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Abstract

A paradigm for constructing and analyzing non-Poisson stimulus-response models of neural spike train activity is presented.
Inhomogeneous gamma (IG) and inverse Gaussian (IIG) probability models are constructed by generalizing the derivation of the
inhomogeneous Poisson (IP) model from the exponential probability density. The resultant spike train models have Markov
dependence. Quantile–quantile (Q–Q) plots and Kolmogorov–Smirnov (K–S) plots are developed based on the rate-rescaling
theorem to assess model goodness-of-fit. The analysis also expresses the spike rate function of the neuron directly in terms of its
interspike interval (ISI) distribution. The methods are illustrated with an analysis of 34 spike trains from rat CA1 hippocampal
pyramidal neurons recorded while the animal executed a behavioral task. The stimulus in these experiments is the animal’s
position in its environment and the response is the neural spiking activity. For all 34 pyramidal cells, the IG and IIG models gave
better fits to the spike trains than the IP. The IG model more accurately described the frequency of longer ISIs, whereas the IIG
model gave the best description of the burst frequency, i.e. ISIs520 ms. The findings suggest that bursts are a significant
component of place cell spiking activity even when position and the background variable, theta phase, are taken into account.
Unlike the Poisson model, the spatial and temporal rate maps of the IG and IIG models depend directly on the spiking history
of the neurons. These rate maps are more physiologically plausible since the interaction between space and time determines local
spiking propensity. While this statistical paradigm is being developed to study information encoding by rat hippocampal neurons,
the framework should be applicable to stimulus-response experiments performed in other neural systems. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Accurate statistical descriptions of neural spiking
activity are crucial for understanding neural informa-
tion encoding. Simple and inhomogeneous Poisson (IP)
processes are the statistical models most frequently used
in simulation studies and experimental analyses of neu-
ral spike trains (Tuckwell, 1988; Rieke et al., 1997;
Gabbiani and Koch, 1998; Reich et al., 1998). Al-

though the Poisson models have provided theoretical
predictions and statistical methods for experimental
data analysis, spiking activity in many neural systems
cannot be completely described by these processes
(Gabbiani and Koch, 1998; Shadlen and Newsome,
1998). Statistical analyses of several different neural
systems under approximately stationary experimental
conditions have described interspike interval (ISI) dis-
tributions as unimodal, right skewed probability densi-
ties such as the gamma, inverse Gaussian and
lognormal (Pfeiffer and Kiang, 1965; Tuckwell, 1988;
Iyengar and Liao, 1997; Gabbiani and Koch, 1998).
Analytic and simulation studies of elementary stochas-
tic biophysical models of single neurons are consistent
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with these empirical findings (Tuckwell, 1988; Iyengar
and Liao, 1997; Gabbiani and Koch, 1998). Because the
exponential probability density is the probability model
associated with a simple Poisson counting process, the
counting processes associated with these elementary
models cannot be Poisson. These elementary ISI models
based on unimodal right-skewed probability densities
are renewal models, and as such, do not allow for
dependence in the spiking pattern of the neurons.

Stimulus-response experiments are widely used neu-
roscience protocols that require statistical analyses for
correct interpretation of experimental data. In these
experiments a natural or artificial stimulus is given and
the response, the spiking activity of one or a set of
neurons, is measured. Examples include motion stimu-
lation of the fly H1 neuron (Bialek et al., 1991), natural
sound stimulation of the bullfrog eight nerve (Rieke et
al., 1995), position stimulation of of pyramidal (place)
cells in the rat hippocampus (O’Keefe and Dostrovsky,
1971), and wind stimulation of the cricket (Miller et al.,
1991) and cockroach (Rinberg and Davidowitz, 2000)
cercal systems. In addition to the applied stimulus,
neural spiking activity can also be modified by back-
ground variables not associated with the stimulus, such
as the theta rhythm in the case of the hippocampal
place cells (O’Keefe and Recce, 1993; Skaggs et al.,
1996). A strong appeal of using the IP model to analyze
stimulus-response data is that the effects of stimuli and
background variables on spiking activity can be simply
modeled by making the Poisson rate an explicit func-
tion of these variables (Brown et al., 1998b; Zhang et
al., 1998). Despite this analytic convenience, goodness-
of-fit assessments have shown that the IP model does
not completely describe the stochastic structure of spike
trains from stimulus-response experiments (Van
Steveninck et al., 1997; Brown et al., 1998b; Fenton and
Muller, 1998; Reich et al., 1998).

More accurate statistical description of neural spike
train activity should result if models that allow depen-
dence in the spike train and include the effects of
stimuli and background variables on the spiking activ-
ity are considered. Development of these new models
also requires appropriate goodness-of-fit procedures to
assess model agreement with experimental data.

Here, inhomogeneous neural spike train models are
derived by combining a renewal model with a one-to-
one transformation function to relate the variable of
the renewal probability density to the spike times and
the stimulus. The transformation used will generate
inhomogeneous models in which the spike trains have
Markov dependence. This construction is used to build
inhomogeneous gamma (IG) and inverse Gaussian
(IIG) probability models and present goodness-of-fit
methods using Akaike’s Information Criterion (AIC),
Bayesian Information Criterion (BIC), quantile–quan-
tile (Q–Q) plots, and Kolmogorov–Smirnov (K–S)

plots, to evaluate model agreement with experimental
data. The models and the diagnostic methods are ap-
plied to the analysis of spike trains from place cells in
the CA1 region of the rat hippocampus collected simul-
taneously with path data from rats foraging in an open
circular environment. In these experiments the stimulus
is the animal’s position in the environment and the
response is the neural spiking activity.

2. Model construction

2.1. Inhomogeneous interspike inter6al probability
models

The objective is to model the ISI distribution of a
neuron as a function of spiking history, stimulus inputs
and background variables. This is done by combining a
probability model that defines the stochastic structure
of the neural spike train with a one-to-one transforma-
tion that relates the spike times, the stimulus, and
covariates to the random variable of the probability
density. Because the construction uses the intensity-
rescaling transformation, the history dependence in the
spike train will be Markov.

We begin by defining notation. Let (0, T ] denote the
observation interval of the experiment and 05 t0B t1B
t2, . . .,tkB tk+1, . . ., tK5T be the spikes recorded from
a given neuron in that interval. Let fz(z) be a renewal
process probability density defined for z on (0,�), let t
be the time variable defined on (ta,�), and z=g(t) be
a one-to-one differentiable transformation from (ta,�)
to (0,�), for ta]0. By the change-of-variables formula
(Port, 1994), the probability density of t can be com-
puted from fz(z) and g(t) and is defined as

ft(t)=
)dg
dt
)
fz(g(t)). (1)

To illustrate the construction, the standard gamma
probability density is considered as the first renewal
model defined as

fz(z)=
1

G(g)
z g−1 e−z, (2)

where z\0, g\0 is the shape parameter and G(g) is
the gamma function (Johnston and Kotz, 1971). For
the standard gamma probability density one has
E(z)=g and Var(z)=1. The gamma probability den-
sity in Eq. (2) has the exponential probability fz(z)=
e−z as the special case g=1. As g increases, the shape
of the probability density changes from that of an
exponential density to one that is more peaked and
symmetric (Gabbiani and Koch, 1998). If gB1 (g\1)
then the spike train data are more (less) variable than
the simple exponential or Poisson counting models. The
parameter g is also the signal-to-noise ratio, and g−1/2
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is the coefficient-of-variation. The gamma probability
model has been suggested as an alternative to the
exponential probability model for describing ISI proba-
bility densities because the additional parameter g gives
a more flexible range of shapes (Bishop et al., 1964;
Nakahama et al., 1968; Correia and Landolt, 1977;
Gabbiani and Koch, 1998). The Erlang probability
density is a special case of the gamma probability
density in which g is a positive integer greater than 1.
The Erlang probability density is the ISI model ob-
tained when a non-leaky stochastic integrate-and-fire
model with a fixed threshold is driven by Poisson
excitatory inputs with a constant rate parameter (Tuck-
well, 1988).

The intensity-rescaling transformation is defined as

z=g(t)=g
& t

t a

l(u) du, (3)

where l(t) is a strictly positive intensity function. Ap-
plying Eq. (1) with fz(z) given in Eq. (2), g(t) given in
Eq. (3), and setting t= tk, and ta= tk−1, yields the
inhomogeneous gamma (IG) probability density

ft(tk �tk−1)

=
gl(tk)
G(g)

�
g
& tk

tk−1

l(u) du
ng−1

exp
!

−g
& tk

tk−1

l(u) du
"

,

(4)

since

dzk

dt
)
tk

=gl(tk),

(Berman, 1981; Brown et al., 1998a). The probability
density in Eq. (4) has the IP probability density as the
special case of g=1, defined as

ft(tk �tk−1)=l(tk) exp
!

−
& tk

tk−1

l(u) du
"

. (5)

As a second example the inverse Gaussian probabil-
ity density is taken as the renewal probability model

fz(z)=
� 1

2pz3

�1/2

exp
!

−
1
2

(z−c)2

c2z
"

, (6)

where z\0 and c\0 is the location parameter and
E(z)=c (Chhikara and Folks, 1989). The inverse
Gaussian probability density has been suggested as an
empirical model for ISI probability densities (Tuckwell,
1988). The inverse Gaussian has also been suggested
because it is the ISI probability density that is derived
when a non-leaky integrate-and-fire model with a fixed
threshold is driven by Wiener process inputs (Tuckwell,
1988; Iyengar and Liao, 1997).

Applying Eq. (1) with fz(z) given in Eq. (6), z=
g(t)=	t a

t l(u) du, dzk/dt �tk
=l(tk), t= tk and ta= tk−1,

yields the IIG probability density

ft(tk �tk−1)=
l(tk)�

2p
�& tk

tk−1

l(u) du
n3n1/2

×expÍ
Ã

Ã

Á

Ä

−
1
2

�& tk

tk−1

l(u) du−c
�2

c2 & tk

tk−1

l(u) du
Ì
Ã

Ã

Â

Å

. (7)

The inhomogeneous models in Eqs. (4) and (7)
should provide better descriptions of stimulus-response
ISI data than the IP model. Unlike in the case of the IP
model, the counting process models associated with
Eqs. (4) and (7) cannot be expressed in closed form.
The specification of l(t) used in the analyses of
hippocampal place cells is described in Section 4.2.

2.2. Relation between ISI distribution and the spike
rate function

For the IP model the intensity function l(t) is also
the rate function of the spiking process. This is not true
in general for point process models. The rate function,
also termed the hazard function in survival analysis,
can be defined for any ISI probability density as

r(t)=
ft(t �tk−1)

1−
& t

tk−1

ft(u �tk−1) du
(8)

for t\ tk−1 (Daley and Vere-Jones, 1988). The rate
function defines the probability of a spike in [t, t+Dt),
given that the last spike occurred at tk−1, as r(t)Dt. In
survival analysis, the hazard r(t)Dt may be interpreted
as the risk of a failure in [t, t+Dt) given that the
system has survived up to time t. In Appendix A (Eq.
(A.4)) it is shown that r(t)=l(t) for the IP model. It is
also shown in Appendix A that any ISI probability
density may be written explicitly in terms of its rate or
hazard function (Kalbfleisch and Prentice, 1980;
Brillinger, 1988; Daley and Vere-Jones, 1988). Eq. (8) is
the basis for the goodness-of-fit techniques developed in
Section 3 using the rate-rescaling theorem.

3. Goodness-of-fit

An essential component of the statistical analysis
paradigm is the assessment of goodness-of-fit, i.e. the
evaluation of how well the spike train data are de-
scribed by a given inhomogeneous probability model.
Four goodness-of-fit procedures are considered. Two of
these are the well-known model comparison statistics,
AIC (Box et al., 1994) and BIC (Shwartz, 1978). The
other two are the Q–Q plots and K–S plots, derived
specifically for point process data analysis.
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AIC and BIC give single number summaries of the
efficiency with which a given model describes a set of
data by measuring the trade-off between the fit of the
model to the data and the number of parameters re-
quired to achieve that fit. These indices are helpful for
identifying a good model or set of models for a data
series. However, they do not describe what characteris-
tics in the data the model does or does not describe.
For this purpose Q–Q (Wilks et al., 1962) and K–S
(Ogata, 1988) plots are developed. Both of these diag-
nostic techniques are based on the rate-rescaling theo-
rem (Meyer, 1969) described below.

3.1. Rate-rescaling theorem

Let R(t)=	0
t r(u) du define the rate-rescaling trans-

formation function. Because r(t) is nonnegative, R(t) is
a monotonically increasing function, and the rate-
rescaling transformation is a one-to-one mapping of the
tk into R(tk). We let

tk=R(tk)–R(tk−1). (9)

If the inhomogeneous model from which R(t) is
constructed is correct, then by the rate-rescaling theo-
rem (Meyer, 1969; Daley and Vere-Jones, 1988; Ogata,
1988) the tks are independent, identically distributed
exponential random variables with unit rate. Otherwise
stated, the tks are distributed as a stationary Poisson
process with unit rate. The rate-rescaling theorem states
that any regular point process can be transformed into
a Poisson process with unit rate.

3.2. Q–Q plots

For any postulated ISI model the rate-rescaling theo-
rem can be used to measure agreement between the
model and the spike train by constructing a Q–Q plot.
Assume that there are K spikes in the recorded spike
train. Let Ft(t) be the cumulative distribution function
(CDF) corresponding to the unit exponential probabil-
ity density in Eq. (2). If the corresponding inhomoge-
neous model is correct, then the transformed spike
times tks are independent and identically distributed
with exponential probability density e−t. Let t(k) be the
set of tks ordered from smallest to largest and let
bk= (k−1/2)/K, for k=1, . . ., K. The t(k)s are the K
empirical quantiles of the transformed spike times for a
given model and set of parameter estimates. One can
also estimate the quantiles of the transformed data
from the model by computing

t̃k=F t
−1(bk)= − log(1−bk), (10)

where F t
−1 is the inverse of the CDF of e−t. A plot of

t(k) against t̃k, i.e. the empirical quantiles versus the
model derived quantiles, is termed a Q–Q plot. If the
model is correct, then the Q–Q plot should be a

straight line through the origin with slope 1 (Wilks et
al., 1962). In most applications the Q–Q plots assess
agreement between a data series and a given probability
density model without the need to transform the data.
Because in this analyses the transformation between the
tks and R(tk) is one-to-one, there is close agreement
between the inhomogeneous model and the place cell
spike train series if and only if there is close agreement
between the tks and the unit exponential probability
model. Hence, Q–Q plots on the transformed scale may
be used to assess goodness-of-fit of the inhomogeneous
model. The deviations from the 45° line show where the
model fails to agree with the data. An important advan-
tage of the Q–Q plots is that they use all the data
points and require no binning.

3.3. K–S plots

The K–S plot is another graphical measure of good-
ness-of-fit constructed based on the rate-rescaling theo-
rem. If the model generating the tks is correct, then the
uk=1−e−tk are independent, identically distributed
uniform random variables on [0, 1). Therefore, the or-
dered quantiles u(k), plotted against bk= (k–1/2)/K
should be a 45° line (Ogata, 1988). Confidence bounds
based on the distribution of the K–S statistic can be
constructed for the plot to test formally the agreement
between a proposed model and the data (Ogata, 1988).
Like the Q–Q plots, the K–S plots use all the data
points and do not require binning.

4. Data analysis: hippocampal place cells

To illustrate the model construction and goodness-
of-fit methods developed in Section 3, in this section the
IP, IG and IIG models using a Gaussian spatio-tempo-
ral intensity function are presented. The model fits are
used in two applications: an analysis of burst activity
and a study of temporal and spatial rate maps.

4.1. Experimental protocol

The experimental methods have been previously re-
ported in detail (Brown et al., 1998b). Briefly, a Long
Evans rat was implanted with microdrive arrays hous-
ing 12 tetrodes (four wire electrodes) (Wilson and Mc-
Naughton, 1993). Recordings of the animal’s position
(stimulus), spiking activity (response) and EEG theta
rhythm were made while the animal foraged for choco-
late pellets scattered approximately uniformly in a
black cylindrical environment 70 cm in diameter with
30 cm high walls and a fixed visual cue (Muller et al.,
1987).

The spiking activity of 34 place cells from the animal
recorded during the first 14 min of foraging was ana-
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lyzed. The number of spikes per cell ranged from 379 to
2254.

4.2. A spatio-temporal model of place cell spiking
acti6ity

The form of the intensity function l(t) specified for the
place cell data is the one proposed by Brown et al.
(1998b). The essential features of the place field model
are summarized here. To define the model let x(t)=
[x1(t), x2(t)]% be the 2×1 vector denoting the animal’s
position at time t, and let u(t) be the phase of the theta
rhythm at time t. Assume that the place field position
component for a cell is modeled as a Gaussian function
defined as

l(t �x(t), jx)=exp
!

a−
1
2
(x(t)−m)%W −1(x(t)−m)

"
,

(11)

where m= [m1, m2]% is the 2×1 vector whose components
are the x1 and x2 coordinates of the place field center, a

is the location intensity parameter,

W=
�s1

2 0
0 s2

2

n
(12)

is a scale matrix whose scale parameters in the x1 and x2

directions are s2
1 and s2

2, respectively, and jx= [a, m, W ].
Eq. (11) defines the intensity function of the stimulus-

response model and represents the function’s dependence
on the animal’s position in the environment as a two-di-
mensional Gaussian surface. The stimulus (position) is
related to the response (neural spiking activity) by
substituting Eq. (11) into Eqs. (4), (5) and (7). For the
IP, IG and IIG models the parameters estimated by
maximum likelihood (Casella and Berger, 1990) for each
of the 34 place cells are respectively jIP=jx, jIG= (jx, g)
and jIIG= (jx, c).

For the IP analyses the effect of theta phase modula-
tion on the spike train activity is also included. The theta
phase component of the cell is modeled as a cosine
function defined as

lu(t �u(t), ju)=exp{b cos(u(t)−u0)}, (13)

where b is a modulation factor, u0 is the theta phase of
the maximum of lu(t �u(t), ju)and ju= [b, u0]. There-
fore, the intensity function for the IP model with theta
modulation is the product of the intensity functions in
Eqs. (11) and (13). This model was also fit by maximum
likelihood to the spike train data of each of the 34 place
cells.

4.3. Goodness-of-fit

4.3.1. AIC and BIC analysis
AIC and BIC give identical results when comparing

goodness-of-fit by cell of the IP, IP with theta, IG, and
IIG models. According to both indices, the IG model fits
better than both the IP model and the IP model with theta
for all the cells. By AIC and BIC, the IIG model gives
a better fit than the IP model with and without theta for
all the cells with the exception of one (Cell 8). The
differences between the respective AIC and BIC values
for Cell 8 for the IIG, IP and IP model with theta were
small, but nevertheless, favored slightly the two Poisson
models. Overall, the AIC/BIC criteria suggested that
11 cells (including Cell 8) were best fit by the IG
model, whereas the remaining 23 were best fit by the
IIG model.

4.3.2. Q–Q plot analysis
The quantiles of the rate-rescaled probability densities

vary across two or more orders of magnitude. Therefore,
to evaluate accurately model agreement and disagree-
ment with the experimental data the Q–Q plots of the
place cells are displayed in three different ranges: 0–30th
percentile (Fig. 1A); 0–95th percentile (95% range, Fig.
1B); and 0–100th percentile (Fig. 1C). Ten representative
cells are shown to summarize the findings. It is shown
below, in Section 4.4.1, that the tk ’s up to the 30th
percentile correspond approximately to ISI’s520 ms.
The study of model goodness-of-fit in this range will be
important for interpreting the bursts analysis in that
section.

In the 30% range (Fig. 1A), the IIG model fits show
the best agreement with the data as their Q–Q plots in
this range are all close to the 45° line. The IP model fits
appreciably underestimate the probability densities of the
data, whereas the IG model fits initially overestimate the
probability densities of the data in the lower quantiles
and then underestimate the larger quantiles in this range.
In the 95% range (Fig. 1B), the IG model fits give the
strongest agreement with the probability densities of the
data. Beyond approximately the 30th percentile (small
black square in Fig. 1B), the IIG model fits overestimate
the probability densities of the data. In contrast, all the
IP model fits underestimate the probability densities of
the data up to approximately the 50th percentile, and
then overestimate them from the 50th to the 95th
percentile. Both the IP and IG models overestimate the
data probability densities in the 95th to 100th percentile
(Fig. 1C). Although all the IIG model fits in this range
underestimate the probability densities of the data, they
are closer to the 45° line than those of the other two
models.

To present the Q–Q plot goodness-of-fit analysis for
all the cells, the slopes of the Q–Q plots were computed
for each cell for the three models. These findings were
summarized as boxplots in the 30% (Fig. 1D), the 95%
(Fig. 1E), and the 100% (Fig. 1F) ranges. The slope of
the Q–Q plot provides a quantitative measure of how
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close a given model fit is to the data. A slope of 1
suggests close agreement between the model and the
data.

The boxplot summaries across all the cells agree
completely with the findings from the graphical analy-
ses in Fig. 1A–C. The median slope of the IP model in
the 30% range was 0.14 (Fig. 1D), consistent with this
model underestimating the probability density of the
data in this range (Fig. 1A). The median slope of the
IG model in the 30% range was 0.54 (Fig. 1D), because
the IG model fits initially overestimate, then underesti-
mate the probability densities of the data in this range
(Fig. 1A). In contrast, the median slope of the IIG
model fits in the 30% range was 0.79 (25th–75th box-
plot percentile ranging from 0.67 to 0.98) suggesting as
in Fig. 1A, that the IIG model has the best agreement
in this range.

For the 95% range (Fig. 1E) the median slope of the
IP model Q–Q plots is 1.19 (0.96–1.23), consistent with
the IP model fits underestimating the data probability

densities up to approximately the 50th percentile, and
overestimating them from this percentile upward (Fig.
1B). Because the degree of overestimation exceeds the
degree of underestimation, the median slope exceeds 1.
Nearly all the IIG Q–Q plot slopes in the 95% range
are greater than 1, with a median of 1.17. The median
slope of the IG model fits in the 95% range was 0.95
(0.89–0.99) in agreement with Fig. 1B. For all the cells,
the IG fits give the best agreement with the probability
densities of the data in the 95% range.

In the 100% range, the slopes of the IIG model are
closer to 1 than those of either the IP or IG (Fig. 1F).
The median Q–Q plot slopes were 1.03 for the IIG
model, 1.19 for the IG model, and 1.88 for the IP
model. Overall, the IIG model fits are closer to the
probability densities of the data because they agree well
with the data in the 30% range (Fig. 1A), are close in
the 50–95% range (Fig. 1D), and deviate least in the
95th to 100th percentile (Fig. 1C).

Fig. 1. (A–C) Quantile–quantile (Q–Q) plots of the inhomogeneous Poisson (IP) (green lines), inhomogeneous gamma (IG) (blue lines), and
inverse Gaussian (IIG) (red lines) model fits to the spike trains of ten of the 34 place cells analyzed. The 45° line represents exact agreement
between the model and the spike train data. The Q–Q plots are displayed for 0–30th percentile (A); 0–95th percentile (B); and 0–100th percentile
(C). The dotted squares in (B) and (C) indicate respectively the 30th and the 95th percentiles. The IIG model fits the data best in both the 30%
range and the 95–100% percentile range, whereas the IG model fits best in the 30–95% range. (D–F) Box and whiskers plot summaries of the
Q–Q plot slopes for the IP, IG and IIG model fits of all 34 cells for the 30% (D), the 95% (E), and the 30% (F) ranges. The lower border of the
box is the 25th percentile of the distribution and the upper border is the 75th percentile. The white bar within the box is the median of distribution.
The distance between the 25th and 75th percentiles is the interquartile range (IQR). The lower (upper) whisker is at 1.5× the IQR below (above)
the 25th (75th) percentile. All the black bars below (above) the lower (upper) whiskers are far outliers. A slope of 1 for an approximately linear
relation between the empirical and model quantiles suggests close agreement between the model and the data. The boxplot summaries are in strong
agreement with the Q–Q plots in A, B, and C, D and F, show that the IIG model fits describe best the data in the 30 and the 95–100% ranges,
respectively. E shows that the IG model gives the best fits in the 95% range.
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4.3.3. K–S plot analysis
The K–S plots provide an alternative graphical sum-

mary for comparing the model fits with the data. A
rigorous application of the K–S tests to the fits of the
IP, IG and IIG models rejects the hypothesis that any
of these three models agrees with the spike data of any
of the 34 cells. However, because the K–S plot provides
an explicit graphical summary of where the model fails
to agree with the data, we measured the lack-of-fit
between each model and the data taking as the K–S
distance the average distance between the K–S plot and
the 45° line.

The K–S distances agreed closely with the AIC/BIC
findings regarding which models best described the
data. The AIC/BIC criteria identified 11 cells as best fit
by the IG model, 23 cells as best fit by the IIG model,
and no cell as best fit by the IP model. The K–S
statistics identified 21 of the same 23 cells as best fit by
the IIG model, the remaining 13 as best fit by the IG
model and none as best fit by the IP model. The two
cells for which the AIC/BIC and the K–S distance
classifications did not agree had the closest AIC/BIC
values of all the cells when comparing IG and IIG.

Fig. 2A (B) shows the K–S plot of Cell 1 (Cell 9)
which is best fit by the IG (IIG) model according to
both the AIC/BIC and K–S distance criteria. The close
agreement of the IG model with the spike train of Cell
1 is evidenced by the fact that its K–S plot lies almost
entirely within the 95% confidence bounds (Fig. 2A).
Although the overall fit of the IG model is best for this
cell, the IIG model also shows excellent agreement with
these data through the lower quantiles. Similarly Cell 9,
which is best fit by the IIG model, has its K–S plot
almost entirely within the 95% confidence bound (Fig.
2B).

The K–S distances for each cell for the fits of each of
the three models are summarized with boxplots in the
30% (Fig. 2C), the 95% (Fig. 2D), and the 100% (Fig.
2E) ranges. As indicated by the Q–Q-plot analysis the
IIG models fits agree most closely with the probability
densities of the data in the 30% range (Fig. 2C). The
median K–S distance in the 30% range was 0.12 for the
IP model, 0.038 for IG, and 0.028 for IIG. Twenty-nine
of the cells had smaller K–S distances in this range for
the IIG model fits. The remaining five cells had smaller
K–S distances for the IG model fits.

In the 95% range (Fig. 2D) the median K–S distance
was 0.18 for the IP model, 0.072 for the IG, and 0.074
for the IIG. Both the IG and IIG models gave better
fits than the IP in this range. However, unlike in the
Q–Q plot analyses, there was only a small difference in
the median value of the K–S statistic for the IG model
compared with the IIG model. The difference between
the IG and the IIG models is less pronounced than in
the Q–Q plot analysis because the K–S plots are
normalized to lie between 0 and 1. In the 100% range

Fig. 2. (A, B) Kolmogorov–Smirnov (K–S) plots for the inhomoge-
neous Poisson (IP) (dashed lines), inhomogeneous gamma (IG) (thin
solid lines), and inverse Gaussian (IIG) (bold solid lines) model fits of
two place cells (A, Cell 1; B, Cell 9). The dotted squares in the lower
left corners indicate the 30th percentile. Two sided 95% confidence
error bounds of the K–S statistics are displayed for each cell (dotted
45° lines). The IG or IIG label in each panel corresponds to the
model that gave the best fit in the Akaike’s Information Criterion
(AIC)/Bayesian Information Criterion (BIC) and K–S distance
analyses. Because the K–S plots are constructed from a uniform
distribution on the interval (0, 1), the 30th, 95th, and 100th percen-
tiles correspond respectively to quantiles 0.3 (dotted line), 0.95 and
1.0 on both the x- and y-axes. Cell 1 was best fit by the IG model
based on the AIC/BIC criteria, and the IG K–S plots of these cells
are closer to the 95% confidence bounds than either those of the IP or
IIG models. Cell 9 was best fit by the IIG model based on the
AIC/BIC analysis, and the IIG K–S plots for these cells are the
closest of the three models to the 95% confidence bounds. The K–S
plots, like the Q–Q plots, show that the IIG model fits best in the
lower quantiles, the IG fits best in the intermediate quantiles and the
IP model fits give the poorest agreement with the data of the three
models. (C–E) Boxplot summaries of the K–S distances for the 30%
(C), the 95% (D), and the 100% (E) range. These summaries suggest
that both the IG and the IIG models give better fits than the IP
model. The IIG model fits agree best with the probability densities of
the data in the 30% range.

(Fig. 2E) the median K–S distance was 0.16 for IP,
0.059 for IG, and 0.052 for IIG. These findings are
consistent with the Q–Q plot analysis findings, which
showed that the IIG model fits deviates least from the
probability models of the data in the 95th–100th per-
centile range. Here again, the normalization of the K–S
plot makes the difference between the IG and IIG
models less pronounced.

4.4. Applications

4.4.1. Burst analysis
By construction, the rate-rescaling transformation

maps a certain fraction of short ISIs into a certain
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fraction of short tks. The closer agreement between the
IIG model and the probability densities of the data
found in both the Q–Q and K–S plot analyses for the
30% range may be due to a more accurate description
by this model of the frequency of short ISIs or bursts in
the spike trains. Therefore, the relation between short
ISI and the tks defining a short ISI or burst (ISI 520
ms) was analyzed (McNaughton et al., 1983).

For each place cell the maximum value of tk associ-
ated with the ISIs520 ms was computed, and this
value was termed the tburst quantile. Each tburst quantile
defined a different percentile of the tk distribution for
each place cell, for each probability model. These per-
centiles were approximately around the 30th percentile,
which is why the 0–30% range was used in the Q–Q
and K–S plot analyses. Overall, the median fraction of
spike train ISIs that were bursts was 0.39 with a range
of 0.15–0.58 (0.38 for Cell 9 in Fig. 3). By construction
every burst had tkBtburst. However, there were also
ISIs longer than 20 ms which had tkBtburst (Fig. 3).
Therefore, to measure how strongly bursts were associ-
ated with small tks, we computed for each place cell,
for each model, the fraction of ISIs that were bursts
(ISIs520 ms) given that the tk values were less than
that cell’s tburst.

The median fraction of ISIs satisfying this burst
condition for the IP and IG model fits was 0.85 with a
range of 0.66–0.94. The median fraction of ISIs satisfy-
ing this condition for the IIG model fits was 0.97 with
a range of 0.78–1. The IIG values were significantly
closer to 1 than the ones for the IP or IG (PB10−8,
sign test). Because the IIG model describes well the
small tks and, the small tks are highly associated with
bursts, it can be concluded that a considerable improve-
ment of the IIG over the IP model is due to a more
accurate description of the place cell bursting activity.

Similarly, if one defines the non-burst range as the
tks\tburst we found that the median fraction of ISIs
longer than 20 ms that lie in this range is 0.91 (0.78–
0.95). This analysis suggests the improvement of the IG
model over the IP is due primarily to a more accurate
description of longer tks associated with ISIs longer
than 20 ms. This finding is consistent with the Q–Q
plot analyses, which showed that the IG models gave
the best fits in the 95% range (Fig. 1B).

4.4.2. The rate function
To study further the implications of the model frame-

work the temporal and spatial rate functions derived
for each model are compared for Cell 9. Because Eq.
(11) is a spatio-temporal model, the rate function in Eq.
(8) can be plotted for a given model as either a function
of time (Fig. 4A, C, F) or space (Fig. 4B, E, H). For
the IP model the rate function and the intensity func-
tion are equivalent. As a consequence, the rate does not
depend on the history of the spiking activity (Fig. 4A).

Fig. 3. (A) Representative examples of the relation between the
estimated tk and the interspike interval (ISIs) from the inhomoge-
neous Poisson (IP) (A), inhomogeneous gamma (IG) (B), and inverse
Gaussian (IIG) (C) from Cell 9. The tks from quantiles 0–75 are
plotted along with their corresponding ISIs. The bursts correspond to
ISIs520 ms (vertical dashed line). The value of tburst (horizontal
dashed line), defined for each cell as the largest value of tk for
ISIs520 ms. The tburst value for each cell is used to define the range
of tk corresponding to burst ISIs. The greater the correspondence
between bursts and tks for a given model, the greater the number
points in the lower left rectangle relative to the number in the lower
right rectangle in panels A–C. (D) The ISI histogram of Cell 9.
Thirty-eight percent of the ISIs of this cell are bursts.
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Fig. 4. Spiking activity, model temporal and spatial rate function estimates for Cell 9 during 6 s of the experiment. (A) The spiking activity (dots)
and the temporal rate function for the inhomogeneous Poisson (IP) model (solid line). (B) Pseudocolor map of the IP spatial rate function estimate
and the trajectory of the animal as it moved from point x to point y (white curve). (C) The temporal rate function for the inhomogeneous gamma
(IG) model. (D) Detail (40 ms) of the IG temporal rate function at the time location indicated by the red asterisk in (C). (E) Pseudocolor map
of the IG spatial rate function estimate. (F) Temporal rate function of the inverse Gaussian (IIG) model. (G) Detail (40 ms) of the IIG temporal
rate function at the time location indicated by the red asterisk in (F). (H) Pseudocolor map of the IIG spatial rate function estimate. Because the
IP rate function is the intensity function defined in Section 4.2, it does not depend on spike train history, whereas the rate functions of the IG
and IIG models have Markov dependence. In contrast to the IP rate function, if the animal does not visit a particular region of space the IG and
IIG rate functions are not defined at that location. The Akaike’s Information Criterion (AIC)/Bayesian Information Criterion (BIC) and
Kolmogorov–Smirnov (K–S) plot analyses suggest that this cell’s spike train data are best described by the IIG model. Hence, the IIG rate maps
offer the most accurate description of this cell’s local spiking propensity.

The IG (Fig. 4C) and IIG (Fig. 4F) rate functions
depend on the history of the spiking activity and are
discontinuous at each spike time. The two rate func-
tions have the same general shape, but with important
marked local differences in their behavior immediately
following a spike. For all the cells the IG model fits had
estimated values of g less than 1, consistent with the
spike train having more variation than a Poisson model
as discussed in Section 2. Because for gB1 the gamma
probability density in Eq. (2) is infinite at the origin, the
IG rate function is infinite immediately after the time of
the previous spike, then decreases until the next spike
arrives (Fig. 4D inset). For the IIG model, the rate
function (Fig. 4G inset) is zero at the previous spike,
increases rapidly, and then decreases—faster in these
analyses than the IG rate—until the next spike. The
IIG rate function is the more physiologically plausible,
since its values are always near zero immediately fol-
lowing a spike. Despite these differences in local behav-
ior of the IG and IIG rate functions immediately
following a spike, both follow the dynamics of the spike
train data more closely than the IP rate function. The

improved agreement is especially evident during periods
of high spiking activity such as the intervals between 1
and 3 s in Fig. 4A, C, and F. The improvement is also
evident between 0.5 and 1 s where spiking activity is
absent. In this interval, the IP model predicts a rate
increase because the animal’s trajectory passes near the
maximum of the Poisson rate map, whereas both the
IG and IIG models predict declining rates which are
more consistent with the observed data.

The IP spatial rate function is again the spatial
component of the intensity function described in Eq.
(11) and Fig. 4B. It depends only on space and is
independent of the spike train history. Because the IG
and IIG models depend on the history of spiking
activity, trajectories through an identical location do
not carry the same rate information. In contrast to the
IP rate function, if the animal does not visit a particular
region of space, the IG and IIG rate functions are not
defined at that location. Although the IG and IIG
models use a Gaussian intensity function, the spatial
rate maps for these two models are non-Gaussian due
to the dependence of spiking activity on history. Be-
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cause Cell 9 is best fit by the IIG model, its temporal
and spatial rate map estimates give the most accurate
characterization of local spiking propensity for this
neuron.

5. Discussion

Our paradigm provides a flexible framework for con-
structing and analyzing non-Poisson statistical models
of neural spike train activity collected in stimulus-re-
sponse experiments. The paradigm consists of maxi-
mum likelihood fitting an inhomogeneous model and
measuring of its goodness-of-fit using AIC, BIC, Q–Q
plots and K–S plots. The framework is illustrated in an
analysis of hippocampal place cells.

The inhomogeneous stimulus-response models are
constructed by generalizing the way in which the inten-
sity-rescaling transformation is used with the exponen-
tial probability density to derive the inhomogeneous
Poisson model. The choice of renewal probability den-
sity and the one-to-one transformation between the
spike train and the random variable of the renewal
process is arbitrary. Hence, they may be selected to give
the best statistical description of a particular neural
system based on either biophysical and/or empirical
evidence. Inclusion of covariates, such as the theta
rhythm for hippocampal place cells, as a component of
the intensity function along with the stimulus is equally
as easy for these models as it is for the inhomogeneous
Poisson. By construction the current models assume
Markov dependence in the spike trains. As suggested in
Appendix A, the framework extends easily to model
more complex dependence between current spiking ac-
tivity, and the history of the spike train, the stimulus,
and covariates. In addition, the paradigm shows explic-
itly how to define the rate of a spike train given the
specifications of its ISI probability model. Because Eq.
(8) relates the ISI distribution of a neural spike train
directly to the spike rate function, it has important
implications for analyzing the general question of tem-
poral versus rate coding in neural systems.

Most non-Poisson statistical analyses of ISI distribu-
tions have used renewal models with no stimulus or
covariates inputs. These analyses have included gamma,
lognormal and inverse Gaussian (Rodieck et al., 1962;
Tuckwell, 1988; Gabbiani and Koch, 1998) and gener-
alized inverse Gaussian models (Iyengar and Liao,
1997). The gamma and inverse Gaussian renewal prob-
ability models are members of the generalized inverse
Gaussian family studied by Iyengar and Liao. These
authors assessed goodness-of-fit using a test statistic
similar to AIC. Brillinger (1988) reported a maximum
likelihood approach using a generalized linear model to
estimate a discretized random threshold model in which
the triggering stimuli were spike trains from the same or

different neurons. Kass and Ventura (in preparation)
have recently studied Markov dependent ISI models
that can be fit by discretizing time and using the
generalized linear model. Because our rate functions are
not linear functions of the stimulus and the covariates,
our models cannot be fit to experimental data using the
generalized linear model framework.

The Q–Q and K–S plots provide visual assessments
of agreement between a model and a spike train with-
out binning. For the Q–Q and K–S plots the reference
probability model is, because of the rate-rescaling theo-
rem, the exponential probability density. As a conse-
quence, these goodness-of-fit techniques are broadly
applicable. When using either the Q–Q or K–S plot to
compare different models for the same spike train data
set, the analysis can be displayed on the same graph. In
addition, the K–S plots provide confidence bounds and
allow formal testing of agreement between the data and
any proposed model. Different percentile ranges of the
Q–Q plots were plotted to facilitate graphical analysis
of model goodness-of-fit.

Berman (1983) and Ogata (1988) first proposed
graphical analyses based on rescaling transformations
to assess agreement between inhomogeneous models
and point process data arising from the study of seismic
data. As suggested by Ogata (1988), multiple goodness-
of-fit measures were applied to assess agreement be-
tween the models and the spike trains. The current
study may represent the first application of point pro-
cess Q–Q and K–S plots in neural data analysis.
Previous methods for assessing goodness-of-fit for inho-
mogeneous models of neural spike trains have been
devoted primarily to Poisson models (Brown et al.,
1998b; Fenton and Muller, 1998). None of these ap-
proaches extends to goodness-of-fit assessments for in-
homogeneous spike train models. Reich et al. (1998)
used a rate-rescaling transformation and a test statistic,
called the power ratio, to assess agreement between
neural spike trains and models based on the peristimu-
lus time histogram. Use of the power ratio entails
computing the Fourier transform of the spike train and
performing a Monte Carlo simulation to evaluate the
statistical significance of the discrepancy between the
model and the spike train series. By using the rate-re-
sealing theorem to construct the Q–Q and K–S plots,
our analysis obviates the power ratio’s need for addi-
tional Fourier and Monte Carlo computations to assess
model agreement with the spike train. Moreover, the
power ratio analysis does not provide a graphical as-
sessment of goodness-of-fit comparable to the Q–Q
and K–S plots.

These methods are part of our research on analyzing
spatial information encoding by neurons in the rat
hippocampus. In this example all the goodness-of-fit
measures showed that both the IG and IIG models
provide significant improvement over the IP models
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with and without theta rhythm modulation previously
described by Brown et al. (1998b). According to both
AIC/BIC and K–S plot analyses, 11 of the 34 cells were
best described by the IG model, and 21 were best
described by the IIG model. For the two cells classified
differently by the AIC/BIC and the K–S plot criteria,
the respective values of the statistics for the two models
were quite close. In no case was a form of the Poisson
model superior to both the IG and IIG models. The
Q–Q plot analysis was completely consistent with the
AIC/BIC and K–S plot analyses. Without including
theta phase, the IG and IIG models are superior to the
IP plus theta phase model for all the cells. This suggests
that an improved model of the intrinsic mechanism
explains better the spiking activity than one that in-
cludes an exogenous variable. This result is compelling
because it holds for all 34 of the place cells analyzed. It
has previously been shown that inclusion of theta phase
made only a small improvement in the fit of the IP
model because in open field experiments theta modula-
tion is weaker (Skaggs et al., 1996; Brown et al., 1998a)
than on the linear track. All the improvements in fit of
the IG and IIG models to the data are due to giving a
better description of the intrinsic spiking activity of the
neurons.

The burst analysis suggested that the aspect of the
intrinsic mechanism which the IIG model describes
better are the short ISIs, or bursts, whereas the IG
model describes most accurately the longer ISIs. This
finding suggests that the bursts are a significant compo-
nent of the stochastic structure in the place cell spike
trains even when other factors, such as position and
theta phase, are taken into account. It supports the
hypothesis that these short ISIs may carry important
information about features of the position stimulus
(Buzsaki et al., 1996).

The rate map analysis shows that unlike the IP model
the IG and IIG models give spatial and temporal rate
maps that are history dependent. The fact that the IG
and IIG models give better statistical fits to the place
cell data than the IP model suggests that the rate maps
from the former models provide more accurate descrip-
tions of these local spiking properties of the neuron.
History-dependent spatial rate maps are more physio-
logically plausible because space and time must interact
to define the firing rate of these cells. For example, the
expected rate of spiking during burst activity in the
center of a place field should be different from that in
the periphery of the field. To the authors’ knowledge
these results are the first presentation of history depen-
dent rate maps.

Because neither of the new models completely de-
scribes all the structure in the place cell spiking activity,
it remains to define what are the other properties of the
place cells the analysis should characterize. In the im-
mediate neighborhood of the origin, the lack-of-fit of

the IG model is due in part to the infinite mode of the
standard gamma probability model for gB1. Because
the IG and IIG models describe better different sets of
ISI’s, the optimal model of place cell spiking activity
may combine the properties of the IG and IIG models.
Such a model could be constructed by developing an
inhomogeneous model that combines the intensity-
rescaling transformation with the generalized inverse
Gaussian probability model. The gamma and inverse
Gaussian models are special cases of the generalized
inverse Gaussian probability density (Iyengar and Liao,
1997). We are currently studying generalized inhomoge-
neous Gaussian models as a basis for constructing more
accurate models of the place-specific firing activity of
individual hippocampal neurons (Barbieri et al., 2000).

The remaining lack-of-fit for the IG and IIG models
may be due to inaccuracy of the Gaussian surface as a
model of the place field spatial structure, as well as
omission from the current model of covariates such as
the animal’s direction of motion, running velocity
(Zhang et al., 1998), and the phase precession effect
(O’Keefe and Recce, 1993). Another possibility is that
the history dependence in the place cell spiking activity
may be of a higher order than Markov. The importance
of these factors is also being investigated systematically
using the current framework.

Although our paradigm was illustrated with an anal-
ysis of hippocampal place cells, it may be applied to
any experiment in which spike train activity is recorded
simultaneously with input stimuli and relevant covari-
ates. Therefore, the methods should offer a useful set of
generally applicable tools for neural spike train data
analysis.
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Appendix A

The joint probability density of a set of spike times
for an arbitrary stimulus input over a fixed time inter-
val is derived. This is termed the sample path probabil-
ity density (Snyder and Miller, 1991). First, it is shown
that any ISI probability density may be expressed in
terms of the hazard or rate function (Eq. (8)). The
hazard function generalizes for an arbitrary ISI distri-
bution the Poisson rate function for the ISI probability



R. Barbieri et al. / Journal of Neuroscience Methods 105 (2001) 25–3736

density in Eq. (5). The ISI probability density expressed
in terms of the hazard function resembles the ISI
distribution for the IP model. This derivation is based
on Kalbfleisch and Prentice (1980) and Daley and
Vere-Jones (1988). On an observation interval (0, T ],
given n spike times 0B t1B t2. . .B tnBT, let Hk denote
the history of the spikes up to tk−1 and the history of
the stimulus up to time tk or T, whichever is shorter. A
more precise definition of Hk in terms of sigma fields is
given in Daley and Vere-Jones (1988). The joint proba-
bility density of exactly n spikes in (0, T ]

f(t1, . . ., tnS tn+1\T)

= 5
n

k=1

f(tk �t1, . . . , tk−1, x(t) on (0, tk ])

×Pr(no spikes in (tn, T ]�t1, . . ., tn, x(t) on (0, T ])

= 5
n

k=1

f(tk �Hk)[1−F(T �Hn+1)], (A.1)

where

[1−F(T �Hn+1)]=
& T

tn

f(u �Hn+1) du.

From Eq. (8) one has for t\ tk−1

r(t �Hk)=
f(t �Hk)

1−F(t �Hk)
, (A.2)

and

r*(t)=
! r(t) 0B tB t1

r(t �Hk) tk−1B tB tk

. (A.3)

Eq. (A.3) is termed the hazard function, conditional
intensity function or stochastic intensity function. To
show that the hazard function and the intensity func-
tion are the same for the IP model Eq. (5) is substituted
in Eq. (A.2) to obtain

r(t �Hk)=
l(t)exp

!
−
& t

tk−1

l(u) du
"

1−F(t �Hk)

=
l(t)exp

!
−
& t

tk−1

l(u)du
"

exp
!

−
& t

tk−1

l(u) du
"

=l(t). (A.4)

Integrating both sides of Eq. (A.2) from tk−1 to t
gives

− log[1−F(t �Hk)]=
& t

tk−1

r*(u) du, (A.5)

and exponentiating both sides yields

[1−F(t �Hk)]=exp
!

−
& t

tk−1

r*(u) du
"

. (A.6)

Rearranging Eq. (A.2) and using Eq. (A.3) one has

f(tk �Hk)=r(t �Hk)[1−F(t �Hk)]

=r*(t) exp
!

−
& t

tk−1

r*(u) du
"

, (A.7)

which is the first part of the desired result. Returning to
Eq. (A.1) and using Eq. (A.7), the joint probability
density of exactly n spikes in (0, T ] is

f(t1, t2, . . ., tnS tn+1\T)

=5k=1
n f(tk �Hk)[1−F(T �Hn+1)]

=5k=1
n r*(tk) exp

!
−
& T

0

r*(u) du
"

. (A.8)

Eqs. (A.7) and (A.8) show that an arbitrary spike
time probability density or joint probability density can
be expressed in terms of its associated hazard (rate)
function.
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