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Abstract

Threshold and saturation are two nonlinear features common to almost all spiking neurons. How these nonlinearities affect the

performance gain of the transfer function and coding properties of the neurons has attracted much attention. Here, we deduce basic

analytical relationships among these nonlinearities (threshold and saturation), performance gain and information transmission in

neurons. We found that performance gain and information transmission can be maximized by input signals with optimal variance.

The threshold and saturation inside the model determines the gain tuning property and maximum coding capacity. This framework

provides an understanding of some basic design principles underlying information processing systems that can be adjusted to match

the statistics of signals in the environment. This study also isolates the exact contributions of the nonlinearities on the contrast adap-

tation phenomena observed in real visual neurons.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For an arbitrary visual stimulus, its fluctuations

around the mean value are characterized by contrast

(which we define as signal variance). When we double

the amplitude of the signal while keeping the signal

structures invariant, do neurons encode the signal in

the same way? Experimental evidence has shown that

visual neurons in the retina and visual cortex could effec-

tively adjust the gain of their transfer functions to main-
tain a high sensitivity at varying luminance contrast

levels (Ohzawa, Sclar, & Freeman, 1982, 1985; Shapley

& Victor, 1978, 1979, 1980). This implies that there ex-

ists a contrast gain control mechanism (Ohzawa et al.,

1982, Ohzawa, Sclar, & Freeman, 1985; Shapley &
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Victor, 1978, 1979, 1980), which provides the visual sys-

tem�s great flexibility to function well under varying
external conditions.

In the last few decades, many different aspects of con-

trast adaptation in visual neurons have been discovered

and observed in experiments. In the retina, it was found

that the amplitude of the recovered linear transfer func-

tion of retina ganglion neurons decreases as the input

contrast increases (Benardete & Kaplan, 1999; Shapley

& Enroth-Cugell, 1984). It has been suggested that a
power law relation may exist between the input contrast

and the amplitude gain (Chander & Chichilnisky, 2001;

Truchard, Ohzawa, & Freeman, 2000). The contrast

gain, defined as the mean neuronal response divided

by the stimulus contrast, was found to depend on both

the contrast and frequency component of input signals:

as contrast increases, the contrast gain of the neuron in

response to the signals with low temporal frequencies
decreases dramatically, and the frequency tuning curve

shifts towards high frequency band. In the primary
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striate and extra-striate visual cortex, besides the instan-

taneous adaptation of transfer functions to input con-

trast, another slower type of adaptation phenomenon

has been found: with the increase of the mean contrast

level (averaged over a period of 40s), the contrast–re-

sponse functions of the neuron shift primarily to the
right along the log-contrast axis, suggesting that the cor-

tical neuron could adaptively adjust its limited response

range to match prevailing contrast levels (Ohzawa et al.,

1982, 1985). The slope of the contrast–response curve

was found to change with the increase of the mean con-

trast level, displaying a divisive or multiplicative effect

(Geisler & Albrecht, 1992). These phenomena have been

widely observed in neurons of various cortical areas,
including the primary visual cortex (e.g. Geisler & Albr-

echt, 1992; Ohzawa et al., 1982; Ohzawa et al., 1985;

Sanchez-Vives, Nowak, & McCormick, 2000; Truchard

et al., 2000), the fly H1 neuron (Brenner, Agam, Bialek,

& de Ruytervan Steveninck, 2000; Fairhall, Lewen, Bia-

lek, & de Ruyter van Steveninck, 2001), and even mo-

tion-sensitive extrastriate cortex (Kohn & Movshon,

2003).
There has been great deal of interest in discovering

the factors and biophysical mechanisms accounting for

contrast adaptation phenomenon, and in attempting to

model underlying gain control mechanisms. Various fac-

tors and mechanisms have been studied to account for

the adaptive change of the transfer function to the input

contrast, including the rectifying mechanism (Heeger,

1992; Sakai & Naka, 1995), post-receptor control loop
(Sakai et al., 1995; Smirnakis, Berry, Warland, Bialek,

& Meister, 1997), and network interactions (Victor,

1987). It was also suggested that the active ionic chan-

nels inside the spiking generation (Kim & Rieke, 2001;

Sanchez-Vives et al., 2000) might play an important role

in controlling the changing of the transfer function. In

order to clarify the contrast gain control mechanism

underlying divisive contrast–response functions in the
visual cortex, many models have been developed, such

as the long-standing normalization model based on

shunting inhibition (Carandini, Heeger, & Movshon,

1997; Heeger, 1992). However, a later study (Holt &

Koch, 1997) indicated that shunting inhibition cannot

produce a divisive effect on neuronal responses, only a

subtractive effect. Subsequent modeling studies have

focused on the synaptic modulations. These include
the recently emphasized synaptic depression mechanism

(Abbott, Varela, Sen, & Nelson, 1997; Carandini, Hee-

ger, & Senn, 2002; Chance, Nelson, & Abbott, 1998),

complex neuronal model with combination of shunting

inhibition and synaptic noise (Chance, Abbott, & Reyes,

2002; Prescott & De Koninck, 2003), a Hodgkin–Huxley

model with pure excitatory and inhibitory synaptic

modulations (Murphy & Miller, 2003), and others.
These simulation studies provide potential models of

the real contrast gain control mechanisms in visual neu-
rons. However, the true biophysical substrate of gain

control is still unclear (for reviews see Carandini, Hee-

ger, & Movshon, 1999; Meister & Berry, 1999). Multiple

mechanisms and various factors might coexist to affect

various aspects of contrast gain adaptation (for reviews

see Demb, 2002; Priebe & Ferster, 2002; Salinas & Thier,
2000). Therefore, it is important and necessary to figure

out the basic factors controlling the changing transfer

function of the neuron and the shifting contrast–

response curves, and the principles in the neurodynam-

ics underlying these factors. Considering that contrast

gain control may also serve as a basis for efficient infor-

mation encoding of the visual system (Atick & Redlich,

1992; Barlow, Fitzhugh, & Kuffler, 1957; Schwartz &
Simoncelli, 2001), it is also necessary to clarify the exact

roles of each possible factor for information

transmission.

Recent experimental (Chander & Chichilnisky, 2001;

Kim & Rieke, 2001) and theoretical studies (Paninski,

2003; Pillow & Simoncelli, 2003; Schwartz, Chichilnisky,

& Simoncelli, 2002; Yu & Lee, 2003) indicated that ear-

lier studies in mammalian retina (e.g. Arcas & Fairhall,
2003; Benardete & Kaplan, 1999; Brown & Masland,

2001; Shapley & Victor, 1978; Victor, 1987) which use

traditional reverse correlation techniques, might fail to

separate the effect of nonlinearities (threshold and satu-

ration) from real adaptive behavior. That is, the change

of the recovered transfer function due to input contrast

observed in the experiments could emerge from two

causes: nonlinearity and an unknown adaptive mecha-
nism (Arcas & Fairhall, 2003; Chander & Chichilnisky,

2001; Kim & Rieke, 2001; Schwartz et al., 2002). New

system identification techniques (Chander & Chichil-

nisky, 2001; Paninski, 2003; Pillow & Simoncelli, 2003;

Schwartz et al., 2002) have been developed to recover

the exact transfer functions by ruling out the effect due

to nonlinearity. Moreover, our previous investigation

(Yu & Lee, 2003) suggested that nonlinearities in the
neuronal model might play an important role in the ef-

fect of the distribution of the input signal on the recov-

ered transfer function. Thus, before we discover the real

adaptive contrast gain control mechanisms, it might be

necessary to make clear the exact contributions of static

nonlinearities (e.g., threshold and saturation) on the ob-

served contrast adaptation phenomena. In this paper,

we will use a simple linear–nonlinear cascade model to
give an analytical solution on the effect of the specific

nonlinear factors on the changing gain of the apparent

transfer function, and information transmission of the

neurons to various inputs. The relations among nonlin-

earity, performance gain (the amplitude gain of the

recovered linear kernel) and information transmission

rate will be elucidated. In a sister paper (Yu, Potetz, &

Lee, submitted for publication), we will make clear
the additional adaptive mechanism accounting for con-

trast gain control under the principle of the maximal



Y. Yu et al. / Vision Research 45 (2005) 583–592 585
information transmission. These studies seek to discover

step by step the contributions of each necessary factor

on contrast adaptation, and to provide a basic frame-

work for understanding potential contrast gain control

mechanisms, and helping experimental scientists to dis-

tinguish the nonlinearity induced ‘‘contrast adaptation’’
phenomenon from those induced by real contrast gain

control mechanisms.
2. Model and methods

The neuronal model used here is a linear–nonlinear

(LN) cascade model (see Fig. 1), i.e., a linear kernel
function h(t), followed by a static nonlinearity g(Æ),
which has been widely used to decouple the linear ker-

nels and the nonlinearity (see a review by Meister &

Berry, 1999). Here, h(t) = sin(pt/sa) exp(�t/sb) with

sa = 80ms and sb = 100ms. x(t) is given by

xðtÞ ¼
Z þ1

0

hðsÞsðt � sÞds: ð1Þ

The nonlinearity is specified by

gðxÞ ¼
0; if x < h;

x� h; if h < x < g;

g � h; if x P g;

8><
>: ð2Þ

where h is the threshold and g is the saturation level.

Signals with Gaussian distributions are widely
observed in nature and have been widely used as input

signal to study neurons� response properties in experi-

mental studies (e.g. Benardete & Kaplan, 1999; Chander

& Chichilnisky, 2001; Kim & Rieke, 2001; Sakai et al.,

1995; Smirnakis et al., 1997; Truchard et al., 2000).

Here, Gaussian white noise stimulus s(t) with mean 0

and SD r is used as input signal. r is considered to be

the contrast of the signal. Its probability density func-

tion (PDF) is given by ps ¼ 1ffiffiffiffiffiffiffi
2pr2

p exp � s2

2r2

� �
. The linear

response x(t) also has a Gaussian distribution with PDF

px ¼ 1ffiffiffiffiffiffiffi
2pr2x

p exp � x2

2r2x

� �
, where rx is given by r2

x ¼

hx2ðtÞi ¼ r2
Rþ1
0

h2ðsÞds, where h
 
 
i denotes time

average.
Fig. 1. The LN model consists of a linear filter h(t) followed by a

nonlinearity g(Æ). x(t) is the convolution of the input signal s(t) and the

filter h(t). The nonlinearity g(Æ) operates on x(t) to generate the output

y(t).
3. Results

3.1. Gain analysis

The linear kernels of real neurons are often estimated

by neurophysiologists using white noise reverse correla-
tion (e.g. Arcas & Fairhall, 2003; Benardete & Kaplan,

1999; Brown & Masland, 2001; Shapley & Victor,

1978; Victor, 1987). We will derive mathematically a

gain factor to quantify the effect of the static nonlinear-

ity g(Æ) on the recovered linear kernel h 0(t). According to

Bussgang�s theorem (Bendat, 1990), for any memoryless

nonlinear system y = g(x) with an input signal drawn

from a Gaussian distribution, we can estimate a linear
transfer function K(f) (in Fourier domain, where f is fre-

quency) for specifying the input and output relationship

of such a nonlinearity by

Kðf Þ ¼ Y ðf ÞX ðf Þ�

X ðf ÞX ðf Þ� ¼
hxgðxÞi

r2
x

; ð3Þ

where X(f) and Y(f) are the Fourier transforms of signal

x(t) and output y(t) respectively. Similarly, for the entire

LN model, the optimal linear function T(f) that de-

scribes the input–output relationship is given by

T ðf Þ ¼ Y ðf ÞSðf Þ�

Sðf ÞSðf Þ� ; ð4Þ

where S(f) is the Fourier transform of input signal s(t).
Combining Eqs. (3) and (4), and noting that

X(f) = H(f)S(f), we have

T ðf Þ ¼ Hðf ÞKðf Þ ¼ Hðf Þ hxgðxÞi
r2
x

; ð5Þ

where H(f) and T(f) are the Fourier transforms of the

original linear kernel h(t) and the recovered first order

Wiener Kernel h 0(t), respectively. This indicates the en-

tire effect of the static nonlinearity on the recovered ker-
nel is simply introducing a gain scaling factor to the

original linear kernel in the LN model. a ¼ hxgðxÞi
r2x

is de-

fined as the gain factor. Finally, from Eqs. (1) and (2),

we got

a ¼
R g

h xðx� hÞpx dxþ ðg � hÞ
Rþ1

g xpx dx

r2
Rþ1
0

h2ðsÞds
: ð6Þ

Performing the integrations and simplifying yields

aðrÞ ¼ 1

2
erf

g

rx

ffiffiffi
2

p

 �

� erf
h

rx

ffiffiffi
2

p

 �� 


¼ P ½xðtÞ 2 ½h; g��: ð7Þ

Thus, the recovered linear kernel h 0(t) = a Æ h(t). The
gain factor a quantifies how much the performance

effectivity of the real linear kernel h(t) can be affected

by threshold h, saturation g and stimulus standard

deviation r. Although we restrict ourselves here to the

case of a Gaussian input signal, Eq. (5) can be easily
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generalized to handle the non-Gaussian case using Scar-

ano�s generalization of Bussgang�s theorem (Scarano,

1991). This generalization requires that the nonlinearity

g(Æ) be smooth, such as a sigmoidal function. We have

chosen the nonlinearity g(Æ) here to examine the exact ef-

fects of threshold and saturation (Eq. (2)). This static
nonlinearity has been viewed as a good approach to

model real neuron�s nonlinearity.
It can be observed from the equation that a varies

with r2 for a LN model with fixed values of h and g.
That means linear kernel recovered from conventional

Wiener kernel method in the experiments should contain

a distortion effect due to the nonlinearity. However,

such a distortion effect reflects the preferred selectivity
of the system to the distribution of the input signal.

To illustrate this phenomenon, we fix h = 5 and g = 40,

we compute the gain factor a for signals with different
Fig. 2. (a) The theoretical kernels recovered from stimuli of different r
for threshold h = 3 and saturation g = 50. (b) The gain factor a as a

function of r. (c) The gain factor a as a function of r for three

threshold values with g = 1000. (d) The gain factor a as a function of r
for three saturation values with h = 0. (e) The r where a reaches

maximum is called ropt. ropt increases linearly with saturation level g
for different threshold values (h = 3, 6 and 10). (f) For fixed saturation

levels (g = 50, 100 and 200), ropt increases monotonically, but not

linearly, with threshold h.
r�s. Fig. 2a shows that recovered or recovered linear ker-

nel h 0(t) (the inverse Fourier transform of T(f)) is heavily

dependent on the value of r. Interestingly, we found that

a is not monotonic, it increases with r in the small range,

reaches a maximum, and decreases with further increase

in r (the circles in Fig. 2b). The variance-gain curve
demonstrates a gain tuning phenomenon. To confirm

these analytical results, we applied Gaussian white noise

s(t) to the model and used the standard Wiener kernel

method (Korenberg, 1988; Lee & Schetzen, 1965; Mar-

marelis, 1993) to recover the Wiener kernel for the whole

LN model based on the input s(t) and output y(t) for

each r. The amplitude gain (which is equal to gain factor

a) of the recovered kernel (triangles in Fig. 2b) matches
perfectly with our analytical results. This result suggests

the amplitude gain varying with contrast observed in

neurophysiological experiments (Benardete & Kaplan,

1999; Shapley & Enroth-Cugell, 1984) should arise at

least partly from the nonlinearity of the system. This

does not reflect any underlying adaptive gain control

of the system.

The threshold h and g are responsible for producing
this bell-like gain tuning curve, which indeed belongs

to the coherence resonance (CR) phenomenon observed

in various physical areas (e.g. Gammaitoni, Hanggi,

Jung, & Marchesoni, 1998; Hu, Ditzinger, Ning, &

Haken, 1993; Pikovsky & Kurths, 1997). A common

feature of CR is that the coherence measure or response

property in the output of a complex system can be max-

imized by the fluctuating signal with optimal variance.
Our results provide a basic framework for the CR

phenomenon in a static nonlinear system. That is, for

any system with threshold and saturation, it can

potentially display coherence resonance.

To understand why the gain factor a increases with r
in the small r range, we fix the saturation g to 1000 and

vary threshold h. The very large g essentially represents

infinite saturation. Fig. 2c shows that for h = 0, the sys-
tem behaves like a half-rectification device, a does not

change with an increase in r, staying at 0.5. At higher

values of h, a increases with r, displaying a rising phase

in the gain tuning curve. The results indicate that thresh-

old plays a decisive role in determining the gain sensiti-

vity of the neuron in the rising phase of the gain tuning

curve.

To understand the influence of saturation in gain
control, we set h = 0 and vary the value of g of the sys-

tem. Fig. 2d demonstrates that for different g, the gain

factor decreases with an increase in r. The rate of de-

crease is larger for smaller saturation values (e.g.

g = 20). At large g (e.g. g = 200), the decrease is slow,

resulting in high gain across all r. The saturation level

therefore determines the falling slope of the gain tuning

curve.
This gain tuning curve determines the neuron�s pref-

erence to the distributions of different r. The optimal
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ropt in which gain is maximum can be obtained by differ-

entiating Eq. (7), which gives

r2
opt ¼

h2 � g2

2ðln g � ln hÞ
Rþ1
0

h2ðsÞds
: ð8Þ

The obtained ropt increases with saturation g (see Fig.

2e). It also increases slightly with an increase in thresh-

old h (Fig. 2f). This might provide a mechanism and

rules for a neuron to adjust its transfer function and

gain tuning curve according to the statistical context

of the input signals. However, the range of adjustment

of the optimal r by changing g and h is rather limited.

Fig. 3 shows gain factor as a function of threshold, sat-
uration and r. Larger saturation values and smaller

threshold values are accompanied by larger gains over

a greater region of stimulus variance. For any given sat-

uration level and threshold, there is an optimal r where

the gain factor is maximum.

Based on the above kernel analysis, we conclude that

in the discovering contrast adaptation phenomena by

the classical Wiener Kernel method (Korenberg, 1988;
Lee & Schetzen, 1965; Marmarelis, 1993), the nonlinear

effect should not be avoided. Nonlinearity introduces a

contrast gain tuning phenomenon, which is an intrinsic

property of the nonlinear systems. This tuning property

determines the preferred contrast sensitivity of the sys-

tem to the input signals with various statistical distribu-

tions. However, note that the relationship between

effective kernel gain and input variance in this LN model
is non-monotonic in the general case (Fig. 2b). This is

inconsistent with recent experimental findings, which
Fig. 3. Gain factor a(r,h) for g = 20 (a), g = 100 (
showed that the gain of the recovered linear kernel de-

creases monotonically with the input contrast (Benar-

dete & Kaplan, 1999; Shapley & Victor, 1978, 1979,

1980), and even displays an inverse power law relation-

ship (Chander & Chichilnisky, 2001; Smirnakis et al.,

1997; Truchard et al., 2000). Thus, the static LN model
cannot explain the contrast adaptation observed in

experiments in a complete way. To isolate gain change

due to adaptive change in the system, one must factor

out the effect due to static nonlinearity. Additional

adaptive mechanisms may exist accounting for the inter-

esting power law relationship. In another paper (Yu

et al., submitted for publication), we will discuss that

in detail.
In sum, the above results demonstrate that the

threshold and saturation of the system play a functional

role in shaping the basic contrast–response gain tuning

for various stimulus statistics, serving as a substrate

for contrast adaptation.
3.2. Effective nonlinearity

In neurophysiological experiments, an unknown sys-

tem is usually studied by its recovered linear kernel (i.e.,

h 0(t) = a * h(t)) and recovered nonlinearity g 0(x) (e.g.

Chander & Chichilnisky, 2001; Kim & Rieke, 2001;

Meister & Berry, 1999). In above sections, we studied

the effect of the static nonlinearity on the properties of

recovered linear kernel h 0(t). What will the recovered

nonlinearity look like? Given the recovered kernel
h 0(t), we can estimate the linear response x 0(t) as
b), g = 200 (c), and g = 400 (d) respectively.
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x0ðtÞ ¼
Z þ1

0

h0ðsÞsðt � sÞds: ð9Þ

By plotting the input–output relations of x 0(t) and

y(t), the recovered nonlinearity g 0(x) for each stimulus

variance is shown in Fig. 4a. As a comparison, the orig-

inal nonlinearity g(Æ) is plotted by the thick line. Noted

that g 0(x) is dependent on the signal variance. The shift

of the input–output relations here reflects the changing
sensitivity of the system to the changing input signal.

When we scale the linear projection response x 0(t) by

the gain factor a from Eq. (6), all the recovered nonline-

arities g 0(x) and the real nonlinearity g(Æ) overlap (see

Fig. 4b).

In the experimental situation, if the contrast adapta-

tion is entirely due to the static nonlinearity, when we di-

vide x 0(t) by a scale factor a 0 that can collapse g 0(x) to
g(x), hr = h 0(t)/a 0 should be equal to intrinsic linear func-

tion h(t) regardless of r. However, in recent experimen-

tal studies (Chander & Chichilnisky, 2001; Kim &

Rieke, 2001), it was found that hr is not invariant to r
(for example see Fig. 4 in the paper by Chander &

Chichilnisky, 2001), suggesting that there exists an addi-

tional adaptive mechanism accounting for temporal

contrast gain control. Our results therefore provide a
theoretical framework for interpreting their results.

3.3. Invariant input–output relationship

The contrast response curve or the input–output rela-

tionship is useful for probing the contrast gain control

phenomena (Geisler & Albrecht, 1992; Ohzawa et al.,

1985). Gaussian white noise signals, while useful for
deriving the recovered linear Wiener kernel, are inap-

propriate for estimating the input–output relationship

of the system. This is because the temporal variation

of the signal is faster than the convolution window of
Fig. 4. (a) The recovered nonlinearities for various values of r in the

case of h = 3 and g = 50. (b) Scaled nonlinearities by gain factor a for

various values of r in the case of h = 3 and g = 50.
the cell�s kernel, resulting in a many-to-one input–out-

put (I/O) mapping, and thus a fuzzy I/O curve. To re-

cover the input–output relationship, experimenters

typically use a stimulus that keeps an input attribute

constant for a period of time Dt, and obtain the output

by averaging the response of the neuron during that per-
iod (Geisler & Albrecht, 1992; Ohzawa et al., 1982,

1985). For example, a spatial sinewave grating of a par-

ticular luminance contrast (the input attribute) will be

drifted across the receptive field of the measured neuron.

The temporal frequency of the sinewave grating is typi-

cally about two cycles per second. Gratings of several

contrast values are presented for dt = 4s each, for a total

of 10 times. These contrast values are chosen to be with-
in one octave of a given mean contrast value. This exper-

iment is then repeated several times, with different mean

contrast values (see Fig. 1 in the paper by Ohzawa et al.,

1985). For each mean value, a contrast sensitivity curve

is plotted which gives the neural response for each con-

trast value. The response of the neurons was found to

adapt to the mean contrast of the signals, causing the

contrast sensitivity curve to shift to the right as the mean
contrast is increased (see Fig. 3 in the paper by Ohzawa

et al., 1985). This adaptation of the contrast response

function to mean contrast is a hallmark of contrast gain

control.

Can static LN model produce the shifting contrast re-

sponse curves? To answer this question, we simulated

this experiment with our cascade LN model using
Fig. 5. For the model with h = 5 and g = 50: (a) A example of input

contrast signal with sinewave modulation (temporal sine frequency is

10Hz). The standard deviation of contrasts is rc = 1. (b) Input–output

relations for various input contrast signals with rc = 1, 5, 10 and 20,

respectively.
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similar input. We use one dimensional temporal sine-

wave gratings of different contrasts (see the dark black

line in Fig. 5a) as the stimulus to the neuron. Here,

the sinewave grating with a temporal frequency of

10Hz is a carrier, while the amplitude modulation is

the input contrast signal c(t). Each contrast value of
c(t) is presented for dt = 4s. These contrast values are

drawn from a Gaussian white distribution with standard

deviation rc. This standard deviation rc determines the

mean contrast level of each sequence, which lasts for

1000s. The input–output curves are obtained from se-

quences of four different mean contrast levels, with

rc = 1, 5, 10, and 20 respectively. To plot the input–out-

put curve, the model�s response for each time bin dt is
averaged to get a mean value for each contrast value.

Fig. 5b shows the resulting input–output curves for four

mean contrast levels. The perfect overlapped curves

show that there is no adaptive behavior in the investi-

gated system, i.e., the model is static. The slope of in-

put–output relation is independent of mean contrast

level, and is unaffected by the nonlinearity. (It should

be noted that the time bin dt used here should be larger
than the character time scales sa and sb of linear kernel.
Otherwise, the input–output relation will be distorted

heavily.) Hence, the shifting input–output curves of cor-

tical neurons observed in experiments (Geisler & Albr-

echt, 1992; Ohzawa et al., 1982, 1985) cannot be

attributed to the static nonlinearity.

Our results suggested that there should exist an adap-

tive mechanism, which is beyond static nonlinearity,
which controls the contrast gain for adapting to various

contrast distributions. In a sister paper (Yu et al., sub-

mitted for publication), we will discover the necessary

factors and principles for the potential adaptive

mechanism.
3.4. Impact on information encoding

Static nonlinearity affects not only the performance

gain of the neuron to input signals, but also the informa-

tion coding property. We next studied the relationship

between performance gain and the information encod-

ing of the system. We do this by deriving a relation-

ship between the mutual information and the system

parameters. Shannon information theory (Shannon &

Weaver, 1949) provides a measure to quantify the ability
of a system or a communication channel to convey

information. Generally, for a communication channel

with an input signal s(t) and an output response y(t),

the total output entropy

HðyÞ ¼ �
X
y

pðyÞlog2pðyÞ ð10Þ

is used to measure its theoretical information transfer

capacity, while mutual information
Im ¼ HðyÞ � HðyjsÞ

¼ �
X
y

pðyÞlog2pðyÞ þ
X
s;r

pðsÞpðyjsÞlog2pðyjsÞ;

ð11Þ
measures how much of that capacity is actually used to

encode the input signal. H(yjs) can be defined as noise

entropy, accounting for the variability in the response

that is not due to variations in the stimulus, but comes

from other noise sources. For simplicity, we consider

the noiseless case, where H(yjs) = 0. In this case, the mu-

tual information is simply equal to the output entropy
Im = H(y). The probability distribution of the output re-

sponse y(t) can be derived from Eqs. (1) and (2). We can

derive the entropy of y(t) directly from this distribution

using Eq. (11) in the discrete form (Dayan & Abbott,

2001, chap. 4).

Fig. 6 shows how mutual information Im varies as a

function of threshold, saturation and stimulus r. Note

that Im goes through a maximum as r varies, in accord
with previous studies of similar nonlinear systems (Bell

& Sejnowski, 1995). This pattern displays a coherence

resonance phenomenon (e.g. Gammaitoni et al., 1998;

Hu et al., 1993; Pikovsky & Kurths, 1997). For a fixed

r, Im increases with an increase in saturation value or

with a decrease in the threshold. This result indicates

that the nonlinearity determines the information trans-

mission tuning curve of the system. That is, only those
signals with intermediate variance can be processed by

the system in a way that maximizes information trans-

mission, while those with smaller or larger variance can-

not be well encoded and transmitted. Considering that

nonlinearities (threshold, saturation) can change the

gain tuning curve (see Fig. 2b) and information tuning

curve (see Fig. 6), they might provide a potential mech-

anism for a neuron to adjust itself to match the statisti-
cal context of the input signals by changing threshold h
and saturation g, although the adjustment range is

rather limited. For various parametric conditions, mu-

tual information Im is roughly proportional to the gain

factor a (see Fig. 7). This implies that the information

encoding property and the gain performance of the lin-

ear transfer function are correlated in static nonlinear

systems.
Thus, for the static LN model in response to signals

with various statistical distributions, there only exists

one optimal contrast, for which the model can respond

with maximal information transmission. While for other

stimuli, the model cannot process them efficiently. How-

ever, recent experimental studies in fly H1 neurons indi-

cate that the information transmission rate could remain

relatively constant for various input contrasts, implying
an adaptive property for varying environments. There-

fore, there must be a real adaptive gain control mecha-

nism beyond the static nonlinear effect. Indeed, as

shown by Bell and Sejnowski (1995), the nonlinearity



Fig. 6. Mutual information Im(r,h) for g = 20 (a), g = 100 (b), g = 200 (c), and g = 400 (d) respectively.

Fig. 7. Im(r,h) as a function of a(r,h) for various values of r and h.
Each point corresponds to a value of a(r,h) from Fig. 3 and a value of

Im(r,h) from Fig. 4.
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of a neuron can be adjusted to maximize information

transmission for various external conditions. Our fur-

ther study (Yu et al., submitted for publication) will
indicate that the linearity of a neuron can also be ad-

justed so as to maximize information transmission for

various external conditions. Those studies may shed a

light on the mechanisms underlying real adaptation

behavior for maximal information transmission in the

neurons.
4. Discussion and conclusion

In summary, dependence of performance gain and

information coding property on the signal variance or
contrast is a basic property of any nonlinear system with

threshold and saturation. However, it does not reflect

any real adaptation behavior intrinsic the system. Each
fixed pair of threshold and saturation values determines

a particular gain tuning curve and an information

encoding tuning curve. These curves are typically char-

acterized by a rising phase at small r and a falling phase

at large r, with gain and mutual information being max-

imized at an intermediate range of r. By manipulating

these two parameters, one may potentially steer the

system to optimize neural response amplitude and infor-
mation encoding efficiency for specific stimulus environ-

ments. The general principle of steering is that by

increasing the saturation level or by lowering the thresh-

old, the region of high mutual information and gain will

expand and the optimal contrast value will increase.

There is therefore a pressure to push the saturation up

and the threshold down to maximize information trans-

fer and encoding over a larger range of stimuli. How-
ever, this might be balanced by a pressure to minimize

energy expenditure, which may tend to push the thresh-

old up and saturation down. It is interesting to note that

young neurons have higher thresholds and lower satura-

tion than adult neurons (Rust, Schultz, & Movshon,

2002). Our results suggest that this might be because

young neurons are more limited in their energy

resources.
This basic framework may be helpful in understand-

ing an important property of neurons in brain, i.e., their

capacity to adjust the gain of their responses according

to the statistics of the input stimulus. In different statis-

tical environments, sensitivity and information process-

ing can be optimized by adaptively adjusting a neuron�s
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threshold and saturation level via cellular and molecular

mechanisms or synaptic modifications from network

interactions. Considering that threshold and saturation

are common features of nonlinear systems in the natural

world, the dependency of gain and information transfer

tuning on these properties may be universal in all non-
linear threshold systems. Our results therefore not only

illuminate the connection between static nonlinearities,

performance gain and information transfer in neurons,

but also provide insights to some rules governing the de-

sign of nonlinear information processing systems that

can be adjusted to match the stimulus statistics in the

environment.

However, the real contrast gain control mechanism
should go beyond the effect of the static nonlinearity.

At least, static nonlinearities cannot account for two

important observations concerning contrast gain control

phenomena. (1) The divisive shifting of the contrast–

response relations as a function of mean contrast level

(Geisler & Albrecht, 1992; Kohn & Movshon, 2003; Oh-

zawa et al., 1982, 1985; Sanchez-Vives et al., 2000). By

using methods similar to those of the experiment, we
constructed the input–output curves of our static LN

model in response to various mean contrast levels. It is

clear that various contrast–response curves of the LN

model in response to different mean contrast levels are

completely overlapped. No shifting effect is observed

as that observed in experiments (Geisler & Albrecht,

1992; Kohn & Movshon, 2003; Ohzawa et al., 1982,

1985; Sanchez-Vives et al., 2000). This means that the
shifting contrast response curves along the log-contrast

axis in cortical neurons does reflect an underlying intel-

ligent contrast gain control mechanism, which is beyond

the effect of the static nonlinearity. (2) Experiments

showed that there exists a power law relation between

the amplitude gain of the transfer function and the input

contrast in the real neurons (Chander & Chichilnisky,

2001; Truchard et al., 2000). However results from our
static LN model, and from the complex Hodgkin–Hux-

ley neuronal model, demonstrated that nonlinearity only

produces a bell-shape curve between the amplitude gain

of the transfer function and the input contrast. These

differences indicate the existence of an intelligent gain

control mechanism underlying visual adaptation behav-

ior in the real neuron, which is absent in the popular

neuronal models such as leaky integrate-and-fire and
Hodgkin–Huxley models. In another paper (Yu et al.,

submitted for publication), we will discover what kind

of adaptive factors and principles need to be considered

to account for the adaptation phenomena in contrast

gain control behavior, especially the contrast-dependent

shifting (or divisive) input–output relationships.

In summary, our results clarify the exact contribu-

tions of the static nonlinearity to the observed adapta-
tion phenomena in neurophysiological experiments.

We also make clear the difference between the nonlinear
effect and real adaptation phenomena, which has con-

fused experimental scientists. We have shown that the

static nonlinearity determines the optimal performance

gain of the linear function in fluctuating environments.

This performance gain of the linear kernel and the infor-

mation transmission of the system go through a global
maximum as the input contrast changes, showing an

apparent ‘‘adaptation effect’’. Indeed, this is a type of

coherence resonance phenomenon widely discussed in

the physics literatures (e.g. Gammaitoni et al., 1998;

Hu et al., 1993; Pikovsky & Kurths, 1997). Our results

show that any nonlinear system, with threshold and sat-

uration, may have the potential to display a coherence

resonance phenomenon.
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