
Vision Research 41 (2001) 1851–1865

Information theoretical evaluation of parametric models of gain
control in blowfly photoreceptor cells

J.H. van Hateren *, H.P. Snippe
Department of Neurobiophysics, Uni�ersity of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

Received 17 August 2000; received in revised form 12 January 2001

Abstract

Models are developed and evaluated that are able to describe the response of blowfly photoreceptor cells to natural time series
of intensities. Evaluation of the models is performed using an information theoretical technique that evaluates the performance
of the models in terms of a coherence function and a derived coherence rate (in bit/s). Performance is gauged against a maximum
expected coherence rate determined from the repeatability of the response to the same stimulus. The best model performs close
to this maximum performance, and consists of a cascade of two divisive feedback loops followed by a static nonlinearity. The first
feedback loop is fast, effectively compressing fast and large transients in the stimulus. The second feedback loop also contains
slow components, and is responsible for slow adaptation in the photoreceptor in response to large steps in intensity. Any
remaining peaks that would drive the photoreceptor out of its dynamic range are handled by the final compressive nonlinearity.
© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Light intensities in the natural environment of an
organism vary considerably. Not only long-term varia-
tions in light level are present, as those originating from
the cycle of day and night or from the change of
seasons, but relatively large variations also occur on a
much shorter time scale. This happens for example
when moving through different sections of a landscape,
such as going from open terrain into the shade of a
group of trees. It also happens when the eye shifts its
gaze from brightly lit parts of a scene to shaded areas.
The photoreceptors of the eye therefore have to cope
with variations in light level of at least 2–3 log units in
relatively short stretches of time (van Hateren, 1997).
This is more than the typical dynamic range of neurons,
with dynamic range defined here as the ratio of the
maximum response and the noise level. To solve this
problem, the photoreceptors of many, if not all, species
can quickly adjust their gain to changing light levels.

The purpose of the present article is to develop and
evaluate models of this gain control in the photorecep-
tor cells of blowflies, and in particular models that are
able to handle naturally occurring series of intensities.

There are at least three reasons why a model of
photoreceptor gain control is useful: a physiological, a
practical, and a theoretical reason. The first, physiolog-
ical, reason is that modelling can help to study the
physiology of phototransduction and gain control, by
pointing to key control loops and suggesting specific
experiments. The second, practical, reason for desiring
a model of photoreceptor gain control is that it can
serve as a preprocessing module for studying visual
processing in higher parts of the visual system. More
often than not simple, linear processing is assumed for
early visual processing. This induces the risk that effects
observed at a higher stage are interpreted as properties
of that stage, whereas they may in fact be the
byproduct of nonlinearities in earlier stages. A full
model of higher visual processing needs an adequate
preprocessing model, including gain control at the earli-
est stages. The third, theoretical, reason for wanting a
model of gain control is that this will be necessary for
understanding the relationship between the properties
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of natural stimuli and early visual processing. In this
approach, visual processing is considered to be opti-
mally adapted to the natural visual environment. Al-
though much progress has been made in this area by
the application of information theory (Srinivasan,
Laughlin, & Dubs, 1982; Atick & Redlich, 1990; van
Hateren, 1992), much of this assumes linear or quasi-
linear systems, and a good nonlinear model will be
instrumental to extend this approach to a more general
range of systems.

At this point in time, there appears to be not yet
sufficient information on blowfly phototransduction
and light adaptation to produce a detailed physiological
model that would work adequately for the type of
signals photoreceptors encounter in natural circum-
stances. Although such a model will ultimately become
possible, it is likely to contain many parameters given
the complexity of the molecular machinery. For some
purposes, a complex model is undesirable. Therefore,
we will focus in this article on relatively simple models,
with as few parameters as possible. These models will
target in particular the second and third purposes men-
tioned above: the final model will firstly serve as a
preprocessing module useful for studies of higher stages
of visual processing, and secondly it will help future
studies of understanding the information capacity of
the early visual system.

For evaluating the various models we use a combina-
tion of several recently developed techniques. As a
stimulus, Natural Time Series of Intensities (called
NTSIs below, van Hateren, 1997) are used, mimicking
the statistics of the intensity as a function of time that
is normally encountered by individual photoreceptors.
Responses from blowfly photoreceptors to this stimulus
were measured. From an inversion of the reconstruc-
tion method for obtaining information rates (Bialek,
Rieke, de Ruyter van Steveninck, & Warland, 1991;
Theunissen, Roddey, Stufflebeam, Clague, & Miller,
1996; Haag & Borst, 1997), combined with a nonlinear
model, a coherence function of stimulus and response is
calculated. This can subsequently be compared with an
expected coherence function obtained by looking at
response repeatability. As a result, the performance of
the models can be evaluated as gauged against the
maximum performance that can be expected (Haag &
Borst, 1997; Roddey, Girish, & Miller, 2000). The best
model we found, a cascade of two dynamic nonlineari-
ties and a static nonlinearity, is performing close to this
maximum.

2. Methods

2.1. Stimuli and measurements

NTSIs were measured with a light detector worn

on a headband by a person walking through a natu-
ral environment (van Hateren & van der Schaaf,
1996; van Hateren, 1997). The light detector had an
acceptance angle of approximately 2 arcmin, and fol-
lowed the pointing direction of the face (see van
Hateren, for further details). Obviously, the NTSIs
thus measured are not identical to those that fly pho-
toreceptor cells would normally encounter: many
parameters, such as speed and behavior of the organ-
ism, average distance to objects, and acceptance angle
of the photoreceptors are quite different. It can be
argued that several of these parameters cancel each
other, and that scale-invariance of the environment
will produce NTSIs for different organisms that are
not as different as expected (van Hateren), but this
argument is not essential for the present study. Here
it is only important that the stimulus is sufficiently
complex, i.e. that it contains variations in intensity
and contrast with the right (natural) mixture of pre-
dictability and unpredictability. These variations will
then drive the photoreceptor cells into regimes of gain
control similar to those in which they function in
truly natural circumstances. This makes the stimulus
different from laboratory stimuli like sinusoids,
flashes, and white noise, which are less complex
(lower dimensional, in the sense that they can be gen-
erated on the basis of only a few parameters). In van
Hateren it was shown that photoreceptors can handle
the NTSIs quite well, and that stimulus and response
are not linearly related.

The measured NTSIs were played back (at 1200
Hz) on a high-brightness LED, producing light inten-
sities comparable with daylight conditions (van
Hateren, 1997). The LED produced a wide-field stim-
ulus of approximately 15° diameter; we found no
change in responses for smaller diameters as long as
the stimulus covered the receptive field (approximately
2° in diameter) of the photoreceptor cell from which
the membrane potential was measured. The LED was
driven by a D/A-convertor of a computer connected
to a voltage-to-current convertor. The output of the
LED was measured with a photodetector with a lin-
ear response characteristic; this output was very simi-
lar to the original time series, showing only minor
nonlinearities in the LED and LED driver. For the
analysis in this article, the measured LED output was
used as the NTSI, as this was the actual stimulus
given to the photoreceptor. The membrane potential
of the photoreceptor cell was recorded by using an
intracellular microelectrode, it was sampled at 1200
Hz, and stored for off-line analysis. The results pre-
sented here are based on 16 measurements in seven
photoreceptor cells of four blowflies (Calliphora �ic-
ina). For further details see van Hateren (1997).
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2.2. Model e�aluation

Fig. 1 summarizes the methods used for model evalu-
ation, and their relationship with the methods from
which they derive. Fig. 1A shows a scheme of the
reconstruction method for obtaining the mutual infor-
mation between stimulus and response of a neuron, as

pioneered by Bialek, Rieke, Järvilehto, Kouvalainen,
Juusola and Weckström (1991; see also Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997), here shown
in the frequency domain representation by Theunissen,
Roddey, Stufflebeam, Clague, and Miller (1996). Below
we will follow the formulation of Haag and Borst
(1998). The main idea is to use a Wiener filter to
reconstruct the stimulus from its neuronal response. A
Wiener filter optimally estimates one signal from an-
other signal with the following assumptions (Papoulis,
1977): the signals are stationary, the estimate is linear,
noise is additive, and optimality means here a minimal
least-squares error. Then the filter Hre� that optimally
produces the reconstruction s � of the stimulus, given the
response r, becomes (in the frequency domain, all sym-
bols are functions of frequency):

Hrev=
�sr*�
�rr*�, (1)

where the brackets denote ensemble averaging over the
spectra s of different time stretches of the stimulus and
the spectra r of the corresponding response stretches,
and * denotes the complex conjugate. The numerator is
the average cross-spectrum of stimulus and response, the
denominator the average power spectrum of the re-
sponse.

Note that Eq. (1) includes ensemble averages of the
spectra of time stretches obtained by segmenting the
signals. For the analysis in this article segments of 4096
samples (3.41 s) were used; different segment lengths
produced very similar results. An alternative to the
calculation in Eq. (1) is to compute the various spectra
for the entire length of the signals, and then average
adjacent frequency components in the spectra (see Ben-
dat & Piersol, 2000, p. 437). We found that this produces
virtually identical results to the ones using ensemble
averaging. The fact that the results do not depend
significantly on segment length suggests that signal and
noise can be considered as reasonably stationary.

With Eq. (1) the optimal reconstruction s � from the
response r is

s �=
�sr*�
�rr*�r. (2)

The gain gs�s relating s � and s is defined as

gs�s=
�s �s*�
�ss*� =

��sr*�/�rr*�rs*�
�ss*� =

�sr*�
�rr*�

�rs*�
�ss*�. (3)

The right-hand term of this equation is also known as
the coherence �2 of s and r (Bendat & Piersol, 2000),
therefore gs�s=�2.

From the symmetry of the equations, in particular Eq.
(3), it is clear that a forward formulation of the problem
(Fig. 1B) leads to equivalent equations: the filter Hfwd

that optimally produces a construction of the response
r �, given the stimulus s, is

Fig. 1. Coherence rates as a tool for evaluating nonlinear models of
a physiological system: (A) In the standard reconstruction method,
the stimulus is reconstructed based on the response of the system,
using a linear filter; the reconstructed stimulus is compared with the
actual stimulus, from which a coherence and a coherence rate (an
upper bound on the information rate) are obtained; (B) a forward
version of A gives the same coherence and the same coherence rate.
Here the response is constructed from the stimulus, again through a
linear filter, and compared to the measured response; (C) if the
system is nonlinear, the linear method of B can not be applied
directly; by making a model that incorporates all nonlinearities of the
system, the response can be linearly constructed from the output of
the model (yielding r �), and subsequently be compared with the
measured response (with r the response to a single presentation of the
stimulus s); (D) independent method of obtaining the coherence rate
of the system: from a series of responses to the same stimulus, a
signal-to-noise ratio is obtained, yielding an expected coherence rate.
The better the nonlinear model at C, the closer its coherence rate will
be to the coherence rate obtained using the method of D.
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Hfwd=
�rs*�
�ss*�, (4)

with

r �=
�rs*�
�ss*�s, (5)

and

gr�r=
�r �r*�
�rr*� =

�rs*�
�ss*�

�sr*�
�rr*�=gs�s=�2. (6)

The simplest interpretation of �2 is that it is the
concatenation (in any order) of the forward and reverse
Wiener filters. If the system is linear and noise-free, �2

would be one for all frequencies (original signal per-
fectly recovered after subsequent forward and reverse
Wiener filtering). If �2�1 then this is due either to
noise or other unaccounted signal sources, or to nonlin-
earities (Bendat & Piersol, 2000). Note that Eq. (6)
shows that the coherence functions that follow from the
methods of Fig. 1A and B are identical. For a thought-
ful discussion of the relative merits of the forward and
reverse techniques, see Theunissen et al. (1996).

Fig. 1C shows how we propose to extend the method
of Fig. 1B to nonlinear systems. The assumption here is
that the stimulus is transformed first by a nonlinear
system (yielding ssys) or a nonlinear model (yielding
smod). Both are assumed to be essentially noise-free, i.e.
to have an effective noise level small compared to the
noise that is added in the final step leading to the
response r. This final step is assumed to be linear, and
can thus be treated with a Wiener filter as above. The
gain gr�r is in this case the coherence between smod and
r. Note that the measured response, r, is the response to
a single stimulus presentation, not an average response
(Section 2.4).

The final method, shown in Fig. 1D, provides an
independent way to obtain a coherence function, and is
used in this article as a benchmark for evaluating the
models used in the method of Fig. 1C (Section 2.4).
Again all nonlinearities are assumed to be included in
the nonlinear system, and the final step is taken as
linear with transfer function g and assumed additive
noise, n, yielding

r=gssys+n=sr+n. (7)

The coherence between ssys and r is then (again
following Haag & Borst, 1998, we will call this the
expected coherence, �2

exp).

� exp
2 =

�ssys(g*s sys* +n*)��(gssys+n)s sys* �
�ssyss sys* ��(gssys+n)(g*s sys* +n*)� (8)

=
g*�ssyss sys* �g�ssyss sys* �

�ssyss sys* �(�srs r*�+�nn*�)

=
�srs r*�

�srs r*�+�nn*�=
SNR

SNR+1
,

assuming uncorrelated signal and noise, thus
�ssysn*�=0, and with the signal-to-noise ratio, SNR,
defined as the ratio of signal and noise power

SNR=
�srs r*�
�nn*�. (9)

From Eq. (8) it follows that

SNR=
� exp

2

1−� exp
2 . (10)

The expected coherence function � exp
2 is determined by

the method of Fig. 1D, by first estimating the SNR
from a repetition of the stimulus and subsequently
applying Eq. (8). The SNR was estimated in the follow-
ing way. Suppose that the stimulus is repeated m times,
yielding photoreceptor responses �i(t) (i=1, …, m);
note that the response is given here as a function of the
time t. From these measured responses we obtain the
average response

�̄(t)=
1
m

�
m

i=1

�i(t), (11)

and the deviations �i(t) of the responses around the
average

�i(t)=�i(t)− �̄(t). (12)

Now we can compute r̄(�), the Fourier transform of
�̄(t), and di(�), the Fourier transform of
�i(t); r̄ and di are functions of the frequency �. From
this the raw signal and noise power spectra can be
computed:

Sraw=�r̄ r̄*�, (13)

Nraw=
�1

m
�
m

i=1

did i*
�

, (14)

where, as before, the brackets denote averages over
time segments. Both Sraw and Nraw are biased estima-
tors, however. The quantity Sraw is an overestimate of
the power spectrum S=�srs r*� of the actual signal sr,
as used in Eq. (9). A simple example illustrating this
problem is when S=0 (i.e. when the photoreceptor
output contains only noise), because for finite m the
individual responses (consisting only of noise here) are
not likely to cancel exactly in the average. Hence
Sraw�0, even if S=0. Because part of the noise power
is thus mistaken for signal power, the estimated noise
power Nraw will be an underestimate of the true noise
power N=�nn*� as used in Eq. (9). Therefore, estimat-
ing the SNR as Sraw/Nraw (as is often done) leads to an
overestimate of the actual SNR. Here we correct for
this bias as follows. Analogous to Eq. (7), we write the
observed responses as a sum

�i(t)=�r(t)+�i(t) (15)
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of a noise-free signal �r and a noise �i, assuming �r and
�i to be statistically independent. Assuming also that
the noises �i in the repetitions of the experiment are
statistically independent, the computed quantity Sraw

has a mathematical expectation

S� raw=S+
1
m

N. (16)

From Eq. (11) and Eq. (15) we find

�̄(t)=�r(t)+
1
m

�
m

i=1

�i(t), (17)

and consequently with Eqs. (12), (15) and (17)

�i(t)= (�r+�i)− �̄=�i−
1
m

�
m

j=1

�j

= (1−
1
m

)�i−
1
m

�
m

j=1
j� i

�j. (18)

Because di(�) is the Fourier transform of �i(t), we
find with Eq. (14) that the computed quantity Nraw has
a mathematical expectation

N� raw=
�

1−
1
m
�2

N+
m−1

m2 N=
m−1

m
N, (19)

again assuming that the noises �i are statistically inde-
pendent. From Eq. (16) and Eq. (19) it follows that
unbiased estimates N� and S� of N and S can be ob-
tained as

N� =
m

m−1
Nraw (20)

S� =Sraw−
1
m

N� =Sraw−
1

m−1
Nraw. (21)

Finally, from S� and N� an estimate of the SNR is
obtained as

SNR=
S�
N� =

m−1
m

Sraw

Nraw

−
1
m

. (22)

For very large m, Eq. (22) reduces to the raw esti-
mate Sraw/Nraw, but for small m it gives a better esti-
mate of the actual SNR.

2.3. The coherence rate

If signal and noise have Gaussian statistics, and are
independent of each other, Shannon’s equation (Shan-
non, 1948) gives the information rate R in the channel
as

R=
��

0

log2(1+SNR) df, (23)

with f the frequency. With Eq. (10) this gives an
information rate

R= −
��

0

log2(1−� exp
2 ) df. (24)

This quantifies, with a single number, how close the
coherence function is to one over the entire frequency
range. The contribution of frequencies where � exp

2 is
close to one is very large, and it is very small for
frequencies where � exp

2 is close to 0. It is a useful
measure even when the conditions for Shannon’s Equa-
tion (23) are not met. It then simply summarizes the
coherence function in a way that is more meaningful
than, for instance, the average of the coherence func-
tion over a particular frequency band. In the remainder
of this article, this single number will be called the
coherence rate Rcoh; it is given in bit/s as it can be
considered as an approximation of the information
rate. Rcoh is defined for any coherence �2 as

Rcoh= −
��

0

log2(1−�2) df. (25)

Using this definition and the term ‘coherence rate’
aims to avoid confusion with the true information rate
of the system.

The method of Fig. 1D yields the expected coherence
� exp

2 . Using this result for �2 in Eq. (25), we obtain the
expected coherence rate, Rexp. It is in fact the expecta-
tion of the coherence between single responses ri and a
noise-free system response ssys, where the latter is deter-
mined by averaging many responses. The result of this
averaging can be considered as the response that the
best possible (non-linear) model should give. Any
model that deviates from this best possible one will
show larger deviations from the measured responses,
and thus a coherence rate smaller than the coherence
rate, Rexp, due to the method of Fig. 1D. This conclu-
sion depends on whether the averaging is not biased by
experimental artefacts such as drift in the measurements
during the course of the experiment. This appears not
to be a significant problem in the present experiments,
as we found that the cross-correlation between stimulus
and noise (as determined according to the method of
Fig. 1D) is negligible. We also did not find a systematic
change in noise level as a function of response level.
Therefore, Rexp can be considered as a target for the
coherence rate, an upper bound against which coher-
ence rates obtained through the method of Fig. 1C can
be gauged. A variant of this method was recently used
by Roddey, Girish, and Miller (2000) for investigating
the performance of a linear model for receptor cells in
the cricket cercal system.

2.4. General method

The general method followed in this article is then as
follows: for a given model, parameters were fitted to
maximize the coherence rate Rcoh for that model (Fig.
1C). This maximization was performed using a simplex
algorithm (Press, Teukolsky, Vetterling, & Flannery,
1992). Coherence rates were calculated with Eq. (25) by
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integrating up to 200 Hz; this frequency range includes
virtually all signal power for blowfly photoreceptor
cells. For the results presented below, the coherence
functions and responses were calculated for the same
full stretch of 300 s data as was used for fitting the
parameters of each model. To check against overfitting,
we performed control computations where coherence
rates were calculated for a different part of the time
series than what was used for the fits, and found
virtually identical results. Different models were investi-
gated, each time maximizing Rcoh, in order to find a
model with Rcoh as close as possible to Rexp (Fig. 1D).
The models presented below are in fact the most in-
structive or interesting results of this search through
model space.

For evaluating the models of Fig. 1C we chose to use
the response r to a single stimulus presentation for
calculating the coherence function with the model out-
come. An alternative would have been to use the aver-
age response to a large number of stimulus repeats. We
did not use this alternative because it would yield much
higher coherence rates (because the noise would be
averaged out), which could not be compared with the
results of the method of Fig. 1D. Thus we would loose
our benchmark. A potential advantage of using aver-
ages rather that single responses is that it avoids that
the models would try to fit the noise in the responses as
well as the signal. The control computations mentioned
above already suggest that this effect does not occur
here to any significant degree. It is also not to be
expected because the stimulus is long (typically 300 s).
Even if the model would manage to fit noise in one
particular segment of the stimulus, this is likely to be
punished by a decreased quality of fit in another seg-
ment (where the stimulus and reponses might be
roughly similar, but the noise would most likely be
different). In this respect a long stimulus is similarly
effective in avoiding fitting noise as a much shorter
stimulus repeated many times.

3. Results

Below we will first present results from models that
contain no or only a static (memory-less) nonlinearity,
subsequently from models with a dynamic nonlinearity,
and finally from combinations of these. The longer-
term behavior is discussed next, and for the purpose of
simulations a complete model, including a parametriza-
tion of the Wiener filter, is presented.

3.1. Models with a static nonlinearity

The upper two rows of Fig. 2 show the stretch of 300
s of the NTSI used for most of the experiments in this
article. The graphs show the intensity with a linear and

logarithmic ordinate, with frequencies higher than 2.5
Hz removed for the purpose of presentation; all analy-
sis in this article, however, is performed using the full
sampling rate. The amplitude spectrum of an NTSI
behaves approximately as 1/f t

1/2 (with ft temporal fre-
quency) over an appreciable frequency range (van
Hateren, 1997). Thus low temporal frequencies domi-
nate the stimulus, although amplitudes at high frequen-
cies are still appreciable because the fall-off with
frequency is relatively slow. The distribution of intensi-
ties is quite skew, with values at high intensities sparser
than at low intensities (Fig. 2, upper row); taking the
logarithm of the intensity leads to a more symmetrical
distribution (Fig. 2, second row). Further details on the
statistics can be found in van Hateren (1997).

The model results below are based on 16 measure-
ments of the response of photoreceptors to the NTSI
shown in Fig. 2 (obtained from recordings of seven
photoreceptor cells in four flies). The responses shown
in Figs. 2 and 4 are from a typical cell, which had a
coherence rate and parameter values for model MDWN

close to the average of the entire set of measurements.
The results of three simple models are shown in the

third row and below of Fig. 2. The first model, Mlin,
contains no nonlinearities, so it just consists of the
(linear) Wiener filter. The thin line (red) shows the
response of the photoreceptor cell, and the thick broken
line (blue) the optimal Wiener prediction of the re-
sponse. Both the total stretch of 300 s (limited to 2.5
Hz) and three shorter sections of 500 ms (at full resolu-
tion) are shown. The shorter sections are taken from
positions denoted by the vertical bars on the abscissa of
the 300 s graph; the bar widths cover approximately the
temporal extent of these sections. As is clear from the
graphs, the linear model is not performing very well:
apart from large DC shifts, also the amplitude of fast
modulations is not well predicted. This is also clear
from the coherence function shown to the right (ob-
tained through Eq. (6)). A maximum coherence of 0.8 is
in fact not particularly high: for a linear system it
would correspond, via Eq. (10), to an SNR=4.

The second model shown in Fig. 2, Mlog, is doing
much better. It consists of a static nonlinearity, a
logarithm, followed by a Wiener filter. The coherence
function is now approximately 0.95 at low frequencies,
corresponding to an SNR=19. A logarithm is a very
simple implementation of Weber’s law: it gives equal
responses to stimuli of equal contrast, i.e. stimuli which
scale in proportion to the local (time-) average of the
intensity. The logarithm is also closely related to the
dynamic gain control module called ‘Weber’ below
(MW).

The final model of Fig. 2, Msqrt, consists of a square-
root nonlinearity followed by a Wiener filter. Although
it performs somewhat worse than Mlog, this is mainly
due to discrepancies at low frequencies (as can be seen
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Fig. 2. Upper two rows: 5 min of a Natural Time Series of Intensities (NTSI), drawn with the ordinate linear and logarithmic, respectively. Mlin:
linear model, where the fat broken trace (blue) shows the optimal Wiener prediction of the measured photoreceptor response (membrane potential,
thin red trace). Three sections (bars with arrows) are shown at a higher time resolution. To the right of these graphs the coherence (of model
output and measured response) is shown for the 5 min trace. Mlog: as Mlin, after a logarithmic transform of the NTSI. Msqrt: as Mlin, after taking
the square root of the NTSI.
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Fig. 3. Models with dynamic nonlinearities. Fixed parameters: MD: LP1: n=3 (3rd-order low-pass filter), LP2: n=1; MW: LP1: n=3, LP3:
power= −0.5, nonlinearity: exp(k2·input); MDW: LP1: n=3, LP2: n=1, LP3: power= −0.5, nonlinearity: exp(k2·input); MDWN: LP1: n=3, LP2:
n=1, LP3: power= −0.5, nonlinearity: k1exp(k2·input), NL1: output= input/(1+ input). See text for further explanation of the models.

in the 500 ms sections). The coherence at higher fre-
quencies is similar to that of Mlog, which means that the
coherence rate Eq. (25) is not much lower for Msqrt

than for Mlog (Section 3.3). The square-root nonlinear-
ity is closely related to the dynamic gain module called
‘DeVries-Rose’ below (MD).

3.2. Models with a dynamic nonlinearity and cascaded
models

Fig. 3 shows schemes of several models that contain
dynamic, rather than static nonlinearities. These models
are inspired by a recent model for light adaptation in
the human visual system (Snippe, Poot, & van Hateren,
2000). The upper two rows show models with only a
single control loop. The DeVries–Rose model, MD,
contains a divisive feedback. Its steady-state behavior
follows a square root, because for the steady state

output= input/output, thus output=	input. A
square-root scaling of sensitivity with luminance is
commonly known as the DeVries-Rose law, hence the
model name. Note, however, that this behavior of the
model is not caused by photon noise (a common cause
of square-root behavior), but is just a property of the
feedback structure. Because of the low-pass filter LP2,
the model produces overshoots at increment steps of
the intensity, and undershoots at decrement steps. Fig.
4, upper two rows, shows the performance of this
model. Not surprisingly, it performs similarly to Msqrt,
although slightly better (Section 3.3).

The second model of Fig. 3 is the Weber model, MW,
which contains an exponential nonlinearity in the feed-
back loop. This is similar to Automatic Gain Control
(AGC) systems as used for regulating sound or video
amplifiers (Ohlson, 1974). In the steady state it gives
output= input/exp(output), which yields output�
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Fig. 4. As Fig. 2, for the four models shown in Fig. 3. Fitted parameters: MD: LP1: � =0.96 ms, LP2: � =8.8 ms; MW: LP1: � =1.37 ms,
k2=1.7×104; MDW: LP1: � =1.21 ms, LP2: � =6.34 ms, k2=2.13×103; MDWN: LP1: � =1.76 ms, LP2: � =71.4 ms, k1=2.57, k2=9.98.



J.H. �an Hateren, H.P. Snippe / Vision Research 41 (2001) 1851–18651860

log(input) if the scaling is chosen such that log(out-
put)�output. Therefore, an AGC loop has, like a pure
logarithm, built-in Weber behavior. Although for AGC
systems LP3 is usually taken as a first-order low-pass
filter, it was chosen here in a different way. When an
intensity step is presented to a blowfly photoreceptor,
the response will, after an initial fast transient, continue
to drop slowly for quite a long time (seconds to min-
utes). This long-term adaptation is in fact well matched
to the properties of NTSIs: these have power spectra
that behave approximately as 1/ft (with ft temporal
frequency) over an appreciable range of frequencies
(van Hateren, 1997; van der Schaaf, 1998). This means
that NTSIs contain strong slow components, producing
very long correlation times. If the underlying, ‘local
average’ light intensity of such an NTSI would have to
be estimated, one possibility would be to weight the
incoming intensities with a matched filter (Papoulis,
1977), i.e. a filter with an amplitude characteristic �1/
f t

1/2. Although the filter LP3 in Fig. 3 in fact operates on
the model output rather than on the incoming intensi-
ties, this does not affect the basic idea since it is known
(van Hateren) that, for NTSIs, the actual photoreceptor
output still behaves as approximately 1/f t

1/2. The filter
LP3 in Fig. 3 is implemented as a superposition of
first-order filters covering a range of time scales (Thor-
son & Biederman-Thorson, 1974). It is designated as
‘power-law’ because the impulse response of a 1/f t

1/2-
filter has a tail that declines as a power law of time
(�1/t1/2 for a minimum phase filter, see Kasdin, 1995).
The filter is limited here to a total time span of 25 s to
ensure it is integrable; changing this length by a factor
of two had only small effects on the results. Fig. 4,
second pair of rows, shows the performance of MW. It
performs slightly worse than MD.

The final two models schematized in Fig. 3 are
cascades of two dynamic nonlinearities with (MDWN)
and without (MDW) a final static nonlinearity. This
static nonlinearity was implemented as a Naka-Rush-
ton equation (output= input/(1+ input)), but similar
results were obtained with an arctangent function as
used before (Snippe, Poot, & van Hateren 2000). As
Fig. 4 shows, both models perform quite well, better
than any of the other models. The rms-deviation be-
tween model and measurement is slightly larger for the
lowest response levels than for higher ones: for MDWN

the rms-deviation is 1.27 mV for responses �10 mV
(4.5% of the data), 0.92 mV for 10–15 mV (24%), 0.93
mV for 15–20 mV (28%), 0.87 mV for 20–25 mV
(24%), 1.05 mV for 25–30 mV (17%), and 0.96 mV for
responses �30mV (2.5%). A similar trend was found
for the rms-deviation between model and measurement
as a function of stimulus intensity. In the next section
we will investigate the relative overall performance of
the models, and how well they compare to the maxi-
mum performance that can be expected.

3.3. Performance of the models

The coherence functions shown in Figs. 2 and 4 are
those according to Eq. (6), following the scheme of Fig.
1C. They show the coherence between the measured
response r and the nonlinear model prediction smod. An
independent way to estimate a coherence function is
through the scheme of Fig. 1D. The stimulus is here
repeated many times, and only the responses are subse-
quently studied. The signal power spectrum follows
from the average response, and the noise power spec-
trum from the average of the power spectra obtained
from the difference between each individual response
and the average response. From these spectra the sig-
nal-to-noise ratio, SNR, can be obtained through Eq.
(15). This subsequently yields, through Eq. (8), an
estimate of the expected coherence function, � exp

2 . The
expected coherence function can be considered as an
upper bound of the coherence function of the system
(Section 2.3). As only the repeatability of the response
is considered, there are no assumptions involved on a
specific nonlinear model linking stimulus to response.
Therefore, by comparing this with the coherence func-
tions calculated for the models in Figs. 2 and 4, it is
possible to quantify how close the models are to the
maximum coherence that can thus be expected. Fig. 5A
shows an example of �2 for MDWN (fat line) and � exp

2

(thin, grey line) determined for the same photoreceptor
cell. As can be seen, they are quite close. An alternative
view of the performance is given by Icoh= − log2(1−
�2), which is perhaps more adequate because the coher-
ence rate is the integral over Icoh. From the resulting
Fig. 5B it is clear that the remaining discrepancies are
mainly in the low-frequency part of Icoh, but that they
are not very large.

Although Fig. 5A shows that the coherence remains
quite high up to frequencies as high as 70–80 Hz, this
does not imply that this also holds for the SNR and
Icoh. The reason is that coherences of similar magni-
tude, for example 0.99 and 0.95, can be associated with
quite different SNRs, in the example 99 and 19, respec-
tively. As Fig. 5B shows, the performance of the pho-
toreceptor to NTSIs already starts to decrease at
frequencies of 20 Hz and up, at about the same fre-
quencies where the low-pass filtering of the photorecep-
tor starts to become apparent (van Hateren, 1997).

Integrating the curves in Fig. 5B over frequency gives
two estimates of the coherence rate, firstly the expected
rate due to � exp

2 , and secondly the coherence rate fol-
lowing from the �2 obtained from MDWN. These num-
bers were computed for all measurements and models,
and the results are shown in Fig. 6. The filled circles
show the coherence rate obtained by averaging the rates
of the 16 measurements. Error bars show the s.e.m.,
with most of the bars falling within the boundary of the
circles. The coherence rate of the best model (MDWN) is
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only slightly smaller than the expected coherence rate
(open circle, average and s.e.m. of eight measurements
with each typically 15 repeats; measurements were from
four photoreceptors cells of three blowflies).

3.4. Longer-term beha�ior

Most measurements were obtained with an NTSI of
5 min duration. A series of longer recordings of 25 min
were obtained as well (seven measurements from six
cells in three flies), but intracellular recording time was
not long enough to repeat this stimulus often enough to
obtain a reliable estimate of � exp

2 . Nevertheless, using
the model MDWN, it is possible to study the coherence
rate and how it varies over longer times. Fig. 7 shows
the 25 min stretch of NTSI used (with the first 5 min
identical to the NTSI of Fig. 2; graph limited to
frequencies lower than 1 Hz). After about 1050 s the

Fig. 6. The coherence rate for a 5 min NTSI of the models evaluated
in Figs. 2 and 4, compared to the direct estimation of Fig. 1D
(labeled ‘photoreceptor’). Average and s.e.m. of 16 measurements
(models) and eight measurements (‘photoreceptor’). Several error bars
are not visible because they fall within the extent of the dots.

average intensity drops considerably, because for this
particular recording a wood was entered after walking
through half-open countryside. The third row gives a
typical photoreceptor response to this stimulus; this
only gives a rough idea of the response, however,
because it had to be limited to frequencies lower than 1
Hz for the purpose of presentation. Model MDWN was
applied to each minute of this stimulus-response pair,
with different parameter settings fitted to each minute.
From this the coherence rate in each minute was calcu-
lated, which is shown in the lower graph (mean and
s.e.m. of seven measurements). The coherence rate
varies somewhat, but most when the average intensity
varies. The coherence rate averaged over the 25 min
was 460 bit/s.

The performance of the various models when applied
to the entire 25 min (thus now with parameters fixed for
the entire period) is shown in Fig. 8. The model MDWN

gives a coherence rate of 389�33 bit/s, appreciably
smaller than the 460 bit/s found for separate minutes.
Indeed, the parameters obtained from the fits to single
minutes vary systematically, in particular with the aver-
age light intensity of each minute. Fig. 9 shows an
attempt to take this variation into account, by varying
the time constant of the first filter, LP1, depending on
the output of filter LP3. The latter gives a rough, slowly
varying estimate of the logarithm of the light intensity.
Indeed, this model, M�, raises the coherence rate to
415�30 bit/s. Although this may not seem significantly
larger than the 389�33 bit/s of MDWN, this is masked
by the variation between cells: all seven individual
measurements gave an increased coherence rate, with
an average increase of 7.4�2.3%. Nevertheless, as this
coherence rate still falls short of the 460 bit/s average
for single minutes, it is clear that model M� only
captures part of the longer-term variations of photore-
ceptor cell functioning.

Fig. 5. Comparison of the coherence (upper panel) and Icoh= −
log2(1−coherence) (lower panel) obtained with the method of Fig.
1C (dark trace, using MDWN as in Figs. 3 and 4) and with the method
of Fig. 1D (light trace). The latter is labeled ‘photoreceptor’, as it
reflects the signal-to-noise ratio measured directly in the photorecep-
tor, without any specific assumptions on a model. It gives an upper
bound on the coherence that can only be reached by the modelling
method of Fig. 1C if both the nonlinear model is adequate and the
assumptions underlying the method are correct.
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Fig. 7. An NTSI of 25 min (upper two panels), an example of the response of a photoreceptor to this stimulus (third panel, limited to 1 Hz for
the purpose of presentation), and the coherence rate of model MDWN evaluated for consecutive minutes (lower panel; average and s.e.m. of seven
measurements).

3.5. Models including a parametrization of the Wiener
filter

Although the models with static nonlinearities evalu-
ated in Fig. 2 and the dynamic models shown in Fig. 3
take care of the nonlinearities in the system, they have
to be followed by a linear filter (the Wiener filter) in
order to completely specify the response of the system
to a specific stimulus. The Wiener filters that result
from the analysis of the various models are found in
numerical form. For the purpose of evaluating the
models or using them as preprocessing modules in
future studies of higher visual processing, it is more
convenient to summarize them with a simple function.
We will do that here for two of the models, Msqrt and
MDWN. The first is the simplest model that performs
reasonably well for both the 5 and the 25 min NTSI
(Figs. 6 and 8). Model MDWN is the overall top-per-
former. Fig. 10A shows the Wiener filter for Msqrt

(dots) and its descriptive function (line). Fig. 10B shows
this for MDWN. Finally, Fig. 10C and D show the
response of MDWN to several simple stimuli that have
often been used for testing light-adapted photorecep-
tors: the responses to a very short pulse and to a series
of 500 ms intensity steps of various magnitudes, both
decrements and increments. In Section 4 these model
responses will be further assessed.

4. Discussion

In this article we used an information theoretical
method to compare the performance of a range of
models describing light adaptation and gain control in
blowfly photoreceptor cells. The method makes it possi-
ble to gauge the performance of the models in terms of
a coherence rate against an upper bound of a coherence
rate that was estimated from the repeatability of the
response to the same stimulus. The main conclusions
are that nonlinearities are needed for an adequate
model, and that dynamic nonlinearities perform better

Fig. 8. The coherence rate for a 25 min NTSI of the models evaluated
in Figs. 2 and 4, compared to the average rate obtained by fitting
MDWN to each minute separately (data points of Fig. 7, lower panel).
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Fig. 9. M�, a modification of MDWN with a variable time constant of the first low-pass filter. Fixed parameters: LP1: n=3, LP2: n=1, LP3:
power= −0.5, nonlinearity: k1exp(k2·input), NL1: output= input/(1+ input), NL2: �1 =�0/(input)w. Fitted parameters for the measurement of
Fig. 7, third row: LP1: �1 output of NL2, with �0=0.28 ms, LP2: � =43.3 ms, k1=8.18, k2=7.18, w=1.52.

than static (memory-less) nonlinearities. Finally, for
models describing longer-term behavior additional con-
trol loops, adjusting for instance the time constants of
the system, appear to be necessary.

The final model, MDWN, consists of a cascade of a
fast feedback gain control loop, a slow nonlinear feed-
back loop, and a static nonlinearity. The first feedback
loop, behaving approximately as a square-root device,
will significantly reduce the considerable dynamic range
of the stimulus (short-term range 102–103) down to a
size (10–30) that is manageable by the physiology of
the photoreceptor cell. Larger steps in stimulus inten-
sity, occurring predominantly on much slower time-
scales, are handled by the second control loop,
containing a power-law low-pass filter matching the
time-scale invariance of NTSIs. Finally, any remaining
peaks that would drive the photoreceptor cell out of its
dynamic range, are handled by the final static nonlin-
earity (van Hateren & Snippe, 2000). This combined
system keeps the response well within the dynamic
range of the photoreceptor cell, and produces a coher-
ence rate close to the upper bound estimated from the
repeatability of the response.

The number of fitted parameters is 4 for MDWN, with
several more implicitly fixed by the choice of filters and
functional forms of nonlinearities. Clearly, the coher-
ence rates following from the progression of models in
Figs. 2 and 4 increase with the number of parameters.
Nevertheless, given the complexity and high dimension-
ality of the stimulus and response, the number of
parameters is very modest in the nonlinear part of the
models. Although the final (linear) Wiener filter does
have many degrees of freedom, these do not contribute
to the coherence estimates. This can be readily shown
from Eq. (6): multiplying s (or r) by an arbitrary linear
filter F does not affect the coherence, because the
effects of F in the numerator and denominator of Eq.
(6) cancel. The Wiener filter in the model only serves to
minimize the root-mean-square deviations between the
model outputs and the observed photoreceptor
response.

The MDWN model is similar to the first stage of the
model by Snippe, Pool, and van Hateren (2000), devel-
oped for describing light adaptation and contrast gain

control in the human visual system. The main differ-
ence is in the low-pass filter in the second control loop,
which was taken as a very slow first-order filter in
Snippe et al. (in fact not dynamically active in the
experiments described there). Here it is modelled as a
power-law low-pass filter, weighting the incoming NTSI
simultaneously over a range of time scales. The result is
that adaptation works over a range of time-scales,
including quite slow ones. This is consistent with the
observed dynamics of fly photoreceptor adaptation.

Several of the components of the model have been
used before by Lankheet, van Wezel, Prickaerts, and
van de Grind (1993) to describe gain control in hori-
zontal cells in cat retina. They found that their results
could be well described by a divisive feedback generat-
ing a square-root behavior, followed by a static nonlin-
earity. A difference with the MDWN model evaluated
here is that their model does not have the second,
nonlinear feedback stage with a power-law low-pass
filter. This module is used here to describe slow compo-
nents in the gain control.

French, Korenberg, Järvilehto, Kouvalainen, Juu-
sola, and Weckström (1993) developed models for pre-
dicting the response of blowfly photoreceptor cells to
steps of intensity. These models consist of a cascade of
static nonlinearities and a linear filter, thus somewhat
resembling the models with static nonlinearities dis-
cussed in Fig. 2. Contrary to the present study they
subtract the DC-term from the membrane potential,
and thus only study the range of temporal frequencies
contained in intensity steps of 200 ms duration. It
remains to be determined how well their class of models
can perform with NTSIs, including variations in aver-
age light level on quite slow time-scales.

The responses predicted by the MDWN model to
simple stimuli (Fig. 10C and D) are reasonably close to
those measured before for light-adapted blowfly pho-
toreceptors (French et al., 1993; Juusola, Kouvalainen,
Järvilehto, & Weckström, 1994). A discrepancy is that
the V-logI curve of the model (DC membrane potential
as a function of the logarithm of the light intensity) is
too shallow (Laughlin & Hardie, 1978). This is proba-
bly a major cause of the dependence of the rms-devia-
tion on the response level (Section 3.2). Nevertheless,
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the performance of the model is quite good if one takes
into account that it was in fact developed for and tuned
to an entire different class of stimuli (NTSIs). It is quite
likely that careful adjustment of the form of the various
filters and nonlinearities in the model can significantly
improve the reponse to stimuli as in Fig. 10, without
deteriorating its performance with NTSIs.

Although the expected coherence rate found here
(577�30 bit/s) should not be equated with the true
information rate (Section 2.3), it is still interesting to
compare these results with those obtained by de Ruyter
van Steveninck and Laughlin (1996). They used white
noise stimuli of much lower effective contrast, produc-
ing response amplitudes not exceeding a few millivolt.
In that case the assumptions on linearity of the signal
transfer and Gaussian properties of the signals are
better fullfilled than here, and the information rate they
find for this stimulus is roughly 400 bit/s (estimated
from their Fig. 2). They subsequently extrapolate this
to higher contrasts, yielding 1000 bit/s. Given the as-
sumptions involved in that procedure, and the non-
Gaussian statistics of the stimuli used in the present
study, it is clear that their results and those reported
here are in essence consistent.

4.1. Coherence rates as a tool for model e�aluation

The coherence and coherence rate were used here as
a tool to evaluate the adequacy of particular models, as
compared to an upper bound on the coherence rate
obtained by analyzing the repeatability of the response
to the same stimulus. This method provides the mod-
eller with a single number that summarizes how one
model compares to another. Moreover, it also shows
how far a model is from the final goal, a model equally
adequate as the system under consideration itself. Al-
though this can also be accomplished by the more
traditional approach of calculating the root-mean-
square difference between model prediction and mea-
surement, we believe the present method has several
advantages, in particular for modelling information
processing systems. Deviations between model and
measurement are weighted according to how much
information the various frequency bands carry about
the signal. Furthermore, the resulting coherence rate
has a simple interpretation in that it is an estimate of
the information transferred by the system, be it that the
estimate will be biased in the case of non-Gaussian
signals.

Fig. 10. (A) Wiener filter and its parametric model fit for Msqrt. The dots and error bars show the average Wiener filter and the s.e.m. of 16
measurements, the line shows a fit with the function A1(t/�1)n1exp(− t/�1)−A2(t/�2)n2exp(− t/�2), with A1=1.85×10−7 mV/ms, �1=1.133 ms,
n1=10, A2=2.30×10−4 mV/ms, �2=8.50 ms, n2=5. For the sake of clarity only one in four dots is shown. (B) As A, for model MDWN; the
fit is given by A(t/�)nexp(− t/�), with A=2.46×10−6 mV/ms, �=0.535 ms, n=11. (C) Pulse response of MDWN (including the parametric
Wiener filter) based on the model fit to one of the measured photoreceptor cells. Parameters of the Wiener filter: A=3.13×10−6 mV/ms,
�=0.535 ms, n=11; further model parameters LP1: � =1.69 ms, LP2: � =71.8 ms, k1=0.689, k2=9.07. (D) Responses of MDWN to 500 ms
steps in light intensity, parameters as in C. Contrast steps: −0.8, −0.4, −0.2, −0.1, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4.
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For the methods of Fig. 1C and D it was assumed
that the nonlinear system could be split into a deter-
ministic part followed by an additive noise source. But
we know that noise tends to be generated at practically
any stage of a real physiological system, thus it remains
to be seen how good this assumption is. For a system
with distributed noise sources, it depends on the type of
nonlinearities how much of the resulting noise can in
effect be considered as additive, rather than, for exam-
ple, multiplicative.
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