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Abstract

A number of recent systems for unsupervised feature-
based learning of object models take advantage of co-
occurrence: broadly, they search for clusters of discrimina-
tive features that tend to coincide across multiple still im-
ages or video frames. An intuition behind these efforts is
that regularly co-occurring image features are likely to re-
fer to physical traits of the same object, while features that
do not often co-occur are more likely to belong to different
objects. In this paper we discuss a refinement to these tech-
niques in which multiple segmentations establish meaning-
ful contexts for co-occurrence, or limit the spatial regions in
which two features are deemed to co-occur. This approach
can reduce the variety of image data necessary for model
learning and simplify the incorporation of less discrimina-
tive features into the model.

1. Introduction and related work

Co-occurrence is a powerful tool for discovering rela-
tionships between heterogeneous collections of attributes or
events. Typically, if two such features frequently co-occur
throughout a dataset, it is proposed that they correspond to
traits of the same object, concept, or process. Co-occurrence
is already a popular inference tool in language technologies
such as machine translation [1] and searching and indexing
[2], where co-occurring words are assumed to be semanti-
cally similar.

In computer vision, co-occurrence forms the basis for
several techniques which automatically, or with minimal su-
pervision, extract and model objects in video or image sets.
Features that share frequent spatio-temporal co-occurrence
are deemed to arise from the same object, and collections of
these features form the basis for a model of that object. We
propose that many of these techniques incorporate some or
all of these four key processing steps:

1. Feature tokenization—a discretization of the feature

space allowing consistent feature recognition through-
out the dataset.

2. Co-occurrence context establishment—where spa-
tial and temporal limits describe contexts in which co-
occurrence is meaningful, reducing noise.

3. Co-occurrence measurement—where the frequency
of feature co-occurrence is determined across the data.

4. Feature clustering—where strongly coincident fea-
ture sets are clustered into discrete object models.

Previous efforts closely resembling this schema include
Sivic and Zisserman’s unsupervised aggregation of affine-
invariant feature sets from video sequences [3] and the un-
supervised association of caption text keywords with image
features [4]. In Sivic and Zisserman’s case, steps 2 and 3
are implicit, manifesting themselves in the creation and fil-
tering of spatially limited feature configurations.

Divergent but still relatable are Rothganger et al.’s auto-
mated discovery of 3D object models from video sequences
[5], which uses affine-invariant feature matching and struc-
ture from motion; and Schmid’s learning of 2D visual mod-
els from weakly-labeled training data [6].

In this paper, we discuss a refinement of the second step,
in which a collection of segmentations is used to determine
the pairwise co-occurrence likelihood of features. Aggres-
sive context delineation is beneficial in cases where most of
the image data look the same, such as a single, short video
clip: here, a learner that groups objects appearing in roughly
the same spatio-temporal location is likely to place all fea-
tures into a single cluster. Segmentation can also limit the
degree to which relatively non-discriminative features, ap-
pearing across wide swaths of an image, are judged to co-
occur with nearby, unrelated features on a different object.
We demonstrate a system that uses several segmentations
to learn object models consisting of two different kinds of
features of varying discriminative strengths. Our input data
consist of 151 frames of a 30 frame-per-second 400x267
pixel video sequence, stills of which are seen in Figure 1.
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Figure 1. Two video frames and their five mean-shift segmentations. The three parameters for the
mean-shift segmentation system—spatial bandwidth hs, color range bandwidth hr, and minimum re-
gion size—are displayed in corresponding order atop each segmentation column. Each segmenta-
tion provides information about the object boundaries in the image, but no single one finds all the
appropriate boundaries, and several create spurious boundaries between different-colored regions
of the same object.

Applications of unsupervised object model learning in-
clude search and indexing of video and image data, auto-
mated annotation and captioning, and the automated dis-
covery of real-world objects by robots. Furthermore, these
learning methods are often themselves showcases for appli-
cations of a variety of lower-level vision techniques, such
as feature detection, segmentation, and structure from mo-
tion.

2. Model learning

We describe our learning mechanism in terms of the
four-step schema presented in the introduction. The output
of our system is similar to that of [3]: a collection of fea-
ture sets corresponding to objects without information on
the relative spatial locations of the features.

2.1. Feature tokenization

We begin by extracting a collection of features from each
frame in the video sequence. Here, we used two kinds of
features: SIFT keypoint features [7], which are extremely
discriminative, and small, localized color patches isolated
from an oversegmentation of the image, comparable to the
“superpixels” described in [8]. These superpixels are not
very discriminative at all. Aside from demonstrating the ro-
bustness of the algorithm, the reasons for using such weak
features were threefold. First, these color features can pro-
vide useful information in the absence of texture, which is
required by SIFT. Second, by describing simple image at-
tributes, they are often more intuitable to humans. Third, a

heterogeneous feature set represents a more total use of the
information present in the image.

Each SIFT descriptor in the collection is a point in a
continuous 128-dimensional space, and each color patch is
represented as a point in a 3-dimensional LUV colorspace.
To greatly simplify matching features between frames, both
spaces were vector quantized with K-Means clustering, as
in [3]. SIFT descriptor space was reduced to 1,600 clus-
ters, with each keypoint now assigned to the nearest clus-
ter; LUV colorspace was likewise reduced to 100 clusters.
As Sivic and Zisserman note, this process effectively ren-
ders the continuous video data into a stream of discrete to-
kens with spatio-temporal locations.

We perform a further consolidation of our SIFT features,
which are simply scale and not affine-invariant. When a
new SIFT feature is detected in a video frame, the under-
lying pixel data are tracked in future frames using an affine
Lucas-Kanade tracker [9]. SIFT features that appear along
the tracker trajectory are deemed to be the same as the origi-
nal SIFT feature, and their corresponding K-Means clusters
are also bound together as identical.

Finally, these unified SIFT-derived feature clusters are
filtered for persistence and uniqueness. Those appearing
in fewer than half of the images, or appearing more than
once in an image in over five percent of their showings, are
culled. For our sequence, 83 SIFT-derived clusters remained
after this final filtering.

Despite this grooming procedure, it should be made clear
that this technique is designed to be feature agnostic, given a
modest discriminative ability on behalf of feature types, the
capability for meaningful tokenization, and feature persis-
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tence across a reasonable number of images. We acknowl-
edge that the features chosen for this demonstration are ad-
hoc, and anticipate a more diverse and considered variety of
features in future efforts.

2.2. Co-occurrence context establishment

Our data now consist of a set of frames containing spa-
tially located feature tokens. We use segmentation to pro-
pose contexts in which the features are deemed to co-occur.

An ideal segmentation for this application divides the
image sequence into a set of contiguous spatio-temporal re-
gions; features occupying the same region are said to co-
occur. Methods for such segmentations exist [10], but for
this first effort, we treat each frame as independent and use
per-frame image segmentation for co-occurrence contexts.
In effect, our system only uses spatial coincidence to es-
timate feature co-occurrence, since the “spatio-temporal”
clusters are only a single frame long. Parts of an object
which can’t be seen simultaneously (e.g. the front and back
of a box) are therefore unlikely to be grouped by this ini-
tial method.

We used mean-shift image segmentation [11][12] to gen-
erate five segmentations for each frame. Each segmentation
used different spatial and range bandwidths and minimum
region sizes, rendering partitions with a range of coarseness
(Figure 1b). Mean-shift segmentation with reduced spatial
and range bandwidth parameters was also used to generate
the superpixel features in 2.1.

Just as this technique is designed to be feature agnostic,
it is also designed to be segmentation agnostic, given a ten-
dency for the segmentations to reflect some actual object
boundaries within the data. It seems probable that segmen-
tation wide diversity will promote the discovery of a greater
number of meaningful spatio-temporal boundaries. In the
future we intend to incorporate affine motion segmentation
and other segmentation strategies into this framework.

2.3. Co-occurrence measurement

We can now compute the pairwise co-occurrence likeli-
hood for two features given the per-frame segmentations.
Let f1♥f2 denote that features f1 and f2 correspond to
physical traits co-occurring on the same real-world object.
For a particular spatio-temporal segmentation S and input
video data D, we estimate the likelihood of f1♥f2 as fol-
lows:

P (f1♥f2|S,D) =




1
if ∃ tf1 , tf2 ∈ D and r ∈ S

s.t. tf1 ∈ r and tf2 ∈ r,

0 otherwise,

where tfn
is a feature token locating an observation of fea-

ture fn at some spatio-temporal coordinate in the data, and

r is a spatio-temporal region in the segmentation. This is a
simple mathematical restatement of the co-occurrence judg-
ment summarized in 2.2.

We compute the pairwise co-occurrence likelihood for
a segmentation type ST , in this case the full set of per-
frame segmentations corresponding to a single configura-
tion of mean-shift parameters, by integrating out each seg-
mentation in ST:

P (f1♥f2|ST,D) =
∑

S∈ST

P (f1♥f2|S,D)P (S|D).

Here, the size of each ST is N , the number of frames in
the image sequence, since each frame has its own segmen-
tation. We assume P (S|D) to be uniform, i.e. 1/N .

The next step is to find an approximation of the pairwise
co-occurrence likelihood by integrating out the segmenta-
tion types themselves:

P (f1♥f2|D) ≈
∑
ST

P (f1♥f2|ST,D)P (ST |D).

This final approximation is only exact when every possible
image segmentation is tried, and when the exact probabili-
ties P (S|D) and P (ST |D) are known. Finding segmenta-
tion likelihoods is known to be a difficult task, though there
exists some progress in this area [13]. In practice, we find it
is effective to assign uniform likelihoods to each segmenta-
tion type. In future systems, it may be worthwhile for these
likelihoods to be user-configurable, letting the user indicate
which type of visual information is more indicative of ob-
ject boundaries in their data.

The final output of the co-occurrence measurement steps
is a symmetric pairwise feature affinity matrix A, where
Ai,j ≈ P (fi♥fj |D).

2.4. Feature clustering

To isolate discrete objects from the feature affinity ma-
trix, we find clusters of strongly connected feature pairs.
Spectral techniques exist for clustering based on affinity
matrices [14], but here we used the following greedy sam-
pling algorithm to find clusters:

Algorithm FindClusters(F,A)
1 C ← randomly chosen feature in F
2 repeat until C stops changing
3 F �C ← random permutation of all F �∈ C
4 for each ff ∈ F �C
5 J ← {fc | fc ∈ C and P (ff♥fc|D) > α}
6 if |J | < β|C|
7 then C ← {C, ff}
8 end for each
9 end repeat
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Figure 2. Histograms showing the number of
models (y axis) containing a particular num-
ber of features (x axis). Plot (a) shows mod-
els made using multiple segmentations to es-
tablish co-occurrence context; plot (b) shows
models made using inter-feature spatial prox-
imity.

Here, α is a connection strength threshold, and β is a con-
nectedness threshold. Both are between 0 and 1. The algo-
rithm incrementally grows the cluster C, adding new mem-
bers ff from the set of remaining free features if those fea-
tures are strongly co-occurrent with a significant fraction of
those already in C. In our experiment, α was 0.55 and β
was 0.78.

One advantage of this simple method is that it allows
clusters to overlap, or share features. This is appropriate
when weakly discriminative features like color patches are
used, since they can appear on multiple objects. A disad-
vantage, however, is that different objects are sampled at a
frequency proportional to their number of constituent fea-
tures, due to the random initialization of C. Large objects
with lots of appearance variety are more likely to be found
than smaller ones, so it is necessary to run FindClusters
several times to recover all objects. This is demonstrated in
Figure 2a, a histogram showing the number of features in
object models found in 1,000 runs of FindClusters our test
dataset. Nearly 60% of all recovered clusters describe the
same 75-feature object, which has about three times more
features than the next largest model.

Just as the output models are distinctively sized in this
dataset, it is also the case that they contain distinctive sets
of features. Those in the smaller two bumps contain features
present on the banjo ukulele; those in the middle group con-
tain features common to the book, and those in the large 75-
feature group describe the aviation sectional map laid out

on the tabletop. For the detection tasks that follow we se-
lected individual clusters from each group; in future work,
we intend to devise a system that analyzes FindClusters
output and automatically generates a final set of objects ex-
tracted from the training data.

Figure 3 shows feature clusters selected from each group
detected and plotted on one of the training set images. Some
of the map features are detected on the book and banjo:
these features tend to correspond to colors that the ob-
jects have in common, or belong to parts of the book and
banjo that the segmentations frequently joined with parts
of the map. We believe that adding more types of segmen-
tation, such as motion segmentation, will address the lat-
ter problem by making difficult-to-find inter-object edges
more prominent. Nevertheless, the highest density of map
features occurs on the map itself.

2.5. The benefits of segmentation

We can now demonstrate the benefit of using segmen-
tations to establish meaningful contexts for co-occurrence.
We remove the co-occurrence probability calculation de-
scribed in 2.3 and estimate P (f1♥f2|D) as the fraction
of frames in which any tokens of f1 and f2 are within
some spatial distance l of each other. In this case, the co-
occurrence context is always the spatial vicinity.

Figure 2b shows a histogram of the number of features
in the object models discovered by FindClusters when l
was set to 50 pixels. Every model contained approximately
33 features corresponding to those in the vicinity of the ini-
tializing feature. These features have a low correspondence
to any particular object, instead covering portions or all of
several objects in the test images (not shown). Setting l to
larger or smaller radii increased or decreased the number
of features in the object models respectively, though gener-
ally this did not improve model/object correspondence.

3. Detection

The main goal of this paper is to show that segmenta-
tion can assist in the unsupervised creation of feature-based
object models consisting of heterogeneous features. Our
object models, consisting chiefly of weakly-discriminative
color features, happen to be rather poor for object detection.
The banjo ukulele in particular lacks much distinctive tex-
ture; its model contains zero SIFT features, and many other
objects in the world are made of wood. Detection perfor-
mance is not necessarily an intrinsic fault or credit of the
learning system presented here: by being feature agnostic,
it can cluster features of any discriminative strength. Never-
theless, we present some preliminary detection results from
using our learned models on test image data.

Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision (WACV/MOTION’05) 
0-7695-2271-8/05 $ 20.00 IEEE 



Figure 3. Original video frame and the frame overlaid with detected feature locations for the three ob-
ject models. Some map features (lower right) overlap parts of the book and the banjo due to similar
colors and incorrect image segmentation.

For each test image we generate a set of feature tokens,
as was generated for each image in the training data. We
then sample x, y locations in the image, finding the set
of features Fx,y in a 50-pixel radius of the sample point.
For each object O with cluster model CO, we compute
P (Fx,y|O) as |Fx,y ∩ CO|/|CO|, or the fraction of model
features the feature set and the model have in common.
No effort was made to weight particular features accord-
ing to their discriminative power or commonality across ob-
ject models.

Image intensity maps showing P (Fx,y|O) for the three
object models are shown in Figure 4. The book detector
is particularly effective, since that object contains a small
number of bold colors and strong texture cues. The map de-
tector is less so; its colors are common to many real-world
objects, and it contains so many features that |Fx,y| is usu-
ally much smaller than |Cmap|.

We acknowledge that finding P (Fx,y|O) is only a com-
ponent calculation of practical feature detection, and that
our estimation of even this quantity is unsophisticated.
Future efforts will incorporate more principled detection
strategies.

4. Conclusions and future work

We have demonstrated an unsupervised feature-based
object model learning system that uses multiple im-

age segmentations to improve its estimation of fea-
ture co-occurrence. Additionally, we presented a four-step
schema we hope may be useful for describing further en-
deavors in this area.

There is room for considerable improvement of the pre-
sented method. To enumerate some potential refinements,
we return to the four processing stages:

1. Feature tokenization. A more diverse array of im-
age features may be used to capture more information
about objects.

2. Co-occurrence context establishment. Instead of
per-image segmentation, actual video segmenta-
tion should be used to isolate true spatio-temporal vol-
umes. A wider variety of segmentations should be
considered. Finally, it may be worthwhile to find the
segmentation likelihoods P (S|D) instead of consider-
ing them uniform.

3. Co-occurrence measurement. Online estimation of
the affinity matrix A, or exploitation of A’s sparseness,
may be worthwhile investigations.

4. Feature clustering. A less heuristic approach to fea-
ture clustering may be more robust, and a final step
that returns a small set of object clusters is necessary.
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Figure 4. Preliminary detection results for the three learned object clusters. The intensity map im-
ages show the estimated per-pixel values of P (Fx,y|O); all of them share the same intensity scale. The
banjo ukulele detections are strongest since its model contains the least features; the map model
contains a large number of features, meanwhile, and its response is weaker.
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