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Abstract

The transfer functions of sensory neurons are known to adapt to the statistics
of the input signals. It is however unclear whether such adaptation arises from
the nonlinear dynamics of the neuron or emerges from the collective interaction
among neurons embedded in a network. We investigated the Hodgkin-Huxley (HH)
neuronal model’s response to Gaussian white noise signals of different variances
and found that the recovered kernel adapt its preferred temporal frequency and its
energy gains according to noise variance. This adaptation is likely a consequence of
the cooperative interaction between the noises and the bifurcation dynamics of the
neurons.
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1 Introduction

Recent neurophysiological research suggests that the stimulus-response func-
tions of visual and auditory neurons adapt to the statistics of stimuli [1-6]. The
adaptation of retinal neurons, for example, allow the visual system to operate
effectively over an enormous dynamic range of lighting conditions. In blowfly,
it was found that the input-output relationship of the H1 neuron adapt to the
variance of the input noises [3-4]. Such adaptation has been suggested to play
a role in maximizing information transmission by matching the sensitivity of
the neurons to the spatial and temporal range of the stimuli and noises [7].
However, it is not clear how this adaptation comes about. Does it emerge from
the interaction of a network of neurons, or does it emerge from the intrinsic
dynamical mechanisms inside a neuron? Neurons communicate and compute
with spikes, and the generation of spikes involves nonlinear mechanisms. Could
the nonlinear dynamics of the neuron itself naturally produce a certain degree
of adaptation and plasticity?

2 Methods

To investigate these issues, we apply an advanced system identification tech-
nique based on Laguerre expansion [8] to examine the transfer function of the
Hodgkin-Huxley (HH) model [9] under the stimulation of Gaussian white noise
(GWN) stimuli. The HH model provides an empirical description of real neu-
ron that captures both of its spiking behavior and refractory properties.

Based on the input GWN, i.e., z(¢) and the output spike trains of the HH
neuron, i.e., y(t), we can characterize the cell’s transfer function h., h,, , (the
first and the second order kernel respectively) with memory length L as follows:

y (t)=ho + ;hﬂ: (t—71)+ z Z heyryx (t—1) 2 (t —72). (1)
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where h, is the mean firing rate, h, is the first order kernel and h, ;, is
the second order kernel. We restricted 7 to be positive so we only consider
causal filters. We used GWN signals with a fixed, short correlation time (cut
frequency = 500 Hz) and zero mean, so the only free statistical parameter is
the standard deviation o.

3 Results

We varied o systematically from 1 to 20 uA/cm?, and recorded the spike
trains generated by the HH model. Fig.1(a) and (b) shows an example of the
input signal (with ¢ = 5) and the output of the HH neuron in response to this
input signal. Using 200 seconds of these input and output data, we recovered



the first and second order kernels of the HH neuron using the Laguerre ex-
pansion technique, shown in Fig.1(c) and (d). To verify the appropriateness
of the method, we applied the method to recover a mathematically defined
static kernel (e.g., the first kernel K1= sin(r t/10)exp(—t/10), the second
kernel K2 = K1®K1) with noises of different . We found the static ker-
nels recovered are invariant over a large range of . But for a HH neuron,
the kernels recovered using different noise o are found to change. Specifically,
when we increase o, the kernel is found to contract in time, i.e. the preferred
temporal frequency of the filter increases. Fig.2(a) shows the kernels recovered
for three different o’s. The amplitude of the kernel first increases and then de-
creases with an increase in o, reaching a global maximum at an intermediate
o. This phenomenon is related to the reported variance or contrast adaptation
in electrophysiological experiments [1,4].

To evaluate this adaptation phenomenon systematically, we compute the
power spectral density (PSD) of the first order kernel for noise with different
o as shown in Fig.2(b). The preferred frequency of the kernels was computed
as the peak frequency in the PSD. Fig.2(c) shows that the preferred frequency
of the kernel increases gradually with an increase in o, changing from 47 Hz to
66 Hz as o changes from 1 to 20. The kernel frequency saturated with further
increase in 0. These findings suggest that the frequency tuning of a neuron is
adaptive to the variance of the noise input.

Fig.2(b), also revealed that the peak of the PSD for noise with o = 3 is much
higher than that for o = 2, and 10, suggesting that more spectral energy is
allowed to pass through for input noise of 0 = 3. That is, for some optimal
stimulus statistics, the spike activities of the neuron become more coherent
and resonant with the the driven stimulus. The system absorbs the energy of
the environment to maximize its response to stimulus, resulting in a largest
gain in the transfer function for o = 3 (see Fig2.(d)). The total energy of the
transfer function is given by,

L-1

E = Y (PSD(f))/L. (2)

f=0

where f is the index of frequency and L is the length of the PSD. Fig.2(d) shows
the energy E of the first order kernel is maximal at 02 = 9. This phenomenon
is called a coherence resonance (CR) [10].

When the noise level is low, the system is inert. Spikes will occasionally
occur because the noise disturbance can drive the system through the spiking
threshold. When the noise level is high, the neuron is mainly in the spiking
state. The cooperation of the noise and the excitable dynamics of the system
drives the system to fire spikes quasi-regularly. At too high a noise level, the
quasi-regular spiking activity of the neuron is disrupted by the large stochastic
nature of the noise, resulting in a decrease in the coherence of the system. At a
tradeoff point, with an intermediate stimulus statistics, the neuronal dynamics
is driven optimally by absorbing the energy of the environment maximally,



with a maximum sensitivity to signals. In coherent resonance, the noise levels
effectively put the system into different states, changing the neurons’ frequency
tuning as well as the gain of its transfer function.

4 Discussion

These observations suggest that the transfer function of HH neuron is not
static but dynamic. The time scale of the transfer function varies with the
statistics of the stimuli. The variance of the stimulus puts the neuron into
different coherent states, reflecting different degrees of synergistic interaction
between the stimulus and the nonlinear dynamics of the system. The neuron’s
transfer function varies with the coherent state: the preferred frequency in-
creases with o and the gain of the transfer function reaches a maximum at
o = 3 for the standard HH model. It is expected a different set of model pa-
rameters will give a different range of frequency tuning variation as well as a
different o for the maximum cooperation with the nonlinear dynamics of the
neuron.

The observed adaptation in the input-output relationship in various neuro-
physiological experiments [1-6] is therefore likely due, in part, to the adapta-
tion of the transfer function of the single neuron to the different noise levels.
The first and second order kernels recovered from the HH neuron, however,
are significantly dilated in time scale than the adaptation found in monkey
cortical neurons [11] or blowflies [3,4]. The difference in neuronal parameters
may be a factor. Furthermore, given the neuron measured is part of the net-
work with many layers of neurons lying between it and the photoreceptors
on the retina, network delay and interaction would likely produce a low-pass
effect, dilating the effective kernel of the measured neuron.

Our simulation suggests that synergistic cooperation between the statistics
of the noises with the nonlinear dynamics of the neuron is an important and
maybe crucial contributing factor to the adaptation of the neuronal transfer
function to the stimulus statistics.
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Fig. 1. (a) Input GWN with o = 5. (b) The spike trains of the HH neuron in
response to this stimulus. (c) The first order kernel of HH neuron recovered. (d)
The second order kernel of the HH neuron.
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Fig. 2. (a) The first order kernels of the HH neuron for noises with y = 0; o = 2, 3, 10,
respectively. (b) The power spectra densities of the first order kernels for the three
sets of noises. (c) The preferred frequency of the first order kernel as a function of
0. (d) The energy E of the first order kernel as a function of o .



