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This work investigated the roles of spontaneous synchronized
rhythmic oscillations in information processing in a globally
coupled neural network.We found that in the encoding of input
aperiodic signals, there exists a range of optimal synchronous
states in the network, where the information transmission rate

and coding e⁄ciency of the network are maximized. Our results
indicate that it is not the weaker or stronger but an appro-
priate synchronous statemay be of more functional signi¢cance in
sensory encoding. NeuroReport 15:1605^1610 �c 2004 Lippincott
Williams &Wilkins.
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INTRODUCTION
Synchronous activities in neuronal ensembles are ubiqui-
tous phenomena observed in many regions of the brain
using multi-electrode recording techniques [1,2]. There have
been intense efforts to study the mechanisms of their
generation [3] and their functional roles [1–3]. These studies
suggested that synchronized rhythmic oscillations, espe-
cially g-band oscillations (with frequencies in the range of
30–70Hz) [4] may play important roles in a variety of top-
down cognitive processes such as perception, memory,
selective attention, binding, and gain control. However,
their roles in the processing of sensory information have not
been clarified, especially when considering that neurons are
bombarded with random synaptic inputs.
Neurons do function well in a noisy environment [5].

There are a lot of studies concerning how neurons obtain
high accuracy and efficiency in the coding of signals in such
a noisy environment and how neurons communicate with
one another in a noisy background. Population coding and
synchrony might be important in making information
encoding and transmission robust in a noisy environment
[2,6]. A pool of uncoupled neurons processing identical
input can behave as a more robust computational unit
against random noise [6]: their average activities serve to
provide instantaneous firing rate as well as to average out
random uncorrelated noise. When neurons in the pool are
coupled together, their activities become more synchronous
and correlated. The correlation and synchrony may enhance
the selectivity of preferred signals [7], temporal fidelity in
the encoding of information and robustness against noise at
the cost of reducing information coding capacity [8]. Strong
empirical evidence exists in support of these ideas [1,2,7,8].

Modelling studies [9,10] indicated that neurons in the
coupled network could become more entrained to the
inhibitory drive, leading to a more efficient information
transmission by spike timings. Moreover, cortical neurons
are found more sensitive to synchronous than to asynchro-
nous input [11]. Synchronous input can trigger precise
spiking patterns [11], which can be propagated stably
through cortical networks [12]. Thus, synchrony in a
population of neurons, on the one hand, tends to reduce
spike variability and increase coding redundancy with the
net effect of reducing the aggregate capacity of information
encoded by the network [13]. On the other hand, synchrony
introduces correlation, enhances the selection, communica-
tion, information transmission, and coding accuracy against
large noise disturbances [7–10]. Considering the positive
and negative roles of synchronous activities discussed
above, there may be a tradeoff where the information
encoding process could be optimized. In this report, we
explore the ways in which synchrony can enhance informa-
tion processing in a noisy neural network.
The effect of noise is not always deleterious. An

appropriate level of noise in the input can facilitate the
processing of weak signals in a non-linear system by a
mechanism called stochastic resonance (SR; for review see
[14]). Neurons possess the essential dynamical features,
such as excitability, threshold and saturation, which allow
them to manifest the SR phenomenon. Numerous experi-
ments revealed evidence of SR in nervous systems [14].
Recent studies also indicated that optimal noise levels inside
the coupled network might help to generate spontaneous
synchronized activity [15]. These spontaneous activities can
sharpen heavily the frequency tuning curve of the network,
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thus increasing greatly the signal-to-noise ratio (SNR) to the
preferred periodic signals [15]. However, natural signals
always fluctuate and are aperiodic, and how the sponta-
neous activities affect neural coding of aperiodic signals is
unclear and has attracted great attention. We attempt to
clarify this issue in this report, which might shed a light on
the debate whether the synchrony is merely an epipheno-
menon of biological neural networks [13].

MODEL AND METHODS
Let us consider a network composed of Hodgkin–Huxley
(HH) neurons [16], globally coupled via excitatory synapses,

Cm
_VVi ¼� gNam

3
i hiðVi � VNaÞ � gKn

4
i ðVi � VkÞ � glðVi � VlÞ

þ INoise
i þ sðtÞ þ I

syn
i ðtÞ;

ð1Þ

_mmi ¼ ½m1ðViÞ �mi�=�mðViÞ; ð2Þ

_hhi ¼ ½h1ðViÞ � hi�=�hðViÞ; ð3Þ

_nni ¼ ½n1ðViÞ � ni�=�nðViÞ; i ¼ 1; . . . ;N: ð4Þ

Vi, mi, hi and ni are the membrane potential, the gating
variables of Na+ and K+ channels, respectively; gNa, gK and
gl are the maximal values of conductance of the sodium,
potassium, and leakage currents; VNa, VK and Vl are the
corresponding reversal potentials. The membrane capaci-
tance is Cm¼1mF/cm2. The number of neurons N¼1000. The
auxiliary functions and the parameter values can be found
in [16].
Each neuron receives three types of input in the network:

(1) INoise
i represents the noisy component of the synaptic

current to a neuron from external fluctuations or intrinsic
fluctuations of the neuron itself,

INoise
i ¼ I0 þ xiðtÞ; ð5Þ

where I0 is the mean value of the background fluctuations,
while xi(t) is independent Gaussian white noises with
hxiðtÞi ¼ 0 and hxiðt1Þxjðt2Þi ¼ 2D dijdðt1 � t2Þ. Here, we let
I0¼1 mA/cm2 and keep invariant in all the situations. (2) s(t)
is the external input signal (periodic or aperiodic). (3) The
synaptic current from coupling among the network was
described by [17].

I
syn
i ¼ �

XN
j¼1;j6¼i

gsyn
N

aðt� tjÞðVi � V
ij
synÞ; ð6Þ

with

aðt0Þ ¼
t0

�s
e
�t0

�s ; ð7Þ

where t0¼t�tj, and tj is the firing time of the jth neuron;
ts¼2ms is the characteristic time of the synaptic interac-
tions, Vij

syn is the synaptic reversal potential taken as 30mV
[17], and gsyn is the coupling strength.
The spike trains of each neuron are recorded and

converted into binary sequences with a time bin equal to
2ms, 0 representing non-firing and 1 representing firing
state. The numerical integration of the equations described
above is performed by a second-order stochastic algorithm
[18]. The integration step is taken to be 0.01526ms.
To quantify the synchronization of neuronal firings in a

network, we use a coherence measure [19] based on the

normalized cross-correlations of neuronal pairs in the
network. The coherence between two neurons i and j is
measured by their cross-correlation of spike trains at zero
time lag within a time bin of Dt¼t. Suppose that a long time
interval T is divided into small bins of t and that two spike
trains are given by X(l)¼0 or 1, Y(l)¼0 or 1, with l¼1, 2,y, K
(here T/K¼t), respectively, then a coherence measure for the
pair is defined as

kijð�Þ ¼

PK
l¼1

XðlÞYðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
l¼1

XðlÞ
PK
l¼1

YðlÞ

s : ð8Þ

Here, t is taken to be 2ms. Furthermore, a population
coherence measure k is defined by the average of kij(t) over
all pairs of neurons in the network, that is

k ¼
1

NðN � 1Þ

XN
i¼1

XN
j¼1;j6¼i

kijð�Þ: ð9Þ

Thus, k quantifies the degree of neuronal synchronization in
the network.

RESULTS
Generation of rhythmic oscillations: When HH neurons
are uncoupled, they are subjected to independent noisy
inputs, and the output of such a network is characterized by
asynchronous firings. The neuronal firing frequencies are
around a main frequency, depending on noise intensity and
intrinsic frequency of the neurons [15] (Fig. 1a). When
neurons with spontaneous rhythmic firings are coupled
together, synchronized firing will occur as long as the
coupling strength among the neurons exceeds a critical
value [15]. For example, for D¼5 mA2/cm4 and gsyn¼0.5mS/
cm2, there exists a high peak at 55Hz in the PSD of V*(t),
which is denoted by dnoise (Fig. 1b). This phenomenon, i.e.,
noise-induced synchronization transition via coherence
resonance (CR) [14], has been studied in detail [15].

The frequency of such synchronized rhythm is deter-
mined by synaptic coupling strength gsyn, the noise intensity
D and the intrinsic oscillation nature of the HH neuron [15].
When D varies from 1 to 60 mA2/cm4, fpeak increases from 45
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Fig. 1. PSDs of V*(t) and the raster plots of ¢rings of the neurons for
D¼5, andgsyn¼0.1 (a), 0.5 (b), respectively.
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to 66Hz for gsyn¼0.1mS/cm2, while fpeak increases from 46
to 77Hz for gsyn¼20 [15]. fpeak tends to saturate for large
values of gsyn and D. The frequency of the rhythmic
oscillation of the network is mainly localized in the range
of 40–80Hz [15].
We have previously demonstrated the role of the

synchronized rhythms in processing input periodic signals
[15]. Each noise-free HH neuron has a frequency tuning
property. The signals with preferred frequency can be easily
detected by the neuron with relative low amplitude. The
existence of noise can widen the tuning curve [20] by
affecting the bifurcation dynamics. In the presence of noise,
the network connection leads to spontaneous synchronous
activities, which dramatically sharpens the frequency tuning
curve to be narrower and stronger [15]. This greatly
enhances the sensitivity of the network to periodic signal
with preferred frequency. These effects result from the
conventional nonlinear resonance between the rhythmic
oscillation and periodic forcing of the signal, and the noise
enhanced SR [15]. The resulting frequency tuning bands
cross a large range of noise intensities, where a large SNR
ratio sustains, indicating that the signal processing is robust.
This phenomenon suggests that various coherent rhythms
in the working brain can serve as efficient information
channel for processing periodic signals, which may be of
biological significance.

Information encoding of aperiodic signals: Now we turn
to investigate how these sustained synchronized activities
affect the coding ability of neurons in the network to
aperiodic signals. A subthreshold aperiodic signal s(t) is
used as a test signal because it has richer structures and
higher variability than a periodic one. s(t) is obtained by
convolving a Gaussian white noise with a unit-area
symmetric Hanning window filter with a fixed time
constant. All the neurons are subjected to the same aperiodic
signal s(t) (Fig. 2) plus uncorrelated noise. Neural behaviour
depends remarkably on noise intensity and synaptic
strength. For D¼5 and gsyn¼0ms/cm2, the responses of
the network are highly imprecise even though many spikes

follow the variation of the stimulus s(t) (see the raster plot in
Fig. 2a).
The constructed post-stimulus time histograms (PSTH)

represents the coding activities of the network, which is
weak and noisy. For gsyn¼0.5, the spikes of the neurons
become highly precise in time and are located near the
peaks of the stimulus (see raster plot in Fig. 2b). The peaks
in PSTH are stronger and smoother following the fluctua-
tions of the signal. This suggests that strong coupling might
lead to strong coherence among neuronal firings and more
stable firing states in the noisy environment. To give a
quantitative evaluation of coding property, we apply
Shannon information theory [21] to the analysis of neural
coding in the following.
Entropy is a quantitative measure used to quantify the

ability of a coding scheme or a communication channel to
convey information [21]. Here, each neuron in the network
receives the same input signal s(t). The spike train of a
studied neuron is r(t). Thus, the total response entropy of
each neuron can be described by

HðrÞ ¼ �
X
r

P½r� log2 P½r�; ð10Þ

which is used to measure the theoretical capacity of any
neuron in the network in conveying information. Mutual
information Im measures how much of that capacity is
actually exploited to encode the signal,

Im ¼HðrÞ �HðrjsÞ

¼ �
X
r

P½r� log2 P½r�þ
X
s;r

P½s�P½rjs� log2 P½r js�;
ð11Þ

where H(r|s) can be defined as noise entropy Hnoise, and is
associated with that part of the response variability that is
not due to changes in the stimulus but arises from other
sources.
Here we follow Strong’s direct method [22] to compute

the mutual information and the total response entropy of
individual neurons in the network. The spike train of a
given neuron is first translated to a sequence of words. Each
word W consists of L letters, while each letter has a time bin
of dt¼2ms. Thus, for a given spike train, we can compute
the histogram of each possible word, which is used to
represent the occurrence possibility of the word, i.e., P[W(L,
dt)]. Then, entropy can be computed by

HðL; dtÞ ¼ �
1

Ldt

X
W

P½WðL; dtÞ� log2 P½WðL; dtÞ�: ð12Þ

When we increase the size of the spike train, H(L, dt)
will approach the real entropy of the spike train with
such a distribution. An extrapolation value for infinite
size is obtained to ensure the value of H(L, dt) approaches
the real one for given L. The response entropy H(r)¼Hr(W)
is computed in this way. Figure 3a shows an example
of how to compute the probability distribution of words
with length L¼10 in one spike sequence, for the calculation
of Hr.
The noise entropy Hnoise, which represents the variation of

reproduced responses of a studied neuron in the network to
the repeated stimulus, can be computed in the following
way. For M repeated presentations of the stimulus, we get
M trials of spiking responses. The histogram of words W
at a particular time t can be computed to represent the
probability of occurrence Pn[W|t], which quantifies the
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Fig. 2. (a) In the presence of noise D¼5, the network with gsyn¼0 for
input aperiodic stimulus s(t) (upper) displays noisy ¢ring activities (see
middle raster plot for 10 neurons). The peaks in the PSTH of total 1000
neurons (lower plot) are weak and random. (b) In the presence of noise
D¼5, the network with gsyn¼0.5 for input aperiodic stimulus s(t) (upper)
displays ordered ¢ring activities (see middle raster plot for 10 neurons).
The peaks in the PSTH of total 1000 neurons (lower plot) are high and
phase locked.
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occurrence possibility of W in the repeated trials. Figure 3b
shows an example of how to compute the probability
distribution of words with length L¼10 in 500 repeated
trials. Entropy for the distribution at time t is computed and

then averaged over time to obtain the noise entropy,

Hnoise ¼ �
1

Ldt

X
W

Pn½WðL; dtÞ� log2 Pn½WðL; dtÞ�

* +
t

; ð13Þ

where h. . .it denotes the average over all the sampling
times t. By increasing the number of trials, an extrapolation
value is obtained for the noise entropy.

The extrapolation value of either the response or noise
entropy is dependent on the word length L, as seen in Fig.
3c. However, we can estimate their values by extrapolating
to infinite L [22]. Furthermore, we obtain mutual informa-
tion by Im¼Hr–Hnoise. (In the example shown in Fig. 3c,
Im¼130.75�52.25¼78.5 bits/s). The reliability of information
transfer in neural encoding can be quantified precisely by
two information measures: coding efficiency and infor-
mation transmission rate [23]. The coding efficiency e is
defined by e¼Im/H(r), which quantifies the fraction of a
neuron’s activity that has been utilized to encode the
signal. The information transmission rate (g), defined as
the ratio of mutual information to mean firing rate,
quantifies how efficiently each spike carries information.
Considering the difference among the neural responses in
the network, we take an average over all neurons to obtain
final results.

By changing the noise intensity D from 0 to 50, or the
coupling strength from 0 to 5, we obtain distributions of the
information transmission rate g and coding efficiency e for
individual neurons in the network as a function of D or gsyn
(Fig. 4, Fig. 5). It is worth noting that the information carried
by each spike inside the neural activity, i.e., the information
transmission rate g, is maximized by some intermediate
coupling strengths gsyn over a wide range of noise intensities
(Fig. 4a). Given that the synchrony is a monotonous function
of coupling strength, appropriate synchrony of the firings
might be more appreciated in maximizing information
transmission than that of stronger synchrony or asynchrony.
Moreover, Fig. 4b indicates that the coding efficiency e is a
monotonous function of coupling strength for different
noise levels. This is reasonable because stronger coupling
strength always leads to a more robust state against noise.

In addition, for various coupling strengths, the informa-
tion transmission rate g and coding efficiency e varying with
the noise intensity D demonstrate a classic aperiodic SR
phenomenon [14] (Fig. 5). That is, information measures are
maximized by optimal noise intensities, while the large
noise intensity always tends to destroy the reliability of the
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neural response. The efficiency measure used here indeed
reflects the ordering of the network against randomness. In
Fig. 5b, for gsyn around 1, there are two maxima as a function
of noise D. The first peak is derived from the maximal
enhancement of phase locking of the spiking response to the
aperiodic signal by optimal noise intensity via SR. The
second peak can be understood in the following way. With
the strong coupling, even in the absence of outer signal,
there is an enhanced intrinsic order of the network with the
optimal noise intensity via CR [15]. This results in a peak
around D¼5 (Fig. 5b). For the stronger coupling strength
(41), the forcing from the aperiodic signal becomes more
dominant, so the peak induced by signal and noise via SR
prevails, whereas the peak due to CR is relatively weak and
cannot even be seen.
In this globally coupled network, coupling strength plays

multiple roles. On the one hand, in the presence of noise
disturbance, synaptic coupling increases the long-term
correlation among spiking neurons, thus enhancing the
synchrony of neuronal spiking activities in response to
stimulus. This suppresses the random firing variability
induced by noise while preserving entrained spike re-
sponses by a correlated signal common to all neurons. In
this sense, increasing the coupling strength helps to increase
the signal-related mutual information and decrease the
noise entropy. On the other hand, strong synchrony tends to
preserve the regularity of the network activity and suppress
any variability in spiking time. In this case, the network
becomes inactive and insensitive to instantaneous variations
in the signal, which indeed contains abundant information.
The increase of the coding efficiency and robustness against
noise is at the cost of decrease of sensitivity to the input
transients. The tradeoff between these two forces results in
an optimal synchronous state, where the information
transmission rate and coding efficiency are maximized even
in high noise levels.

DISCUSSIONANDCONCLUSION
Noise and synaptic coupling play important roles in
optimizing the ordered state of the network activity in
information transmission. Appropriate background noise
can help neurons with synaptic connections generate
spontaneous rhythmic activities in a network. Noise-induced
rhythm, reflecting the natural frequency characteristic of the
network, provides a frequency tuning mechanism for the

network to process periodic signals efficiently in noisy
environments [15]. In this case, the stronger coupling is
always advantageous in enhancing SNR.
The encoding process of aperiodic signals is different

from that of periodic ones. Much stronger coupling enables
a network with background noise to produce a more regular
synchronous rhythm, which indeed suppresses heavily the
sensitivity of the system to rapidly fluctuating signals. Also,
regularity in the neural activity greatly increases the coding
redundancy in information transmission. In a noisy envir-
onment, however, appropriate synchrony is beneficial in
enhancing the information transmission and improving the
coding fidelity against noise contamination. In order to
obtain sufficient coding efficiency in the information
encoding process, increase of redundancy within certain
limits is necessary and helpful. In addition, noise is not
always deleterious. Optimal noise levels can transfer some
energy to the network and help detect the weak signals by
SR. Our results indicate that it is not the weaker or stronger
but an optimal synchronous state that is of functional
significance in the sensory process, with which the
information encoding capacities of the network can be
utilized maximally.
In this paper we reveal only one aspect of synchrony

in information transmission in a globally connected net-
work. In fact, experimental studies indicate that synchrony
might be miscellaneous in information coding processes
[1–3]. It has been suggested that the precise spike timings
relative to the synchronized oscillation may provide an
additional temporal channel for encoding information
[1,2,10]. This was supported by recent experiments demon-
strating that firing rate and spiking timing of the hippo-
campal neurons are dissociable and may encode two
independent variables [24]. Learning-related synchronized
oscillations play a key role in synaptic plasticity, which was
found to transform an asymmetric rate code into a temporal
code [25]. Such a temporal coding scheme might be widely
implemented in olfactory sensory neurons [1,2], hippocam-
pal neurons [24,25], and other sensory neurons [1,2]. In
hippocampal cultures, most of the spontaneous spikes are
triggered by synchronously arriving excitatory synaptic
input, suggesting a privileged role of synchronized activity
in synaptic information transmission [11]. In future work,
complex forms of coupled networks are expected to be used
to investigate the role of the synchrony spikes among
different layers in the coding of spatial image and temporal
signals. The kind of information carried by firing rate or
spike timing in the coding process needs to be further
clarified.
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