
Neuron, Vol. 22, 435–450, March, 1999, Copyright 1999 by Cell Press

The Neural Code of the Retina Review

A Sample ProblemMarkus Meister* and Michael J. Berry II
What should a useful description of the retinal codeDepartment of Molecular and Cellular Biology
contain? One way to find out is to try and answer aHarvard University
simple question, such as: “How many levels of gray canCambridge, Massachusetts 02138
the retina distinguish?” This problem is taken from real
life: it was posed to us by a colleague who expected aIntroduction
quick answer. It is also of some practical relevance,How Do Action Potentials Represent Information?
given that the price of home video systems is stronglyAction potentials are the standard signal conveyed be-
related to how many gray levels they will produce. Totween neurons in the central nervous system. It is a long-
tackle it experimentally, we imagine taking the followingstanding question how these spikes represent sensory
approach: record the spike train of a retinal ganglioninput, internal states of the brain, or motor commands
cell, project a uniform gray field on the retina, vary the(Perkel and Bullock, 1968; Rieke et al., 1997). To fully
intensity of the light in small step increments, and askunderstand communication among neurons, one would
how small the steps can be to still cause a recognizablelike to obtain a dictionary for this language, in which
difference in neural firing.each spike or pattern of spikes is assigned meaning

We soon find that after an intensity step the ganglion
within the processing task under study. This review will

cell fires a brief burst of spikes, then settles down within
focus on the neural code employed by the ganglion cells

a few seconds to whatever it was doing before the step.
of the vertebrate retina in conveying visual information

Something similar happens for almost every other gan-
from the eye to the brain: what are the rules by which

glion cell, so we conclude that steady gray levels are
the spike trains of optic nerve fibers encode the visual

almost indistinguishable. To get a meaningful answer,
scene? we therefore decide to vary the light intensity in time,

Communication between the retina and the brain is for example switching back and forth between two lev-
particularly amenable to experimental analysis for sev- els. As we switch faster and faster, we find that the
eral reasons. First, we know exactly what is being rep- neural response eventually disappears again at very
resented by these action potentials, namely the time- high frequencies. So the initial question regarding reso-
dependent visual image as projected by the optics of lution of gray levels cannot be answered without speci-
the eye. Second, one can readily stimulate the retina with fying the time course of the light intensity, since there
its natural sensory input, making use of well developed is no response for either very slow or very fast changes.
technology for presenting movies. Similarly, the output Similarly, we soon find that the spatial distribution of
of the retina can be monitored with relative ease by intensity on the retina is very important. For example,
extracellular recording from ganglion cells, optic nerve when we illuminate only a small spot overlying the re-
fibers, or terminals in the lateral geniculate nucleus. Fi- corded ganglion cell, we find that the response is
nally, our retina performs a significant amount of pro- stronger than when we illuminate the entire field uni-
cessing, which compresses the visual signal from a neu- formly. On the other hand, the spot cannot be too small,
ral population of 108 photoreceptors into just 106 optic or the response disappears again.
nerve fibers. Nowhere else in the visual system is the Next, we need to decide what it means to “distinguish”
scene represented with as few neurons as in the optic two gray levels. Presumably, someone monitoring the
nerve, and thus one might expect to discover interesting ganglion cell’s spike train should be able to identify
principles of efficient coding. Since the electrical spikes which gray level is being presented with some degree
on ganglion cell axons are the only source of our visual of confidence. We find that even when presenting the
experience, there is considerable interest in the power same stimulus repeatedly, the ganglion cell produces
of retinal processing and how it shapes our visual per- somewhat different spike trains, and this variability ulti-
ception. mately limits the ability to discriminate two different

Our understanding of retinal coding has come a long stimuli. So, in seeking an answer to the initial question,
way since the pioneering recordings from retinal gan- the variability of the neural response is equally important
glion cells by Kuffler (1953) and Barlow (1953). Sadly, as the response itself.
even recent Neuroscience textbooks limit themselves To quantitate any of this, we need to decide what
to a qualitative treatment that does not reflect these aspects of the spike train to measure as the “response.”

Is it sufficient to simply count the number of spikes inadvances. One goal of this review is to illustrate how
some suitable time window, or should we note the exactthe relationship between visual images and optic nerve
time of arrival of every spike? Furthermore, we mustfirings can be captured quantitatively, to a degree that
consider that many ganglion cells are being affected bycomes close to the ideal of the “dictionary” mentioned
this stimulus and can therefore contribute to its identifi-above. We then highlight some recent observations that
cation. So, we should try to understand how the re-have drawn attention to novel aspects of retinal pro-
sponses of different neurons interact.cessing.

Finally, toward the end of the day, we discover a vex-
ing feature of this experiment: if we gradually step the
light intensity upward, we get one answer, and if we* To whom correspondence should be addressed (e-mail: meister@

biosun.harvard.edu). gradually step it downward, we get another. Apparently,
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the relationship between gray level and firing is not per- of other cells in this class. If, instead, the population
were perfectly heterogeneous, the code could only bemanent and static but varies considerably depending

on the recent history of the visual stimulus. understood after observing every neuron. A great deal
of effort has gone into sorting retinal ganglion cells intoThis thought experiment illustrates that to answer a

seemingly straightforward question about retinal signal- different types based on their visual responses. There
is clear evidence for distinct classes—some of whiching, one needs to know many different facets of how the

visual information is encoded. In particular, any useful will be discussed below—though their precise number
and boundaries are often in dispute (for review seedescription of the neural code should specify: (1) the

relevant measure of neural activity in the ganglion cell Stone, 1983; Rodieck et al., 1993; Rodieck, 1998). Sec-
ond, the firing of each neuron in the population shouldpopulation; (2) how this activity responds to any given

visual stimulus; (3) the precision of this response; and depend only on the stimulus, not on the activity of other
neurons in the population. If this is so, then the descrip-(4) the degree of plasticity in this relationship between

stimulus and response, specifically, how it varies de- tion derived from many single-cell recordings can ade-
quately predict the occurrence of any given responsepending on recent history of the visual input.

Of course, similar issues arise in every study of neural pattern in the population. Unfortunately, this latter con-
dition is not always met, as demonstrated in recentcommunication, whether it regards sensory encoding,

signaling among neural populations, or motor control. multineuron recordings discussed below. Nevertheless,
the classical single-neuron analysis of retinal responses
has been highly successful and valuable and is still the
focus of much research.The Prevailing View of Retinal Signaling

In this section, we attempt to summarize a consensus Within the spike train of a single ganglion cell, the
important response feature is generally taken to be thenotion of how the retina encodes visual stimuli, delineat-

ing the four essential components of the neural code neuron’s instantaneous firing probability at various times
throughout the stimulus presentation. In experiments,introduced above. This understanding has been gained

from experiments on a wide range of species, and a this firing rate is estimated by repeating the same stimu-
lus many times and counting spikes in the correspond-comment is in order on how these should be integrated.

Different animals clearly employ their visual system for ing time bin of many such trials. Of course, during natural
vision, we do not enjoy the luxury of many identicaldifferent tasks, and this is reflected in the anatomical

and functional diversity of their visual pathways (Stone, stimulus trials. It is often assumed that the brain, instead,
estimates this response function by counting spikes1983). However, while the postretinal anatomy differs

significantly across vertebrates, the structure of the ret- from many essentially identical ganglion cells (Levick
and Zacks, 1970; Enroth-Cugell et al., 1983). This ideaina is remarkably conserved from fish to primates. One

finds the same three-layered arrangement, the same five conflicts with another commonly held notion, namely
that ganglion cells of any given functional type “tile” theprincipal cell types, the same neurotransmitters em-

ployed, and in many cases, the same anatomical micro- retina, such that each point is serviced by just one neu-
ron of that type (Wässle and Boycott, 1991; DeVriescircuitry (Dowling, 1987). A plausible explanation is that

the retina is adapted to deal with constraints that are and Baylor, 1997). We will revisit this topic below when
considering distributed coding by retinal ganglion cells.shared among all species: the statistics of visual images

from the natural world at one end, and the limited capac- The Stimulus–Response Relationship
With these assumptions, the central problem of the reti-ity of the optic nerve at the other end. At any rate, many

principles of retinal signaling seem to be remarkably nal code is how a ganglion cell’s firing rate depends
on visual stimulation. Early experiments explored thisconserved. The basic aspects of spatiotemporal pro-

cessing, light adaptation, contrast gain control, and sto- relationship with simple stimuli, such as a small spot
flashed on a uniform background (Barlow, 1953; Kuffler,chastic variation of the response are documented in

animals ranging from tiger salamander to macaque mon- 1953). Generally, the spot altered the firing rate only if
presented within a small region on the retina—termedkey. Models of the light response that successfully pre-

dict a ganglion cell’s firing rate share a common struc- the “receptive field”—a few tens to hundreds of micro-
meters in diameter surrounding the cell body. The natureture in all these cases. Differences among species affect

the quantitative parameters of these models, but not of the light response within the receptive field immedi-
ately pointed to the existence of very different cell types.their basic elements.

The Relevant Features of Ganglion Cell Spike Trains In some ganglion cells, a spot flashed near the center
of the receptive field produced a transient increase ofAlthough the visual scene is conveyed to the brain in

parallel by the spike trains of all optic nerve fibers, most firing at light onset and a brief reduction of firing at
offset (ON cells). In other ganglion cells, the firing rateof what we know about retinal signaling is derived from

recordings of single retinal ganglion cells, one at a time. decreased at onset and increased at offset (OFF cells).
For either cell type, a spot placed at some distance fromThe same is true, of course, for neural signaling every-

where else in the nervous system. The underlying and the center—in the so-called receptive field surround—
had the opposite effect of a spot in the center. Whenoften unstated assumption is that such a population

code can, in fact, be understood one cell at a time. Two center and surround were illuminated simultaneously,
the center response was significantly suppressed. Stillconditions are necessary for this. First, there should be

identifiable classes of cells, that group neurons of similar other ganglion cells responded with a brief burst of
spikes at both onset and offset, no matter where thefunctional properties, such that studying one or a few

cells of a given class allows one to estimate the behavior spot was flashed in the receptive field (ON/OFF cells).
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Two important aspects of retinal processing are al- where R0 is the cell’s maintained firing rate without stim-
ulation. This expression can also be viewed as a cas-ready recognizable in this early work: lateral inhibition

in space and differentiation in time. Because of the an- cade of a few simple transformations of the stimulus
(Figure 1A). First, the stimulus I(x, t) is summed overtagonistic action of the center and surround regions of

the receptive field, ganglion cells respond strongly to all space, with the weighting function B(x). Then the
resulting signal is passed through a filter with impulsestimuli whose intensity varies in space over the receptive

field, such that center and surround are illuminated response A(t). The result is added to the baseline firing
rate R0, and negative values R0 of the resulting firing ratedifferently. And because the response to a light step

lasts only a short time—typically tens of milliseconds R(t) are truncated to zero.
The parameters in this model, namely R0, A(t), andto seconds—many ganglion cells seem to emphasize

stimuli that change in time over static ones. B(x), were derived from the flashing spot measurements.
Then the model was tested using very different stimuli,The visual world, of course, does not consist of spots

and annuli. Thus, one needs to cast the stimulus–response consisting of various shapes moving steadily across the
cell’s receptive field. As Figure 1B shows, there was arelationship in a quantitative form that generalizes to

arbitrary patterns of visual input. In its most general remarkable correspondence between the observed time
course of the firing rate and the predictions of the model.form, the stimulus is given by the intensity distribution

I(x, t, l) on the retina, as a function of position x, time This model of the light response is very attractive in its
simplicity. For example, the time course of the responset, and wavelength l. Under the above assumptions, the

response of the retina consists of the firing rates Ri(t) of to a flash is identical no matter where in the receptive
field the flash is presented, except for a scaling factor.each of its ganglion cells. To capture retinal processing,

one thus seeks a mathematical function whose input is This is termed “space–time separability” (Wandell, 1995),
because the weighting function in equation 3 separatesthe stimulus I(x, t, l) and whose output is the time course

of a ganglion cell’s firing rate R(t). This function will have into a term depending only on time multiplied by a term
depending only on space. Subsequent work showeda number of free parameters, which are optimized based

on the measured responses to experimental stimuli. Fi- that space-time separability is not quite satisfied in gan-
glion cell responses: for example, the response to lightnally, one can test the performance of this model with

other types of stimuli. The following sections will illus- falling in the surround is delayed relative to the response
in the center, owing to the time required for lateral signaltrate some examples of this powerful approach.

Spatiotemporal Integration. Rodieck (1965) made an flow through horizontal or amacrine cells, and transmis-
sion across an additional synapse (Enroth-Cugell andearly and influential attempt at a quantitative description

of cat ganglion cell responses. As observed earlier, a Freeman, 1987; Sakai and Naka, 1995; Benardete and
Kaplan, 1997a). This led to a simple “modified differ-small spot of light flashed briefly on the receptive field

center of an ON cell produced a brief increase in firing ence-of-Gaussians model” (Figure 1C), in which light is
pooled separately within the center and the surround;followed by an undershoot and gradual recovery of the

baseline firing rate. The shape of this time course was the two resulting signals are passed through two differ-
ent filters, then summed to generate the firing rate (En-approximated as
roth-Cugell et al., 1983; Dawis et al., 1984). For some

A(t) 5 d(t) 2 he2 t / t (1) ganglion cell types, center and surround also have a
different spectral sensitivity, because they are fed by a

where d(t) denotes the delta function pulse of firing and different mix of photoreceptors. In general, the wave-
h is the size of the subsequent undershoot, which de- length dependence of the retinal response is governed
cays with time constant t. As in previous experiments, by the spectral sensitivities of the rods and cones, an
the amplitude of this response depended on the location aspect that varies a great deal among species. We will
of the spot: large and positive in the center, small and not elaborate on this topic here, but refer the reader to
negative in the surround, and zero somewhere in be- recent reviews of color processing (Wandell, 1995; Lee,
tween. This spatial profile of the response amplitude 1996).
was formalized as a “difference of Gaussians” Another fundamental feature of Rodieck’s model is

the linearity of its response. Twice the intensity fluctua-
tion will produce twice the firing rate fluctuation; moreB(x) 5 kc · exp12 x2

2r2
c
2 2 ks · exp12 x2

2r2
s
2 (2)

generally, the response to the sum of two intensity pat-
terns is the sum of their individual responses, barring

where kc and ks are the amplitude of the center and the truncation in the final step of spike generation. Subse-
surround Gaussians and rc and rs are their respective quently, it was found that a linear relationship between
radii. Thus, the change in the firing rate produced by stimulus and firing rate holds only for some retinal gan-
flashing a spot at time t 5 0 and location x is A(t)·B(x). glion cells and only under restricted conditions: the
Now any given light intensity pattern, I(x, t), such as a modulations of the light intensity must be small com-
white bar moved across the retina, can be decomposed pared to the mean, and the range of these modulations
into many small flashed spots. Rodieck’s model as- must not change very much over time (Enroth-Cugell
sumed that the effects of all these spots simply sum up. and Robson, 1966; Victor, 1987; Benardete and Kaplan,
Thus, the firing rate, R(t), produced by the visual stimulus 1997b). These are very narrow constraints, and it now
becomes appears that under stimulus conditions resembling those

of our natural visual experience, a linear description of
R(t) 5 R0 1 ##I(x,t9) · B(x) · A(t 2 t9)dxdt9 (3) retinal ganglion cell responses is of rather limited use.
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Figure 1. “Difference-of-Gaussians” Model to Predict the Firing Rate of a Cat Retinal Ganglion Cell

After Rodieck, 1965; Rodieck and Stone, 1965.
(A) At every time point, the intensity pattern on the retina is integrated over space with a weighting function that represents the receptive field
profile (top, thick line). This profile is shaped as the difference of two concentric Gaussian surfaces (thin lines, see equation 2), here shown
in a one-dimensional section through the center. The resulting signal is convolved in time with the retina’s flash response (middle): a delta
function (approximated in the graphic by a brief square pulse) followed by an exponential undershoot (equation 1). The result is added to a
maintained firing rate and truncated (equation 3) to eliminate negative values (bottom).
The signal processing cascades described in this and subsequent figures contain three types of elements, and we will use the following
graphic conventions to represent them: weighted spatial summation of light intensity is shown by the profile of the weighting function, with
the horizontal axis labeled “Space” (top box in [A]); temporal filtering is represented by the impulse response of the filter, with the horizontal
axis labeled “Time” (middle box in [A]); instantaneous transform of a signal is represented by a graph of output versus input, with the axes
unlabeled (bottom box in [A]).
(B) Firing rate of an ON-type cat retinal ganglion cell in response to a bar swept across its receptive field (left; adapted from Rodieck and
Stone, 1965), and as predicted by the model in (A) (right; adapted from Rodieck, 1965). The bars were either white or black on a gray
background, varied in width from 0.58 to 58 (center), and were moved steadily at 108/s.
(C) “Modified difference-of-Gaussians” model of the light response, in which center and surround are treated as separate pathways. Their
Gaussian sensitivity curves may not be concentric, and their flash responses may differ. The resulting signals from both pathways are summed
and rectified to produce the firing rate.

Nonlinear Processing. Victor (1987) has captured field is several times larger than that of a nearby X cell.
It is composed of many small spatial “subunits” thatsome of the nonlinear behavior of cat ganglion cells in

a very successful model (Figure 2A): as in Rodieck’s appear to process the stimulus independently (Victor
and Shapley, 1979). Within the area of each subunit, thescheme, the light distribution is pooled linearly with a

spatial weighting function and the result is passed light intensity is integrated, again with an antagonistic
receptive field and a biphasic impulse response (Figurethrough a temporal filter. However, the properties of this

filter depend on its output. In particular, when the output 3). The result gets rectified, a highly nonlinear operation,
and added to the output from all other subunits. Thisis large—of either sign—the gain of the filter decreases

and its waveform sharpens. With only a few parameters, sum, after passing through another filter, specifies the
firing rate (Victor, 1988). There may be as many as 100this model accurately predicted the response to a variety

of stimulus waveforms (Figure 2B), whereas any purely such “nonlinear subunits” (Victor and Shapley, 1979).
Due to their rectifying nature, a flashing spot anywherelinear model produced large discrepancies. The net ef-

fect of this “contrast gain control” (Shapley and Victor, within the receptive field can produce a burst of spikes
at both onset and offset. Thus, the Y-type ganglion cell1979, 1981) is that during large light fluctuations the

retinal response is less sensitive and faster. This adjust- cannot signal the position of a small spot on the retina
with the spatial resolution of an X cell. On the otherment is very rapid: the time constant tc in Figure 2B was

15 ms, but a value of zero produced indistinguishable hand, it is very sensitive to a fine textured pattern moving
across the receptive field, since that induces intensityresults.

This type of quantitative analysis has revealed that fluctuations for all the local subunits. The anatomical
identity of the subunits is still uncertain. Their size isthere are two very distinct types of ganglion cells in

the cat retina. The so-called “X cells” (Figures 1 and 2) about equal to that of X cell centers, and they have
been proposed to correspond to bipolar cells, with theappear to integrate light from different points in space

by simple weighted summation, while for the “Y cells” rectification occurring in transmission to amacrine cells
(Victor and Shapley, 1979).this is not the case (Enroth-Cugell and Robson, 1966;

Hochstein and Shapley, 1976). The Y cell’s receptive The kind of processing performed by this model of
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Figure 2. Cascade Model for Neural Coding by a Cat X Cell

After Victor, 1987.
(A) Only the pathway for the receptive field center is shown; see Figure 1A legend for conventions of this graphic shorthand. Light is integrated
over the center’s spatial profile. The result is passed through a band-pass temporal filter, then truncated to form the firing rate. To implement
the contrast gain control, the output of the filter is full-wave rectified and averaged by a low-pass stage with time constant tc. The resulting
signal, c(t), is a neural measure of contrast and modifies the temporal processing properties: the flash response of the band-pass filter is
more biphasic at high values of c(t) (thick line) than at low values (thin line).
(B) Response of an ON-type X cell to contrast reversal (bottom trace) of a 1 cycle/degree sinusoidal grating at different modulation depths,
C. Top plots show the measured firing rate (jagged line) and the prediction from the model in (A) (smooth line). Bottom plots show the neural
measure of contrast, c(t), that modulates the band-pass filter in (A). Note that the time course of the firing rate is more transient at large
modulation depth, and this modification is reproduced accurately by the model.

the Y cell subunit—linear filtering followed by a nonlinear processing (Stone, 1983; Wässle and Boycott, 1991).
However, as discussed below, the present models aretransformation and more linear filtering—is often called

an LNL cascade (Hunter and Korenberg, 1986). This not yet satisfactory when faced with complex stimuli
such as those encountered in natural vision. Further-general scheme has been very useful in describing the

response properties of other ganglion cells, for example, more, for some notable ganglion cell types, such as
the direction-selective neurons found in many speciesthe P cells in macaque retina (Benardete and Kaplan,

1997b). Naka and colleagues have used the same for- (Barlow and Levick, 1965; Borg-Graham and Grzywacz,
1992), a quantitative model that predicts the responsemalism to model the behavior of ganglion cells in catfish

retina (Korenberg et al., 1989). In a remarkable series of to a general ensemble of stimuli still remains to be found.
Precisionstudies, they also recorded intracellularly from every

major retinal cell type (Sakai and Naka, 1988). A quantita- As is true for all other neurons, the response of retinal
ganglion cells is stochastic, in that it varies somewhattive assessment of their light responses revealed the

contribution of each cell type to the ganglion cell re- even if one presents the identical visual stimulus on
subsequent trials. Therefore, experimenters often re-sponse. In particular, the photoreceptors, horizontal

cells, and bipolar cells produced essentially linear re- peat the same stimulus tens to hundreds of times and
average the resulting responses to get an accurate esti-sponses to light. Under the same stimulus conditions,

amacrine cells showed strong nonlinear distortions, mate of the “true” firing rate. The brain, on the other
hand, must interpret the ganglion cell output on a singlewhose shape was distinct between the “sustained” and

“transient” amacrine cells (Sakai and Naka, 1987). This trial. If the signal is carried by the neuron’s firing rate,
as is often assumed, then it can be decoded only tosupports the above speculation that retinal signals are

strongly rectified during transmission to amacrine cells. within the accuracy allowed by the trial-to-trial variation.
On the other hand, the above models of the light re-It has also allowed the dissection of each ganglion cell’s

input into contributions from bipolars and the two types sponse are all deterministic: they predict the average
firing rate, as would be obtained from a large numberof amacrines (Sakai and Naka, 1995). Such experiments

begin to give a biological identity to the cascade compo- of stimulus repeats, but make no statement about the
range of the response one might see in a single trial. Tonents in this formal description of the retinal code.

These examples illustrate that the relationship be- understand what a ganglion cell can communicate, one
must take into account not only the systematic “signal”tween light stimulus and firing rate can be phrased as

a cascade model for many different types of retinal gan- but also the “noise” that corrupts it.
Many ganglion cells fire spontaneously even in dark-glion cells. This quantitative analysis has greatly illumi-

nated the functional differences between classes of cells ness. In a sense, these spike trains represent pure noise,
in absence of any stimulus-driven signal. Two extremewithin the same retina. The X and Y cells, for example,

were subsequently found to differ also in their morpho- possibilities come to mind for the structure of such a
spike train: it might be perfectly regular, with constantlogical features and central projection patterns, reinforc-

ing the impression that they play different roles in visual intervals between spikes as in pacemaker neurons; or
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ganglion cells must pose a limit to the processing of
weak stimuli. Humans can detect very dim flashes of
light that deliver only a handful of photons to the retina
(Hecht et al., 1942; DeVries, 1943). In a landmark study,
Barlow et al. (1971) asked how such weak stimuli are
represented in the firing of retinal ganglion cells. They
recorded action potentials from a ganglion cell in the
cat eye, while stimulating the retina near the recording
electrode with brief flashes of a small spot of light. In
complete darkness, the ganglion cell was spontane-
ously active, firing about 20 spikes/s at irregular intervals
(Figure 4A). Shortly after a flash, the rate of firing tran-
siently increased and decreased again to the spontane-
ous rate. The total number of “extra” spikes fired in
response to the flash was proportional to the flash inten-
sity, with about 1–3 spikes generated for every photon
absorbed by a retinal rod. How could one discriminate
whether a flash occurred or not based on this ganglion
cell’s output? The authors conclude that one ought to
simply count action potentials over a window of 200 ms
(Figure 4A) and ask whether the count exceeded a given
threshold. Due to the variability of the spontaneous ac-
tivity, one obtains a wide distribution of spike counts in
darkness; following a flash, the average number of
spikes is larger, but again with a wide distribution (Figure
4B). For bright flashes, this distribution of spike counts
has no overlap with the distribution in darkness, and
one can set a threshold spike count such that flashes are
detected perfectly. For dimmer flashes, the distributions
do overlap and detection becomes imperfect. With a
criterion of 50% correct detection and ,2% false posi-
tives, the most sensitive ganglion cells reported flashes
that delivered only 2–3 photons.Figure 3. Neural Coding by the Cat Y Cell Subunits

While the statistics of dark activity clearly affect theAfter Hochstein and Shapley, 1976; Victor and Shapley, 1979; see
encoding of very dim lights, one might expect thatFigure 1A legend for conventions of this graphic shorthand.
stronger stimuli, which shape the pattern of firing sub-This pathway initiates in small subunits of the receptive field (thick

profiles in top panel). Within each subunit’s receptive field, light is stantially, also change the trial-to-trial variation of the
integrated, the result is passed through a band-pass filter and then response. In fact, it has been reported that the variance
full-wave rectified. The rectified outputs from all subunits are pooled, in the spike count over a given time window increases
passed through another linear filter, and converted to the firing rate.

for stimuli that produce a larger mean spike count, withAs for the X cell (Figure 2A), a contrast gain control modulates the
approximately a power law relationship (Levine et al.,temporal filter within each subunit (gray feedback pathway). The
1988, 1992). However, this conclusion is controversial,relevant contrast measure c(t) is probably derived from the output

of each subunit’s rectifier and controls the contrast gain for both Y and other studies suggest that the response variation
cells and X cells (Shapley and Victor, 1981). Note that the Y cell is essentially independent of the stimulus (van Dijk and
circuitry includes an additional signaling pathway, not elaborated Ringo, 1987; Troy and Robson, 1992; Croner et al., 1993).
in this figure, that produces a classical center and antagonistic

If so, then the noise in the response could simply besurround (thin profiles in top panel). This pathway can be isolated
treated as a random value added to the spike countby suitable visual stimuli (Victor and Shapley, 1979; Enroth-Cugell
predicted from a deterministic model, such as the cas-and Freeman, 1987) and appears to operate similarly to the cascade

described for X cells (Figures 1C and 2A). cades discussed above.
It should be noted that these studies analyzed spike

counts from ganglion cells over time windows ranging
from 0.25 s to 1 s. The unstated assumption in this anal-it might be perfectly random, with spikes produced at
ysis is that whatever neuron interprets the ganglion cellconstant probability per unit time, regardless of the pre-
output must integrate spikes for at least 0.25 s. Thisceding firing history. This latter case corresponds to the
would effectively smear together retinal events that oc-so-called Poisson process and leads to an exponential
curred in the preceding quarter of a second or more, adistribution of inter-spike-intervals (Rieke et al., 1997).
proposal that seems inconsistent with the speed of mostRetinal ganglion cells show intermediate statistics: their
visually guided behaviors. Primates clearly see withinter-spike-intervals are somewhat more regular than
much higher time resolution: video clips presented at 4in a Poisson process, and their relative frequency is
frames/s appear as a sequence of snapshots, not acaptured well by a gamma distribution (Kuffler et al.,
smoothly moving scene. Similarly cats, with their track1957; Levine and Shefner, 1977; Troy and Robson, 1992;
record of catching birds in flight, must operate withTroy and Lee, 1994).

This inherent variability in the dark activity of retinal better than 0.25 s time resolution. Thus, it is unclear
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whether the variability in spike counts over long time
windows relates in any way to the limits of visual pro-
cessing. As discussed below, retinal ganglion cell spike
trains are remarkably precise when analyzed on a finer
time scale.
Adaptation
The neural code of retinal ganglion cells is not a static
set of rules linking the visual stimulus to the optic nerve
spike trains. Instead, it depends significantly on the
overall properties of the visual scene. In particular, the
code changes with the average light level by processes
collectively termed “light adaptation” (Shapley and En-
roth-Cugell, 1984).

The most pronounced effect of decreasing the mean
light level is an increase in the sensitivity of retinal gan-
glion cells. For example, when the retina is stimulated by
brief flashes on a steady background, the flash intensity
required to elicit a criterion firing rate is lower for a dim
background than for a bright background (Figure 4C).
Over a wide range of intensities spanning several orders
of magnitude, this threshold flash intensity is propor-
tional to the mean light level (Barlow and Levick, 1969;
Enroth-Cugell and Shapley, 1973a; Donner et al., 1990;
Troy and Enroth-Cugell, 1993; Sakai and Naka, 1995).
This so-called “Weber-Fechner law” of adaptation im-
plies that the retina produces approximately the same
response for two visual displays that are related by a
simple proportional scaling of all intensity values.

Such behavior is of clear practical utility: because
the intensity of the light illuminating the natural world
changes over many orders of magnitude every day, so
does the absolute intensity reflected by objects in the
scene. However, the surface reflectance of these ob-
jects remains the same, and thus the relative ratios of
intensities received from different parts of the scene are
approximately independent of the illuminant. Through
the process of light adaptation, the retina encodes the
invariant features of objects and discards, for the most
part, information about the absolute light level. Only a
few ganglion cells appear dedicated to signaling the

Figure 4. Encoding of Weak Flashes by a Ganglion Cell in the Cat absolute intensity, for example to drive the reflex that
Retina keeps the pupil constricted in bright light (Barlow and
After Barlow and Levick, 1969; Barlow et al., 1971. Levick, 1969).
(A) Firing rate before and after a flash that delivers an average of Along with the sensitivity, other aspects of the gan-
five photons to the cornea. The firing rate was averaged over 100

glion cell response change as well. In dim light, the timetrials. The “extra” spikes caused by the flash correspond to the area
course of the response slows down considerably: a briefof the peak above the maintained firing rate.
flash produces a burst of spikes with longer latency(B) To detect whether a flash occurred on an individual trial, spikes

are counted over a 200 ms window (see box in [A]). This spike count and longer duration (Enroth-Cugell and Shapley, 1973a;
shows considerable variation, but its probability distribution on trials Donner et al., 1995). Thus, the ganglion cells integrate
with a flash is distinct from that on trials without a flash. An ideal the visual input over a longer time interval before re-
detector of flashes would set a threshold somewhere between the

porting it to the brain (Naka et al., 1979). This averagingmodes of the two distributions and test whether the received spike
may be required to attenuate the effects of neural noisecount exceeds the threshold.
under conditions where the signal is small, but it comes(C) Adaptation of this code to background light. Three factors can

affect the detectability of flashes: the number of photons required at the cost of impaired time resolution. Spatial integra-
to produce an extra spike (quantum-per-spike ratio s, open circles); tion by ganglion cells is also altered in dim light: the
the effective duration of the response (t, open squares); and the receptive field loses its antagonistic surround region
standard deviation of the spike count (s, open triangles). From these

(Barlow et al., 1957; Donner and Reuter, 1965; Stell etthree parameters, one can compute the threshold intensity of a detect-
al., 1975; Masland and Ames, 1976; Bowling, 1980;able flash (filled circles). All these quantities are plotted against the

background light intensity, on axes logarithmic to base 10. Note that Muller and Dacheux, 1997). As a result, the area in which
over a wide range the threshold intensity increases proportionally to light excites an ON-type ganglion cell expands some-
the background and that this is mostly caused by a change in the what. Again, this may be a strategy to enhance the
quantum-per-spike ratio.

sensory signal by collecting as much light as possible,
at the expense of some spatial resolution (Atick and
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Redlich, 1992). All these effects are also observed in retinal eccentricity. (3) On repeated presentations of the
same stimulus, the actual measured firing rate varieshuman psychophysics (Shapley and Enroth-Cugell, 1984),

and thus it appears that retinal processing largely ac- stochastically about the expected firing rate R(t). This
random component of the firing rate is often thought tocounts for the perceptual effects of light adaptation.

This adjustment of retinal sensitivity is remarkably be independent of the stimulus, but it is unclear what
retinal mechanisms determine its properties. (4) Lightfast, occurring within a few tenths of a second after

the change in background intensity (Enroth-Cugell and adaptation alters the function that relates stimuli to re-
sponses, depending on the mean level of illumination.Shapley, 1973a; Baylor and Hodgkin, 1974). In addition,

a slower component requires several seconds to com- Most notably this affects the gain of ganglion cells, but
also their spatial receptive field, temporal integration,plete (Adelson, 1982; Nakatani et al., 1991; Yeh et al.,

1996). At least three mechanisms contribute to the vari- and spectral sensitivity.
ous aspects of light adaptation. First, individual photore-
ceptors adapt: their flash response becomes more sen-
sitive and slower in dim light (Baylor and Hodgkin, 1974; New Aspects of Retinal Signaling

Recent work has suggested several revisions to thisKraft et al., 1993; Yau, 1994). Most rods and cones show
a range where sensitivity is inversely related to mean picture of the retinal code. They regard the relevant

response variables, the nature of the relationship thatintensity, close to the ideal Weber law adaptation (Naka-
tani et al., 1991). At background intensities beyond this links them to the stimulus, and the degree of plasticity

in this relationship.Weber regime, the receptor’s flash response decreases
much more rapidly, because of saturation in the photo- Ganglion Cells Are Not Independent Channels

of Informationtransduction process. At background intensities much
below the Weber regime, the flash response is of con- A central assumption in the work reviewed above is that

the retinal code can be formulated by describing thestant amplitude. The underlying mechanisms of photo-
receptor adaptation are becoming understood in molec- responses of individual ganglion cells. An argument to

support this assumption is that the dendritic fields ofular detail (Koutalos and Yau, 1996). Second, in dim light
the retinal circuitry switches from cones to rods as the any given class of ganglion cells appear to “tile” the

retina with little overlap, so that each point on the retinaprimary input neurons. Because rods are much more
sensitive than cones, this contributes to the increased is covered by just one cell of that type (Wässle and

Boycott, 1991). However, the ganglion cell’s receptiveresponse sensitivity in dim light. In many species, this
also produces a distinct shift in the spectral sensitivity field center tends to be somewhat larger than its den-

dritic field. For example, in cat retina, up to ten receptiveof retinal ganglion cells, because rods and cones contain
different photopigments. Finally, circuits postsynaptic field centers of ON-type X cells (and similarly for the

OFF type) may overlap any given point (Peichl and Wäs-to the receptor cells also alter their sensitivity during
light adaptation. This is evident because ganglion cells sle, 1979). Thus, several neurons are conveying informa-

tion about the same location in the visual image, andalready show light adaptation at intensities too low to
trigger changes in individual rods (Donner et al., 1990). one needs to consider how their respective messages

should be combined. Do they act as independent sourcesFurthermore, light falling on one portion of the receptive
field center alters the cell’s sensitivity to light in another of information, such that each ganglion cell views the

world through its receptive field window and makes anportion (Schellart and Spekreijse, 1972; Enroth-Cugell and
Shapley, 1973b). The mechanisms that give rise to this independent decision whether or not to fire? Or do these

neurons somehow signal in a concerted fashion?“network adaptation” still remain somewhat obscure.
On a formal level, all these effects of light adaptation Evidence from multineuron recordings supports the

latter view: retinal ganglion cells engage in significantcan be viewed as a modulation of the stimulus–response
relationship controlled by the mean light level. Several patterns of concerted activity that cannot be derived

from any single-neuron description. In particular, nearbymodels of the ganglion cell light response can account
for these effects quantitatively, by modulating the transfer cells of similar functional type have a strong tendency

to fire in synchrony, much more frequently than ex-properties of various elements in the cascade (Shapley
and Enroth-Cugell, 1984; Purpura et al., 1990). pected by chance. This has been observed in many

species, including tiger salamander, goldfish, rabbit,Summary
At this stage, it helps to summarize the commonly ac- cat, and macaque (Arnett, 1978; Arnett and Spraker,

1981; Johnsen and Levine, 1983; Mastronarde, 1989;cepted elements of retinal coding. (1) The stimulus con-
sists of the intensity distribution I(x, t, l) on the retina, Meister, 1996; DeVries, 1999).

One can distinguish three types of concerted firingas a function of position x, time t, and wavelength l.
The response of the retina consists of the firing rates (Mastronarde, 1989) that differ in the time scale on which

the spikes of two ganglion cell are synchronized. RecentRi(t) of each of its ganglion cells. (2) For each distinct
type of ganglion cell, the expected firing rate R(t) can work has identified the mechanisms by which they come

about (Brivanlou et al., 1998). “Narrow” correlations in-be written as a functional of the stimulus I(x, t, l). Often,
this relationship is expressed in the form of a cascade volve synchrony of two ganglion cell spikes within 1 ms

or less; these are caused by direct excitation amongof linear filters and nonlinear transforms. Different cells
of the same type process different parts of the scene ganglion cells via electrical gap junctions. “Medium”

correlations synchronize ganglion cells on a time scalewith essentially the same stimulus–response relation-
ship, although some parameters of this function, such of 10 ms (10–50 ms in salamander, 2–10 ms in cat); these

arise from shared excitatory input the ganglion cellsas the receptive field size, may vary systematically with
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receive from a common presynaptic neuron, likely an times in visually guided behavior suggests that during
realistic vision this integration time should be no longeramacrine cell, again via gap junctions. “Broad” correla-

tions produce synchrony on a scale of 50 ms (40–100 than about 50 ms. In this interval, the individual ganglion
cell typically fires only a handful of spikes. Furthermore,ms in salamander, 40–50 ms in cat) and result from a

shared input signal that arrives from the outer retina there are situations where behavioral decisions are based
on only a few ganglion cells. For example, our two-pointthrough chemical synapses.

Among these, the “medium” correlations are most acuity—the ability to distinguish two nearby spots from
one—can resolve distances on the order of the spacingprevalent. In cat retina, these shared inputs cause about

80% of the maintained firing of Y cells (Mastronarde, between cones in the fovea; under these conditions, the
visual signal about the two spots is carried by just two1983) and 15% for X cells. In salamander retina, they

account for almost all the spontaneous activity of certain ganglion cells. Furthermore, while we ponder this dis-
play, miniature eye movements continuously scan ourganglion cells and for about 50% of all spikes recorded

from a large population with an electrode array (Meister retina over the image, so that each ganglion cell is acti-
vated for only about 20 ms at a time (Skavenski et al.,et al., 1995). These multineuron recordings also showed

that firing is not restricted to pairs of ganglion cells but 1979). Therefore, it appears that neural circuits in the
brain must operate on ganglion cell responses con-can involve groups of seven or more cells located within

about 400 mm of each other (Schnitzer and Meister, taining only a few spikes or even single action potentials.
It is well known that strong visual stimuli can lead to1996).

These correlations persist under many types of visual very precise timing of individual action potentials (Levick
and Zacks, 1970). For example, a step of light in thestimulation (Meister et al., 1995). Thus, one can subject

each multicell pattern of synchronous spikes to the receptive field center of a cat retinal ganglion cell can
reproducibly elicit spikes with a timing jitter of only 1–2same response analysis previously applied to single

neurons. The receptive field of a synchronous pair of ms (Bolz et al., 1982). Recently, it has become clear that
a much broader class of visual stimuli have this effectspikes from two ganglion cells is generally smaller than

the receptive fields of the two “parent” neurons and (Lankheet et al., 1989; Berry et al., 1997; Reich et al.,
1997).located at their intersection (Meister et al., 1995; Meister,

1996; Schnitzer and Meister, 1996). This is consistent Rapid intensity transients appear to be a key stimulus
feature for triggering precisely timed spikes. A usefulwith the above proposal that synchronous spikes arise

in a shared presynaptic amacrine cell, which contributes experimental stimulus is given by random flicker: here,
the intensity of a uniform field is updated at periodicpart of the receptive field overlap of the two ganglion

cells. It also implies that the synchronous spike pair short intervals, by drawing from a Gaussian probability
distribution. This stimulus contains power distributed(or, more generally, a multicell spike pattern) effectively

signals the activity of the shared amacrine cell. Thus, over a broad range of temporal frequencies. In many
ganglion cells, it elicits spikes or brief bursts of spikesthe detection and proper interpretation of synchronous

spikes by visual circuits in the brain could resolve the that are tightly locked to certain features in the stimulus
sequence (Berry et al., 1997): a subsequent repeat ofvisual scene with a spatial grain finer than the ganglion

cell population, for example at the resolution of small the same stimulus produces an almost identical spike
train (Figure 5A). If one analyzes these responses byamacrine cell receptive fields.

Such a multiplexing scheme might serve to compress computing the spike time histogram averaged over
many trials, one finds that the ganglion cell is perfectlyvisual information for transmission through the optic

nerve, where it is represented by the smallest number silent most of the time, except for very brief periods
(Figure 5A, bottom). At the onset of such an event, theof neurons (Meister, 1996). At the first synapse in mam-

malian visual cortex, this number expands again by a firing rate rises to the maximal value within a few milli-
seconds and then rapidly drops to zero again.factor of about 40 (Chow et al., 1950; Winfield and Pow-

ell, 1983); one suspects that the neural code for vision Clearly, this behavior does not conform well to the
conventional idea of the ganglion cell’s coding variable:changes dramatically at this stage. These cells might

decode the synchronous firing patterns among their af- a maintained firing rate that is gradually modulated by
the visual stimulus. Instead, the response consists offerent fibers (Alonso et al., 1996), if they are poised to fire

only when several postsynaptic potentials superpose in discrete firing events, each of which is specified suffi-
ciently by the time of its first spike and the total numbertime. While these proposals remain to be tested, syn-

chronous firing is an important aspect of the retinal code of spikes in the event (Figure 5B; Berry et al., 1997).
These response variables are highly reliable: the trial-simply because it affects much of the retinal output.

Instead of single cell action potentials, one should con- to-trial timing jitter of the first spike in an event is typically
only 4 ms and sometimes less than 1 ms. The numbersider the various multicell firing patterns as elementary

symbols in retinal spike trains. Thus, the vocabulary by of spikes in the event often varies by at most one from
trial to trial (Berry et al., 1997; Berry and Meister, 1998).which the retina relates the visual scene may well be

richer than estimated from single cell analysis. Thus, one concludes that individual ganglion cell action
potentials are highly significant. Firing events differingSpike Trains from Retinal Ganglion Cells Can Be

Very Precise and Reliable by just one spike can reliably represent different visual
features, and the timing of spikes reports the time ofAs discussed above, it is often assumed that the brain

must count many action potentials in order to reliably occurrence of such features with an accuracy of a few
milliseconds.estimate a ganglion cell’s firing rate and thus extract its

visual message. However, a consideration of response What is the nature of the stimulus features that cause
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Figure 5. Precise Firing Events in the Re-
sponse of a Salamander Retinal Ganglion Cell
to Random Flicker

(A) The intensity of the uniformly illuminated
field (top), a raster display of spikes on 60
repeated trials of this stimulus (middle), and
the resulting firing rate derived from the peri-
stimulus time histogram (bottom). The stimu-
lus was generated by choosing the light inten-
sity randomly from a Gaussian distribution
every 30 ms. The mean intensity was in the
photopic regime, and the standard deviation
was 35% of the mean (for further experimen-
tal detail see Berry et al., 1997).
(B) A detail view of one firing event from (A).
On each trial, the firing event is characterized
by the time T of the first spike (thick marker
in raster display) and the total number N of
spikes fired. Bottom histograms show the
distribution across trials for both quantities;
,T. is the first-spike time averaged across
trials.
(C) A sample of five intensity waveforms (thick
lines) from the experiment in (A) that each
produced a firing event with an average spike
count ,N. between 1.8 and 2.2 spikes. The
average intensity waveform preceding all
spikes from this cell is shown by the thin line
(Berry and Meister, 1998).

firing? Many different episodes in a random flicker stim- M. M., unpublished data). In cells of the cat’s lateral
geniculate nucleus, visual stimuli with an intensity timeulus can reliably trigger the same kind of firing event

(Figure 5C). It remains to be determined what property course derived from natural scenes also elicited very
precise firing events (Reinagel and Reid, 1998). Thus, itall these episodes have in common: this property could

be identified as the visual message conveyed by the is possible that ganglion cell responses during natural
vision are qualitatively different from those observedfiring event. The collection of such messages from firing

events in the ganglion cell population would constitute with traditional experimental stimuli such as drifting si-
nusoidal gratings.“what the eye tells the brain.” Again, we should test our

understanding of this code with explicit models that Retinal Processing Adapts to Higher
predict when such firing events occur for an arbitrary Stimulus Statistics
visual stimulus (Keat and Meister, 1997). In order to encode the visual scene under many condi-

Neural responses with high temporal precision are tions, the retina must efficiently match the dynamic
not limited to strong stimulation. Even at very low con- range of its output neurons to the range of sensory
trasts—barely perceptible to the experimenter—the re- inputs. As discussed above, light adaptation accom-
sponse consists of brief firing events with no maintained plishes part of this by adjusting the retina’s sensitivity
firing (Figure 6A). The precision of timing and spike num- to the prevailing intensity of light. However, the mean
ber in these events declines only weakly with contrast intensity is only one statistic that changes significantly
(Berry et al., 1997). At zero contrast, namely steady illu-

during visual processing. For example, the range of light
mination, the cells do exhibit stochastic firing, but the

intensities, or “contrast,” depends strongly on whetherproperties of this maintained activity bear little relevance
the scene is illuminated by direct light, casting sharpto the response to time-varying stimuli. Precise firing
shadows, or illuminated diffusely by indirect light. If thealso persists when the stimulus is spatially modulated,
retina maintained the same response–intensity relation-as in a randomly flickering checkerboard. In fact, ongo-
ship following an increase in contrast, its responseing experiments suggest that the retina operates in this
would saturate over much of the range of inputs encoun-same regime during natural vision. Video recordings of
tered in the new environment. Clearly, it would be benefi-the natural environment projected onto the retina pro-
cial to alter the response properties of ganglion cells,duced sparse and precise firing events in the ganglion

cells of rabbit and salamander (M. J. B., J. Keat, and in order to adapt to the new range of intensities.
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Figure 6. Contrast Adaptation in the Light Response of Salamander Retinal Ganglion Cells

(A) Firing events in response to uniform random flicker (see Figure 5A) of the same mean intensity but varying contrast. The contrast, C,
measured as the standard deviation of the Gaussian intensity distribution in units of the mean, is indicated on the right. The two stimulus
traces (top) show the time course of the light intensity for the two extreme values of contrast, C 5 0.023 and C 5 0.35. Note that the waveforms
are identical except for the magnitude of fluctuations about the mean intensity.
(B) The average firing rate of a ganglion cell following a change in the contrast of uniform random flicker (from Smirnakis et al., 1997). Every
100 s, the contrast C alternated between 0.09 and 0.35. A sample intensity waveform is shown at the top, but each stimulus trial used a
different random sequence. The firing rate was computed from the average spike count over 100 trials in 5 s time bins.
(C) The average firing rate of a ganglion cell following a change in the spatial pattern of random flicker (from Smirnakis et al., 1997). Every 60
s, the stimulus pattern alternated between a uniform field and a checkerboard of 0.272 mm square size. The uniform field and each square
of the checkerboard were modulated by independent random flicker sequences, all with the same mean and a contrast C of 0.24. The firing
rate was computed from the average spike count over 50 trials in 2 s time bins. Note that following adaptation to the checkerboard, the
response is more sensitive to the uniform field, and vice versa, following adaptation to the uniform field, the response is more sensitive to
the checkerboard.

Such adaptation to contrast is a well-known phenom- high-contrast environment larger intensity transients are
required to trigger a ganglion cell response than in theenon in human psychophysics. For example, after pro-

longed viewing of a high-contrast grating, our sensitivity low-contrast environment. For some cells, the threshold
for firing appears to vary in proportion to the contrastfor detection of similar gratings is much reduced (Blake-

more and Campbell, 1969). The loss of sensitivity under (Sakai et al., 1995); such neurons detect and report in-
tensity fluctuations normalized to the average range ofhigh-contrast conditions and subsequent recovery un-

der low-contrast conditions requires several seconds fluctuations (Figure 6A). After a shift back to low con-
trast, the retina’s sensitivity gradually recovers to theto tens of seconds (Blakemore and Campbell, 1969;

Schieting and Spillmann, 1987). Similar effects of slow initial state.
These adjustments in sensitivity are relatively slowcontrast adaptation have been observed in the re-

sponses of neurons in the visual cortex (Albrecht et al., and develop with exponential time constants on the
order of 5–20 s (Figure 6B). Interestingly, the decay of1984; Ohzawa et al., 1985; Allison et al., 1993; Carandini

and Ferster, 1997). These changes have been thought sensitivity after the switch to a high-contrast environ-
ment occurs several times more rapidly than the recov-to arise in cortical circuitry, because adapting stimuli

presented to one eye can have some effect on test ery in a low-contrast environment (Smirnakis et al.,
1997). This long time course of contrast adaptation dis-stimuli presented to the other eye. However, recent work

shows that such gradual contrast adaptation also oc- tinguishes the process from the “contrast gain control”
discussed above, which relies on a nearly instantaneouscurs in the retina and substantially modifies the light

response of retinal ganglion cells. negative feedback effect during strong light transients
(Shapley and Victor, 1978; Victor, 1987). Instead, theThese changes are revealed in experiments where a

flickering visual stimulus suddenly changes from low time course of contrast adaptation in retinal ganglion
cells resembles that observed psychophysically andcontrast to high contrast of the same mean intensity

(Donner et al., 1991; Smirnakis et al., 1997). Following represents a slow adjustment of the retinal code to a
change in the statistical makeup of the environment. Itsuch a switch, the retina gradually reduces its sensitivity.

When this adaptation is complete, one finds that in the has been argued that a reliable assessment of second
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order statistics, such as the range of intensity fluctua- still finds portrayed in textbooks. One important goal is
to better understand the cellular mechanisms underlyingtions about the mean, requires many independent sam-

ples of the light intensity, and thus adaptation to the such phenomena.
Natural Visionwidth of the intensity distribution is necessarily slower

than to the mean (Donner et al., 1990). Furthermore, a However, even at the schematic level of the retinal mod-
els discussed above, we do not yet have a satisfyingsudden increase in the intensity range rapidly produces

very large or very small intensity values and, thus, should understanding of how the retina functions during vision.
To date we cannot predict—to any acceptable degreebe detected more readily than a sudden decrease, which

might explain the observed asymmetry in adaptation to of accuracy—the firing of ganglion cells while an animal
is viewing a natural scene. Similarly, no one would ven-high and low contrast (DeWeese and Zador, 1998).

The neurons that sense contrast and control this ad- ture to describe the visual scene given only a recording
of the optic nerve’s spike trains. The reason for thisaptation appear to integrate intensity fluctuations over

a spatial area of several hundred micrometers on the state of affairs lies in the fact that natural vision has not
been the focus of much retinal research. The late 1960’sretina. In fact, there are at least two different contrast

sensors with different spatial sensitivities (Smirnakis et saw the introduction to visual neurophysiology of pow-
erful methods from systems analysis: the use of sinusoidal., 1997). This allows retinal ganglion cells to adapt to

an environment of low spatial frequency while remaining visual stimuli, a systematic variation of the stimulus pa-
rameters, and an emphasis on testing retinal processingvery sensitive to stimuli of high spatial frequency and

vice versa (Figure 6C). From these observations, one can with weak responses just above threshold (Stone, 1983;
Shapley and Lam, 1993). These approaches have beenconclude that contrast adaptation is not implemented

by the individual photoreceptor (Donner et al., 1991; very successful in defining different retinal pathways
and identifying their temporal and spatial receptive fieldsSmirnakis et al., 1997). Intracellular recordings from reti-

nal neurons in catfish have shown directly that the re- and transfer functions. However, the resulting models
of retinal processing do not generalize well to real vision.sponse properties of photoreceptors, horizontal cells,

and bipolar cells do not change when the contrast of a Natural vision happens almost exclusively far above
the response threshold. Outside of psychophysics dark-flicker stimulus is altered (Sakai and Naka, 1987). On the

other hand, visual processing by amacrine and ganglion rooms, we are rarely placed in a situation where some-
thing important is barely detectable. Real visual scenescells is altered substantially. Thus, the site of contrast

adaptation may lie in the inner retina, but its cellular contain intensities spanning several orders of magni-
tude (van der Schaaf and van Hateren, 1996), with varia-mechanisms remain unknown.

What might be the functional benefit of this process? tion on all spatial and temporal scales (Barlow, 1961;
Field, 1987; Dong and Atick, 1995). This is likely to influ-As suggested above, it may represent a dynamic adjust-

ment of the retina’s output range to the range of its in- ence the neural code significantly: for example, as dis-
cussed above, the broad temporal spectrum can leadput signals. This would avoid saturation of the ganglion

cell response under high-contrast conditions while still to precisely timed firing events in retinal ganglion cells,
which are poorly captured by the prevalent models forallowing a high signal-to-noise ratio under low-contrast

conditions. On the other hand, contrast adaptation also a continuous ganglion cell firing rate. In summary, while
questions phrased about vision near the detectionplays a “computational” role: it generates a neural repre-

sentation of the visual scene that has been normalized threshold may be more tractable, it is not clear that the
answers are relevant to everyday vision. As a result, weto the average size of intensity fluctuations in the scene.

In the process, information about the absolute contrast have an exquisite understanding of how a toad can
perceive meal worms in almost complete darkness (Ahoin the image is discarded (Figure 6A). In an analogous

fashion, light adaptation normalizes the neural image to et al., 1993a, 1993b), but only the most qualitative notion
of what our own retina does while we read this article.the mean light level and discards information about the

absolute intensity in the image. The purpose of both The only effective remedy will be to study visual pro-
cessing under conditions of natural stimulation. Thereoperations would be to remove from the image behavior-
has been a general reluctance to use natural images orally uninteresting aspects that are mostly dependent on
movies in vision research, mostly due to the seeminglythe conditions of illumination or the average structure
intractable complexity of natural scenes, the need toof the environment, while preserving and emphasizing
consider the animal’s eye movements, and the obviousthe differences between objects in the visual scene. One
bias that results from choosing any one stimulus fromcan speculate further that each successive stage of the
such a large set. On the other hand, given the largeearly visual system adapts to—and consequently dis-
uncertainties about what actually happens during natu-cards—what appear to be constants in the neural repre-
ral vision, studying the response to even one or a fewsentation from the previous stage (Barlow, 1990).
brief epochs of real visual input will likely be revealing.
A number of recent developments have made the asso-
ciated problems more tractable: current video technol-Future Directions

Recent work on the retina has documented several as- ogy greatly facilitates the acquisition, editing, and display
of natural stimuli (Land, 1992; Gallant et al., 1998). Al-pects of visual processing, such as concerted coding

and contrast adaptation, that previously were thought though standard video cannot perfectly reproduce the
resolution and intensity range of natural scenes, itto occur only at the level of the cortex. This emphasizes

that the retinal transformation of the visual stimulus is should be remembered that television in fact provides
much of the daily visual input for human primates. Also,more sophisticated than the simple linear filtering one
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there has been considerable progress in understanding lateral inhibition in space, band-pass filtering in time,
and even the observed spectral sensitivity curves (Srini-the statistics of natural scenes. Images from the natural

environment are not random, but contain very strong vasan et al., 1982; Buchsbaum and Gottschalk, 1983;
Atick, 1992; Atick et al., 1992; Dan et al., 1996). At lowregularities in the spatial, temporal, and chromatic do-

mains (Field, 1987; Ruderman, 1994; Dong and Atick, light levels, when visual processing is seriously affected
by noise, a certain degree of redundancy is beneficial1995; van der Schaaf and van Hateren, 1996; Ruderman

et al., 1998). Such insights about the composition of to safeguard reliable transmission. Again, one can com-
pute how the optimal spatial filter should change de-natural scenes will also help in developing synthetic

stimuli whose image statistics at least approximate the pending on the signal-to-noise ratio, and the result pre-
dicts correctly the measured profiles of ganglion cellnatural world (Field, 1994; Ruderman, 1997).

Information Theory receptive fields at different light levels (Atick and Red-
lich, 1992; van Hateren, 1992). Given the simplicity of theFinally, the analysis of retinal processing will benefit

greatly from the fruitful application of information theory. assumptions, it is surprising how well this interpretation
works. In fact, this is currently the only framework thatIt has long been recognized that the essential substance

transmitted by neurons is not electric charge or neuro- predicts the functional properties of retinal ganglion
cells from a simple underlying principle. It seems com-chemicals, but information (MacKay and McCulloch,

1952). In analyzing a neural system, it is essential to pelling to conclude that data compression is truly an
important purpose of retinal circuitry and that evolutionmeasure and track the flow of this substance, just as in

studies of the vascular system one might want to mea- has adapted its strategies to the visual ensemble pro-
vided by the environment. One hopes that as we elabo-sure blood flow. Fortunately, there exists a well estab-
rate other aspects of retinal coding, they will find a simi-lished formalism by which to measure information and
larly satisfying interpretation.analyze its processing (Shannon and Weaver, 1963;

Rieke et al., 1997). A recent study implemented a specific
Referencesmodel of retinal coding to attempt a reconstruction of

the visual stimulus directly from the spike trains of sala-
Adelson, E.H. (1982). Saturation and adaptation in the rod system.mander ganglion cells (Warland et al., 1997). A local Vision Res. 22, 1299–1312.

group of four cells from different functional types was
Aho, A.C., Donner, K., and Reuter, T. (1993a). Retinal origins of the
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