within a region of homogeneous
texture, based upon the orientation tuning of the cells. In the example
shown in Figure 11, the neuron showed preference for features of vertical
orientation. In the initial period, it responded uniformly well within the
interior of the vertically-textured strip, but responded very poorly to the
horizontal texture outside the strip. At 60 milliseconds following stimulus
onset, boundary signals started to develop at the texture boundaries. By
80 msec, the responses at texture boundaries have become sharpened, con-
sistent with the psychophysical time course of texture segmentation (Julesz
1975). Interestingly, beginning at 80 msec, as the responses at the bound-
ary became more localized, a response peak was sometimes observed at
the center or the axis of the strip. The spatial response profiles in succes-
sive temporal windows in Figure 11 show the development of this central
peak. In another dramatic example (Figure 12), cell m32, which was also
vertically oriented, at first did not respond at all within the horizontally
textured strip but became active at the axis of the strip after 80 msec.

Statistically significant central peaks were observed in 14 out of the
50 neurons tested with the vertically-textured strip and 10 cells with the
horizontally-textured strip (T-test, p < 0.05). Figure 13 shows the aver-
age spatial temporal response of the 14 neurons that are sensitive to the
positively textured strips, revealing a subtle response peak at the axis of
symmetry of the strip.

Whether this signal that we accidentally observed has anything to do
with the axis of symmetry representation is still open to question. There
were two major problems related to this interpretation. First, the axis
response seems to be dependent on the width of the strips, i.e. the axis
response of a cell disappeared when the width of the strip was increased in
all cases. This suggests it could be explained as a product of some global
surround lateral inhibition and dis-inhibition mechanism. We have pointed
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Fi1G. 12. Another neuron’s (cell m32) response to the horizontally textured strip
(Figure 10b). Approzimately 40-60 msec after stimulus onset, the cell responded uni-
formly to the background but did not respond to the texture strip at all because it was not
tuned to the texture inside. From 60 to 80 msec, the boundary started to sharpen, but
there was still no response within the strip. Interestingly, 80 msec onward, a pronounced
response peak gradually developed at the axis of the texture strip.

this out (Lee et al. 1998), and Zhaoping Li (1999) has also demonstrated
this possibility with a model based on lateral inhibition. The fact that the
neuron is sensitive to the width of the strip might not be as devastating as it
might seem, for a medial axis neuron can be sensitive to the diameter of the
inscribing disk as well (Figure 14). One can conceive that a group of these
cells, each tuned to a particular width, could together provide an invariant
representation of the medial axis. A bit more troubling is the observation
that the axis response seems to be absent in black and white strips (see
Lee et al. 1998 for details). We speculate that perhaps the top-down
feedback is weak in this case and excitation by local features is required in
order for the sub-threshold axis signal to manifest itself. However, if the
signal is so weak, could it possibly serve any purpose? Could we be seeing
a little too much in this response peak at the center? This experiment
demonstrates that texture contour is computed and represented in V1.
The evidence hints at the possibility of a neural correlate of medial axis
computation, even though the data do not provide solid proof that medial
axis is represented in V1 explicitly. More carefully designed experiments
are required to clarify this issue.
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Fic. 13. The spatiotemporal population average response profile of the 14 azis-
positive cells to the different locations horizontally across the vertically textured strip.
Locations —2 and 2 in the spatial offset indicate the locations of the texture boundaries.
Location 0 in the spatial offset indicates the center of the texture strip. Fasily observable
is the strong and sharp boundary responses and an axis response of smaller magnitude
in the later part of the response (see Lee et al. 1998 for details).

a: Response to Boundary Fragment 1
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Homogeneous Surface - Coloring

Medial Axis Response Evoked by
T ---  Conjunction of a, b and c.

»»»»» c: Response to Boundary Fragment 2

F1G. 14. Medial azis is a descriptor that integrates local and global information. It
encodes information about the location of the skeleton and the diameter of the inscribed
disk. This figure illustrates how a cell may be constructed so that it fires when located
on the medial azis of an object. The conjunction of three features has to be present: at
least 2 distinct boundary points on a disk of a certain radius, and the homogeneity of
surface qualities within an inscribing disk. Such a response is highly nonlinear, but can
be robustly computed.

2.3. Shape from shading. A third experiment, yet to be published,
provides another piece of evidence in support of the generative processes.
Here, we pushed the high-resolution buffer hypothesis one step further by
testing whether V1 neurons are sensitive to 3D shapes. There has been
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Fi1c. 15. (a) a convex odd-ball stands out in a field of concavities. (b) a concave
odd-ball stands out in a field of convez balls. Psychological study shows that this pop-out
can be detected ‘preattentively’ despite the fact that the stimulus element is defined by
38D shape from shading.

earlier physiological studies showing V1 neurons are sensitive to perceptual
pop-out in terms of oriented bar or oriented texture (Knierim and Van
Essen 1993, Lamme 1995, Lee et al 1998). That is, a cell responded better
when its receptive field was seeing a bar(s) of optimal orientation as it
was surrounded by bars of an orthogonal orientation than when it was
surrounded by bars of the same orientation. But perceptual pop-out is
not limited to oriented bars. Figure 15 showed examples in which a 3D
convex shape pops out from a set of 3D concave shapes and vice versa
(Ramachrandron 1988, Sun and Perona 1996). This experiment was to
designed to examine whether V1 neurons are sensitive to odd-ball pop-out,
defined by 3D shape from shading, at a relatively high level construct.

We trained the monkeys to make eye movement towards the odd-ball
which could appear at one of the four random positions. The pop-out
stimuli include 3D shape stimuli as well as 2D luminance contrast stimuli,
in which stimulus elements were arranged in an 8 x 8 array (3 x 3 arrays are
shown Figure 16 as iconic examples). Then we tested whether a V1 neuron,
when its receptive field was placed inside one of the stimulus elements, is
sensitive to the difference in the surrounding context; i.e., the V1 neuron
responded differently when it was surrounded by dissimilar elements (pop-
out condition) as opposed to when it was surrounded by similar elements
(homogeneous condition).

We found that V1 neurons exhibit neural pop-out response, defined
as the relative increase in response to the pop-out condition over the ho-
mogeneous condition of the shape from shading stimuli (Figure 17). The
pop-out response for 3D shapes (Figure 17a,b) was significantly greater
than that for 2D luminance contrast stimuli (Figure 17¢,d). The pop-out
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Fi1Gg. 16. LA: lighting from above; LB: lighting from below; WA: white above;

WB: white below. These are iconic representations of the stimuli. The actual stimulus
display is an array of 12 X 12 stimulus elements as shown in Figure 15. In this iconic
representation, the receptive field of the neuron is placed inside the stimulus at the
center element (or the hole). The sizes of the classical receptive fields of the neurons
(minimum responsive ares) we studied are smaller than the center element.

response is correlated with the monkey’s performance in the pop-out de-
tection test. When the pop-out signal was stronger, the monkey reacted
faster and more accurately (see behavioral performance data below the
figures). More interestingly, when we manipulated the statistics of the oc-
currence of the pop-out stimulus — specifically, when the convex pop-out
was presented more frequently than any other odd-balls, we found that
the behavioral preference of the monkeys shifted, and the relative neu-
ral pop-out response among the different stimuli also changed accordingly
(Figure 18). This finding suggests that 1) V1’s pop-out response is sen-
sitive to 3D shape from shading information, 2) the behavioral relevance
of the pop-out stimulus can determine the level of the pop-out response.
From this observation and from similar observations from other monkeys,
we think that when the monkey is looking for the concave object, as in this
case, it is in part because the concavity was preattentively more salient
than the other odd-balls. Hence the V1 neurons’ activities are relatively
more enhanced for the concave pop-out as well. This ‘pop-out’ response
enhancement signal thus may be related to the so-called object attention.
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F1G. 17. Population averaged response (PSTH) depicting the temporal evolution of
the neuronal activity in V1 neurons to the four stimulus sets. Response to the pop-out is
compared against the response to singleton and to a homogeneous field of convex objects.
(a) convex (or lighting from above) pop-out; (b) concave (or lighting from below); (c)
white above 2D luminance contrast; (d) white below 2D luminance contrast. We can
observe that for this monkey, the response to the pop-out condition is stronger than the
homogeneous condition in the LB set, and much less so for the LA, WA and WB sets.
The behavioral performance measure associated with each pop-out condition shows that
the monkey reacts faster and more accurately to the LB condition.

Object attention is generated when an animal is searching for a par-
ticular object or feature over a large visual space in parallel (James 1890).
Object attention is sometimes also called feature attention. This is in con-
trast with the spatial attention proposed by Helmholtz (1867) and Treisman
(1982). Spatial attention can be visualized as a spotlight that ‘illuminates’
a certain location of visual space for focal visual analysis. When the mon-
keys are performing visual search for a particular object, they basically
function in the object attention mode. Since object attention is object spe-
cific but spatially distributed, one can imagine that object templates are
being sent down from IT (Inferotemporal cortex — an object encoding area)
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Fi1c. 18. When the occurrence of the LA pop-out was made more frequent, the
monkey started to erhibit better detection performance for the LA set, and a stronger
neural pop-out signal for the LA pop-out stimulus.

and broadcast to all the hypercolumns in the early visual cortex. When a
match occurs, the activity in the area of V1 that contains the the image of
the searched object will become elevated. The ‘pop-out’ response enhance-
ment we observed is more likely this object attention effect rather than a
bottom-up saliency effect. This is because we did not observe these pop-out
responses before the monkeys were trained to do the detection task!

3. Model. Now, if the task is to look for a certain searched object,
what is the purpose of elevating the response of particular neurons in V17?
This is best understood in the context of a neural model that Gustavo
Deco and I (Deco and Lee 2002) developed to explain how object atten-
tion and spatial attention would function in a unified system to accomplish
translation-invariant object recognition and visual search. The premise
of this model is that the early visual cortex serves as a high resolution
buffer for the dorsal stream and the ventral stream to interact, combine
and coordinate their information in a set of feedforward/feedback loops
(Figure 19). The model is formulated in the framework of biased compe-
tition. Basically, within each cortical area, there is inhibitory competition
among neurons. However, there is also excitatory facilitation between cor-
responding neurons across the different areas. This long range facilitation
from one area can serve as a bias that will tilt the balance of competition
within each module. The conceptual framework of biased competition has
been proposed by Duncan and Humphrey (1989). This scheme has been
implemented to explain attentional phenomenon observed in IT by Usher
and Niebur (1996) and in V4 by Reynolds et al. (1999). Our contribution
is to bring the dorsal stream and the early visual cortex into the picture
in explaining how attentional modulation can be mediated in the ventral
stream. Furthermore, our neural model also provides a functional rationale
for attentional modulation. It shows attentive object recognition and vi-
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Fi1c. 19. A schematic diagram of the model. The model contains three modules:
the early visual module (EM), the ventral stream module (VM) and the dorsal stream
module (DM). The early visual module contains orientation-selective complez cells and
hypercolumns, as in the primary visual cortex. The ventral stream module contains
neuronal pools encoding specific object classes, as in the inferotemporal corter. The
dorsal stream module contains a map encoding positions in the retinotopic coordinate.
The early module and the ventral module are connected with symmetrical connections
developed with Hebbian learning. The early module and the dorsal module are connected
with symmetrically localized connections modeled with Gaussian weights. Competitive
interaction within each module is mediated by inhibitory pools. Connection between
modules are excitatory, providing biases for shaping the competitive dynamics within
each module. Concentration of neural activities to an individual pool in the ventral
module corresponds to object recognition. Concentration of neural activities to a small
number of nearby pools in a dorsal module corresponds to object localization. The early
module provides a buffer for the ventral and the dorsal modules to interact.

sual search can be accomplished through the interaction of the two streams
via the early visual cortex in an unified system.

The system basically has three modules: a dorsal module, which con-
tains a spatial map for coordinating competition and coding of the location
of spatial attention; a ventral module, which contains a set of neurons for
coding different object classes, and an early visual module, modeled af-
ter V1. Spatial attention is initiated by introducing a top-down bias to
a particular neuronal pool in the dorsal map, which will help to elevate
the activities of a particular area in V1, effectively gating information from
V1 to higher processing areas in the ventral stream. Alternatively, object
attention — the search for a particular object is initiated by introducing
a top-down bias to a particular neuronal pool in the ventral module (IT).
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Fic. 20. Population average firing rate of neuronal pools in the early module at
the location of the searched target compared to the response of the same neuronal pools
when the system was not looking for anything. Significant and sustained enhancement
was observed in the later part of the neuronal pool’s response due to object attention.
Howewver, given that all three modules are always engaged in interaction in either of
the spatial or object attentional modes, the attention-induced response elevation in the
early visual module or any other area cannot be considered as a purely spatial or a
purely object attentional effect. From this point of view, all attentional effects observed
necessarily possess both spatial and object attentional components.

IT will then send down its expectation of V1 activities corresponding to the
particular target object down to V1. A match will produce a bias in favor
of that area of V1, enhancing its activities (Figure 20). The mutual cou-
pling between V1 and the dorsal stream will allow the competition within
each of these modules to help each other synergistically, thus eventually
leading the contraction of activities in both V1 and the dorsal spatial map
to a particular spatial location. The contraction of response to a localized
area in the retinotopic space corresponds to the localization of the searched
target. The reason V1 is needed in this visual search task is that in order
for the monkey to make a saccadic eye movement towards the target, it has
to be able to localize the object with spatial precision — provided explic-
itly at the level of V1. This explains why before the monkey utilized the
stimuli in its behavior, we did not observe the contextual elevation in V1’s
activities. Only after the monkey had performed the detection task did it
start to finely appreciate the stimuli both in space and in feature, leading
to the sensitivity of its V1 neurons to the 3D pop-out context. This find-
ing is again consistent with the generative processes suggested by Pattern
theory.

4. Conclusion. The neurophysiological evidence presented here
strongly suggests that during perception at the appropriate context ex-
plicit local and global representations might be actively constructed at the
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level of V1 in conjunction with the extrastriate cortices. Other neurophys-
iological findings, particularly the curve tracing experiment of Roelfsema
et al. (1998) and a recent experiment of Paradiso and his colleagues on the
effect of expectation, also point in the same direction. Visual inference is
as much a generative and synthesis process as an analysis and deduction
process. Our evidence suggests that low level vision and high level vision
are intimately intertwined. The primary visual cortex, rather than sim-
ply contributing to the first stage of early visual processing, might play a
more important role by providing a high-resolution buffer to mediate the
interaction among the different expert extrastriate modules and streams.
Furthermore, the primary visual cortex might actively participate in many
computations that are responsible for constructing the illusion of stable
and complete visual world in our mind.
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