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Abstract

We propose that visual adaptation in orientation, spatial frequency, and motion can be understood from the perspective of
optimal information transmission. The essence of the proposal is that neural response properties at the system level should be
adjusted to the changing statistics of the input so as to maximize information transmission. We show that this principle accounts
for several well-documented psychophysical phenomena, including the tilt aftereffect, change in contrast sensitivity and
post-adaptation changes in orientation discrimination. Adaptation can also be considered on a longer time scale, in the context
of tailoring response properties to natural scene statistics. From the anisotropic distribution of power in natural scenes, the
proposal also predicts differences in the contrast sensitivity function across spatial frequency and orientation, including the

oblique effect. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adaptation is a widespread property of the visual
system (and more generally, of sensory systems), occur-
ring in neurons ranging from the retina to the cortex.
Given the prevalence of adaptation, an important theo-
retical question is its functional significance. While the
functional importance of light adaptation is well-estab-
lished (e.g. Shapley & Enroth-Cugell, 1984; Laughlin,
1989), there exist other forms of adaptation for which the
analogous question remains unresolved. Examples in-
clude the motion, spatial frequency, and orientation
aftereffects. In the motion aftereffect, after adapting to
a moving stimulus, observers report the illusion of
motion in a subsequently presented test stimulus that is
physically stationary (Addams, 1834). A similar effect
occurs in the orientation domain: adaptation to an
inclined grating causes a vertically presented test grating
to be perceived as tilted in the opposite direction (Gibson
& Radner, 1937).

Traditionally, psychophysicists and physiologists have
used adaptation as a tool to probe the structure of the
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visual system. For instance, it can be used to infer the
encoding of a certain attribute, using logic along the
following lines: if adaptation specific to an attribute can
be demonstrated, then it can be concluded that the given
attribute is encoded explicitly by the visual system.
Blakemore and Campbell’s (1969) classic work on spatial
frequency and orientation channels includes examples of
this use of adaptation, as does other work (e.g. Gilinksy,
1968; Pantle & Sekuler, 1968; Blakemore & Nachmias,
1971). In fact, with some exceptions (e.g. Barlow,
MacLeod & van Meeteren, 1976), most psychophysical
work has not explicitly addressed the possible functional
significance of these curious phenomena.

Should such pattern aftereffects simply be dismissed as
a consequence of poor design? Or can some functional
significance be ascribed to these effects? In this paper, we
explore the hypothesis that visual adaptation to orienta-
tion, spatial frequency and motion can be understood in
terms of the principle of maximizing information. Our
development is based on earlier work that applied ideas
of information theory and efficient coding to early vision
(e.g. Srinivasan, Laughlin & Dubs, 1982; Atick &
Redlich, 1990; Linsker, 1992; van Hateren, 1992a), a
portion of which we briefly review in Section 2. The
principle of constrained information maximization is
described in Section 3. Our proposal applies equally well

0042-6989/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.

PII: S0042-6989(99)00101-7



M.J. Wainwright / Vision Research 39 (1999) 39603974 3961

to orientation, spatial frequency, or motion adaptation.
However, due to the ready availability of both neuro-
physiological and psychophysical data addressing ori-
entation coding, we first illustrate it by application to
orientation adaptation in Section 4.

Such aftereffects are essentially a laboratory phe-
nomenon, in which the presented signal has very simple
statistics. Of more ecological relevance are the statistics
of natural scenes, in which power is known to drop off
roughly as f~2 (Field, 1987; van der Schaaf & van
Hateren, 1996). Thus, it is also possible to consider
adaptation as operating on a much longer time scale, in
tailoring system response properties to the statistics of
natural scenes. Along these lines, Section 5 establishes a
link between the power spectrum of natural scenes, and
a number of classic psychophysical phenomena (Camp-
bell, Kulikowski & Levinson, 1966; Appelle, 1972),
including the oblique effect.

Our proposal is similar in spirit but distinct from
Barlow and Foldiak (1989) and Barlow (1990)’s decor-
relation approach to adaptation. In particular, by ex-
plicitly considering noise, our proposal exhibits distinct
regimes of behavior, depending on the signal-to-noise
ratio (SNR). Links to other work, as well as directions
for future work, are provided in Section 6.

2. Background

Natural signals are characterized by a high degree of
redundancy, a property that can be exploited by effi-
cient coding techniques. It was proposed by Attneave
(1954), and independently by Barlow (1961a,b), that a
major task of early vision is to remove the redundancy
present in natural signals. Redundancy reduction is
desirable, given the constraints on neural processing,
because it allows sensory information to be transmitted
and represented more efficiently. One technique to re-
duce redundancy is predictive coding, a technique ini-
tially studied in the context of TV transmission
(Harrison, 1952). This technique exploits the autocorre-
lation function to estimate the signal at one point as a
function of neighboring points. Only the error in this
prediction is then transmitted which reduces the dy-
namic range occupied by the signal. In seminal work,
Srinivasan et al. (1982) applied linear predictive coding
to the center-surround antagonism commonly observed
in peripheral visual pathways.

A strategy of pure redundancy reduction, however
implemented, fails to take into account the noisiness in
neural systems (Atick & Redlich, 1990; van Hateren,
1992a). In the presence of noise, pure redundancy re-
duction is no longer the optimal strategy. Rather, it is
necessary to actively add redundancy in a controlled
fashion in order to combat the noisiness of the system.
More redundancy will be required where the signal-to-

noise ratio (SNR) is low. Consequently, the optimal
encoding strategy strikes a balance between removing
and retaining redundancy, depending on the SNR. This
optimal balance can be specified in information-theo-
retic terms (Shannon & Weaver, 1949). Both Atick and
Redlich (1990, 1992) and van Hateren (1992a,b, 1993),
in independent work, put forth theories of early visual
processing formulated in terms of information theory.
These information-theoretic proposals take into ac-
count the effects of noise, and are equivalent to the
original proposal of redundancy reduction in the limit
of no noise. Using the well-known f~2 drop-off of
spectral power in natural scenes (Field, 1987; van der
Schaaf & van Hateren, 1996), Atick and Redlich (1990)
made predictions of ganglion cell receptive fields in the
mammalian retina, which showed qualitative agreement
with observed retinal ganglion cell properties under
conditions of low and high SNR (Enroth-Cugell &
Robson, 1966; Enroth-Cugell & Shapley, 1973). On the
other hand, van Hateren (1992a,b) considered spa-
tiotemporal power spectra; his theoretical predictions
agreed qualitatively with the behavior of fly visual
neurons with changing SNR. Subsequent work by both
Atick and Redlich (1992) and van Hateren (1993) es-
tablished links with mammalian contrast sensitivity.

3. Theory

The current paper builds on this previous work by
applying the principle of information maximization to
commonly observed forms of visual adaptation. The
essence of our proposal is that computation should be
tailored to the changing statistics of the input in an
information-theoretically optimal manner. From this
theoretical perspective, then, aftereffects are a reflection
of optimal changes in response characteristics. The
foundation of the proposal involves three elements. It is
first necessary to characterize the image statistics. In-
cluded in this characterization should be consideration
of noise contained in the signal itself. Secondly, it is
necessary to specify how the system acts upon this
noisy input. Neural systems are inherently noisy, mean-
ing that this operation introduces an additional source
of noise into the process, which also must be character-
ized. The third requirement is to establish the criterion
of optimality, which specifies how the system behavior
ought to change as a function of the signal statistics.
Included in this specification of optimality is a con-
straint on the output of the system, corresponding to
the fact that neural systems have limited dynamic
ranges. We address each of these facets in turn, and
finish by formulating the constrained optimization
problem.
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Our development is based on work reviewed in the
previous section (e.g. Atick & Redlich, 1990; van
Hateren, 1992a).

3.1. Characterization of the signal

A single static image of the world can be described
by an intensity value S(x,y) at every point (x,y).
The visual environment as a whole can be viewed as
an ensemble {%} of such images—that is, a stochas-
tic process defined over the space (x,y). An impor-
tant characteristic of natural images is that there are
statistical relations among the light intensities in sub-
sets of pixels. In terms of second-order characteristics,
light intensities tend to be correlated over short dis-
tances in the image. These second-order relations are
captured by the spatial autocovariance function
K((x,y), (x',¥), which gives the covariance between
luminance values at image locations (x,y) and
(x', ). It is often assumed that the ensemble statis-
tics are stationary (i.e. invariant to translations of the
coordinate system), in which case the autocovariance
function depends only the vector (u,v)=(x—x",y—
y’). In this case, the autocovariance function can be
written more simply as K(u, v). In many cases, this
assumption of stationarity is reasonable, because im-
ages are likely to be viewed from a range of posi-
tions, so that shifted versions of the image are
equally likely.! In contrast, given our intention to ad-
dress orientation coding, we do not assume
isotropy—i.e. invariance to rotations of the coordi-
nate system—as has been done in previous work on
natural image statistics (e.g. Field, 1987; Atick &
Redlich, 1990; van Hateren, 1992a).

With a stationary ensemble, an equivalent descrip-
tion of the second-order relations is in Fourier space,
via the power spectral density or power spectrum. By
the Wiener—Khinchine theorem, the power spectrum
is equal to the Fourier transform of the autocovari-
ance function (Papoulis, 1965). Thus, the visual envi-
ronment will be characterized by an ensemble power
spectrum in two-dimensions S(f,f,) This spectrum
can also be expressed in polar frequency coordinates
S(f, 8) where f is the radial spatial frequency, and 6
is orientation.

The existence of noise sources is critical to the pro-
posal. The first source is input noise: it consists of all
upstream noise, photon shot noise, noise arising from
phototransduction (e.g. Lillywhite & Laughlin 1979),
as well as noise contributed by earlier neural process-
ing. As with the image ensemble. this noise is charac-
terized by its power spectrum N,, which is assumed

! It should be noted, as pointed out by one reviewer, that stationar-
ity could be compromised by eye movements and other viewing
strategies.

to be flat or white. This assumption of a flat power
spectrum is made simply for convenience, and is not
essential to the theory.

3.2. Characterization of the response

It is standard to characterize human psychophysical
sensitivity by means of the contrast sensitivity func-
tion (Campbell & Robson, 1968). The contrast sensi-
tivity function (CSF) captures the sensitivity of
human observers to luminance-defined sinusoidal grat-
ings of varying spatial frequency. In the current pa-
per, we illustrate our proposal by applying it to both
orientation and radial spatial frequency. It is there-
fore necessary to consider a two-dimensional CSF in
polar co-ordinates, which specifies sensitivity as a
function of both orientation (#) and spatial frequency
f. In applying the theory to the tilt aftereffect, we will
ignore spatial frequency f, and consider a CSF that
depends only on the orientation 6.

Although psychophysical experiments measure the
overall shape of the CSF, this envelope is understood
to be formed by an underlying set of channels tuned
to both orientation and radial spatial frequency. For
simplicity in the current work, the optimization argu-
ment is performed at the level of the overall shape,
and therefore does not explicitly treat the tuning of
the individual channels. The issue of individual chan-
nels is briefly discussed in Section 6. Note that our
choice of a global criterion for optimization is moti-
vated purely by analytic simplicity; this choice does
not imply any global assumption about visual pro-
cessing.

While the system’s sensitivity to a given frequency
and orientation is fixed, the system response itself will
vary, due to the presence of intrinsic noise sources.
Noisiness in the input signal itself corresponds to the
first noise source (with power spectrum N,), which
was described in the section above. In addition, the
channel, being a neural system, also operates in a
noisy manner. This second noise source also charac-
terized by its power spectrum N,, is added to the
response. The block diagram in Fig. 1 shows the
structure of the system: a noisy signal S+ N, is mul-
tiplied by the transfer function F, followed by the
addition of channel noise N,. For a more precise de-
scription of this response, see Appendix A.

§ ——P—~ F(f,0) —P— Output R

T T

N1 Ng

Fig. 1. Schematic block diagram of the system: input is the signal or
image S which is contaminated by an additive noise source N,. The
system multiplies by the transfer function F( f, #), and then a second
noise source N, is added.
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3.3. Specification of optimality

As described in Section 1, the optimal coding strat-
egy strikes a balance between removing and adding
redundancy. depending on the signal-to-noise ratio
(SNR). This optimal balance is captured by the princi-
ple of maximizing the mutual information between the
signal ensemble {}, and the response ensemble {#},
in the presence of the noise sources N, and N,. For
each given envelope function F (as defined above), the
response ensemble conveys a certain amount of infor-
mation about the signal ensemble. Specifically, this
quantity. known as the mutual information between
response and signal, amounts to the reduction in uncer-
tainty about the signal provided by the response. As
derived in Appendix A, the rate of information trans-
mission can be expressed as an integral in terms of the
signal and noise power spectra:

T

) f J log {IF(f, PSS, 0) +|F(f: O)PN, + Nz}
A |F(f, 0)PN, + N,

x fdfdo (1
Thus given a certain signal and noise ensemble, we can
ask what choice of envelope function F maximizes the
quantity in Eq. (1). That is, we seek the envelope
function F that minimizes the uncertainty about the
signal given the response.

Given that neurons operate with limited dynamic
ranges, the response R of the system must be bounded
from above. An appropriate constraint is an upper
bound on the response variance [E[|R 2], where E denotes
expectation over the image ensemble. The following
equation for this variance (see Appendix A) follows
from Plancherel’s formula:

Fl|RP] = f ; J {FCL OIS 0) + N+ Nybf df do
' @)

We require that this variance be bounded above as
E[|R?|] < M?, for some M. Since information transfer
increases with increasing response variance, this condi-
tion is equivalent to requiring that the response vari-
ance be equal to M?. It is worthwhile to note that such
a constraint is not only biologically plausible, but also
formally required in order for the problem to be well-
defined. Without such a constraint, letting the envelope
function F become arbitrarily large would render the
channel noise N, irrelevant.

The problem is now one of constrained optimization:
given certain signal and noise power spectra, choose the
response envelope F so as to maximize the information
flow (given by Eq. (1)) through the neural system
shown in Fig. 1. subject to the bounded response
variance (given by Eq. (2)). The reader can consult
Appendix A for the derivation of this pair of Eqgs. (1)
and (2). Fortunately, the problem is analytically

tractable; applying the calculus of variations (Gel’fand
& Fomin, 1963) and a Lagrange multiplier A yields the
following explicit solution:

[F(f. O =

{ — N,[2N, + S(/, 0)] + +/IN2S(f2 O)F + 4/AINN,S(f, 9)]}
2NN, +S(/. 0)]

3)

The value of the Lagrange multiplier A needs to be
determined numerically by substitution into Eq. (2).

Turning now to the proposal of interest, we apply
this theory first to tilt adaptation in Section 4, and then
to natural scenes in Section 5. In all of the following
simulations, the height of the noise power spectra N,
and N, are fixed at 0.025 and 0.05 respectively. The
absolute values of these parameters are not critical;
more relevant, as will be seen, are ratios.

For Section 4 on orientation adaptation, we integrate
only over orientation. For natural scenes, integration
over spatial frequency ranges from r, =0.25 to r, = 61.
As these ranges of integration differ between tilt adap-
tation and natural scene sections, the upper bound M is
set to 20\/ (r/180) in Section 4 on orientation adapta-
tion, and 10 000\/ (m/180) in Section 5 on natural
scenes. These choice of M give reasonable dynamic
ranges for the given signal and noise power spectra;
again, the precise choice of M is not critical.

4. Results: orientation adaptation

In a standard experiment on orientation adaptation,
the human observer views a grating at a fixed orienta-
tion during an initial adaptation period that ranges
from 30 seconds to several minutes. Subsequent psy-
chophysical measurements (for example, of contrast
thresholds, or orientation perception) are taken be-
tween intervening periods of top-up adaptation. With-
out loss of generality, we consider the case of adapting
to a vertical (90°) grating.

We begin by assuming that under unadapted condi-
tions, the power spectrum is flat across orientation. The
visual system then updates its estimate of the power
spectrum by a running average over time. It is this
covtinual updating of the power spectral estimate that
drives the process of adaptation. The actual input
power spectrum during adaptation is (disregarding
aperture effects) a delta function at 90°. However, the
visual system can only update its estimate based on
samples that have been smoothed by orientation-tuned
cells. Therefore, during adaptation, the visual system
receives samples (expressed in terms of Fourier ampli-
tude) that are proportional to exp(— 0?/c?) where o
corresponds to the width of orientation tuning. The
effect of adapting is to titrate the initially flat (i.e.
‘unadapted’) power spectrum with the spectrum of the
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Fig. 2. A plot of power spectrum used to simulate orientation
adaptation. It represents the power spectrum estimated by the visual
system after adaptation, and it is given by Eq. (4) with o= 12°,
a=0.05 and b=3.5.

adapting ensemble. As adaptation proceeds, two
changes will occur: first, the power spectrum will be-
come increasingly peaked around the adapting orienta-
tion of 90°, and second, the power at orientations
distant from the adapted location will become progres-
sively weaker. Thus, the signal power spectrum during
adaptation can be represented as follows:

—_ 02\ ]2
S@)=a+ b - a)[exp((#)} @)
The parameter o, which is related to the width of
orientation tuning, is set to 12° in all simulations. Such
a choice of ¢ corresponds to an orientation bandwidth
of roughly 20°, which is reasonable given psychophysi-
cal measurements of orientation bandwidths (e.g.
Blakemore & Nachmias, 1971; Movshon & Blakemore,
1973). The parameter b, which determines the maxi-
mum height of the power spectrum at the adapted
location (90°), will depend on both the length of the
adaptation period as well as the contrast of the adapt-
ing grating. The level of residual power at non-adapted
locations, given by the parameter a, will be related to
the length of the adaptation period. These parameters
will vary with experimental set-up: for our purposes, a
precise choice is not critical. In all simulations, the
parameters @ and b were hand-chosen as 0.05 and 3.5
respectively, which yield reasonable agreement with the
data. A plot of the power spectrum used to simulate the
effects of adaptation is shown in Fig. 2. Given such a
signal power spectrum, we then compute the optimal
transfer function F according to Eq. (3).

4.1. Changes in contrast sensitivity

It is well-known that adaptation causes decrements in
contrast sensitivity, or equivalently, increases in the
contrast threshold required to detect a grating (e.g.

Blakemore & Campbell, 1969). These changes are local-
ized to the orientation (and spatial frequency) of the
adapting stimulus. Elevation in contrast threshold is
greatest when the orientation of the test grating
matches the adapting orientation, and the size of the
effect drops to half of this maximal value for test
gratings at orientations ~ + 8° away from the adapting
orientation. For test gratings beyond =+ 20° from the
adapting location, contrast thresholds may actually
decrease.

By the model specification. the response envelope
provides a measure of the overall contrast sensitivity of
the system. Given that contrast thresholds are simply
the inverse of sensitivity, it is straightforward to calcu-
late changes in contrast threshold following adaptation.
Under ‘unadapted’ conditions, we assume that signal
power is flat across orientation. Optimizing with respect
to this flat power spectrum (of height fixed at 0.15)
gives a baseline measure of unadapted thresholds.
Then, optimizing with respect to a peaked power spec-
trum of the form shown in Fig. 2 yields adapted
contrast thresholds, which are then normalized by the
baseline to obtain percent changes in contrast
threshold. Along the vertical axis of Fig. 3 are percent
changes in contrast threshold, relative to the baseline
(‘unadapted’) condition. Positive and negative numbers
correspond to threshold elevation and reduction, re-
spectively. Plotted in circles are contrast threshold data
from Regan and Beverley (1985), measured following
adaptation to a 12 cpd grating at 100% contrast. Also
shown in a solid line are theoretical predictions, ob-
tained from the optimized response envelope F. It is
clear that the model predictions show good correspon-
dence with the experimental data. The effect peaks at
the adapted location (90°), where the threshold eleva-
tion is near twofold. On either side of the adapted
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Fig. 3. Predicted changes in contrast thresholds following adaptation
to a vertical (90°) grating. Vertical axis shows percent changes in
contrast threshold relative to a baseline (‘unadapted’) condition.
Theoretical predictions are given by the solid line, whereas experi-
mental data. taken from Regan and Beverley (1985), are plotted in
circles. See text for more details.
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orientation, the effect drops off rapidly. For orienta-
tions beyond =+ 20° from the adapted location, a slight
reduction in contrast threshold (i.e. increase in sensitiv-
ity) is predicted. The Regan and Beverley (1985) data,
due to asymmetry around the adapted orientation 90°,
are not decisive in this regard. However, adaptation
data from the analogous domain of spatial frequency
(de Valois, 1977) support the notion that adaptation
can actually increase contrast sensitivity away from the
adapted frequency.

4.2. Tilt aftereffect

Perhaps the most striking effect of adapting to a
grating is the tilt aftereffect (Gibson & Radner, 1937),
in which the perceived orientation of a test grating is
altered. For instance, after adapting to the vertical
(90°), slightly off-vertical test gratings are perceived as
being more strongly tilted. The direction of this effect is
repulsive, in that the perception of gratings is pushed
away from the adapted orientation symmetrically on
both sides. The magnitude of this tilt aftereffect, though
it varies with experimental conditions, is on the order of
3-4° at its peak.

It is commonly assumed that orientation is repre-
sented in a population code (e.g. Vogels, 1990), where
the response-weighted average of the population deter-
mines the perceived orientation. With orientation 6, in
radians represented by the complex exponential
exp( — 2j0,), the response-weighted vector v is calcu-
lated as a sum over the population of orientation units

V= Z 1. exp( — 2j0,)
k

where r, is the response used as a weight in the sum,
and 6, is the preferred orientation of unit k. Finally, the
orientation is recovered as arctan[Im(v)/Re(v)]. Assum-
ing this type of coding, we use the optimized response
envelope F(0) as the response weighting in this calcula-
tion. Plotted in Fig. 4 with a solid line is the error in
orientation perception predicted by the model, which
corresponds to the tilt aftereffect. Also shown in circles
are tilt aftereffect data taken from Campbell and Maf-
fei (1971). Again, the model prediction captures the
behavior of the data. The peak magnitude of the tilt
aftereffect is ~3-4°; it occurs at 4+ 8-10° from the
adapted location and then fades off with + 45°.

4.3. Orientation discrimination

The main focus of the Regan and Beverley (1985)
study was orientation discrimination, which they stud-
ied using a temporal two-alternative forced choice task.
After adaptation to a vertical (90°) grating, they found
that orientation discrimination was most impaired at
+ 15° from the vertical. Interestingly, at the adapted

- N W s

Tilt aftereffect (deg)
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|
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45 60 75 90 105 120 135
Orientation (deg)

Fig. 4. Predicted tilt aftereffect following adaptation to a 90° grating.
Plotted on the horizontal axis is the orientation of the test grating.
The vertical axis shows the magnitude of the tilt aftereffect: that is,
the difference between the perceived and presented orientations.
Experimental data from Campbell and Maffei (1971) are plotted with
open circles, whereas the model prediction is plotted with a solid line.
See text for more details.

orientation, contrary to earlier results (Barlow et al.,
1976), orientation discrimination actually improved by
roughly 25%. The authors analyzed these results in the
context of two opponent-process models for orientation
discrimination. In both models, orientation-tuned units
feed their outputs to an opponent unit. In the first
model, the opponent unit computes the difference be-
tween the two outputs, whereas in the second case, it
takes the ratio. Note that taking the ratio between two
outputs is equivalent to taking the logarithmic differ-
ence. Consequently, the relative merits of these two
models, as the authors point out. depend primarily on
the contrast dependencies (e.g. saturating, proportional
to log contrast, etc.) of the underlying orientation-
tuned neurons.

Orientation discrimination thresholds are predicted
using the following procedure. From the optimal re-
sponse F, we used the response-weighted vector method
(described in Section 4.2 on the tilt aftereffect) to
calculate the curve describing orientation perception
under the adapted condition. We then apply the linear
difference model (described above) to the output of this
orientation stage, which yields a vector of sensitivity
changes after adaptation. To make comparisons with
the baseline (‘unadapted’) data of Regan and Beverley
(1985) meaningful, these raw values must be normal-
ized, which is done so that the sensitivity changes at 90°
are in correspondence. Finally, percent changes in dis-
crimination thresholds are computed as a difference
between the ‘adapted’ thresholds (theoretically pre-
dicted) and Regan and Beverley (1985) pre-adaptation
measurements of thresholds, all divided by these same
preadaptation measurements. Model predictions of
threshold changes were symmetrized, in order to elimi-
nate spurious effects of asymmetries in the pre-adapta-
tion measurements.
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Fig. 5 shows percent change in orientation discrimi-
nation threshold (relative to the unadapted baseline) on
the vertical axis versus test orientation. Plotted on the
left with circles joined with a dotted line are the mea-
sured changes in orientation discrimination threshold
from Regan and Beverley (1985), whereas predictions
from the theory are plotted on the right in triangles
joined by a solid line. In both the experimental data
and theory, orientation discrimination is most severely
impaired at peaks on either side of the vertical, where it
shows a roughly 50% elevation. This threshold eleva-
tion drops off by + 30° away from vertical. Around the
adapted location of 90°, orientation discrimination
thresholds actually decrease by 25-30%.

5. Results: natural scenes

In recent years, a great deal of research has focused
on first characterizing the statistics of natural images,
and then relating these statistics to coding in the visual
system. It is well-established that the power spectrum of
natural images falls off as roughly f~2 with spatial
frequency (e.g. Field, 1987; Ruderman, 1994; van der
Schaaf & van Hateren, 1996), and this behavior has
been used to explain various aspects of processing in
both early insect vision (e.g. Srinivasan et al., 1982; van
Hateren, 1992a,b), as well as early mammalian vision
(e.g. Atick & Redlich, 1992; van Hateren, 1993; Dong
& Atick, 1996). Similarly, anisotropies in the distribu-
tion of power across orientations have been docu-
mented (Switkes, Mayer & Sloan, 1978; van der Schaaf
& van Hateren, 1996). Analysis of natural images re-
veals that greater amounts of power are concentrated at
the vertical (90°) and horizontal (0°), relative to oblique
(i.e. 45° and 135°) orientations. These differences are
understandable, given the prevalence of vertical and
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Fig. 5. Percent change in orientation discrimination thresholds as a
function of orientation after adaptation to a vertical grating (90°).
Plotted on the left in circles joined by a dotted line are experimental
data, taken from Regan and Beverley (1985). Model predictions are
plotted on the right in triangles joined by a solid line. Note that
thresholds are lowered at the adapted orientation, and rise to peaks at
~ + 15° away from the vertical.

horizontal structure in both carpentered and natural
environments.> Despite this known anisotropy, rela-
tively few solid links have been made between this
anisotropic power distribution and the characteristics of
early visual processing.

In this section, on the basis of measurements of the
power spectrum of natural scenes, we calculate the
optimal response envelope as a function of both radial
frequency (f) and orientation (¢). This matching of
response to natural scene statistics can be considered as
adaptation operating on a long time scale. We show
that this optimal response function accounts for several
observed differences in contrast sensitivity across orien-
tation and radial spatial frequency.

First of all, taking cross-sections across spatial fre-
quency at a fixed orientation, the optimization predicts
a sharper high-frequency fall-off in the CSF for oblique
versus vertical/horizontal orientations, as has been
demonstrated experimentally (Campbell et al., 1966).
Secondly, taking cross-sections across orientation at
fixed spatial frequencies reveals the oblique effect. That
is, although contrast sensitivity across orientations is
roughly constant at low spatial frequencies, greater
sensitivity to vertical and horizontal is observed at high
spatial frequencies (Campbell et al., 1966; Heeley &
Timney, 1988).

Using measurements of the power spectrum of natu-
ral scenes from van der Schaaf and van Hateren (1996),
we formed the signal power spectrum as the product of
the radial frequency and the orientation measurements.
Following van Hateren (1993), we approximate the
optics of the human eye, as measured by Campbell and
Gubisch (1966), with a transfer function of the form

1= (f1fmax) €Xpl = (f] 1/ imax)]

where u = 0.28, and f,,,, = 61.2 cpd. A mesh plot of this
power spectrum (normalized) is shown in the left panel
of Fig. 6, whereas the right-panel shows cross-sections
through orientation (top) and through radial spatial
frequency (bottom). The plot of log power versus log
spatial frequency is linear through a significant range,
reflecting the f~2 drop-off in power; deviations from
linearity are caused by the transfer function of the
optics of the eye.

Again, the optimal response envelope for this two-di-
mensional signal power spectrum was calculated using
Eq. (3). By sectioning this response envelope through
different axes, we can make predictions about differ-
ences in contrast sensitivity across orientation and ra-
dial spatial frequency.

2 It should be noted that horizontal lines do not, in general, project
horizontally onto the retina.
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Fig. 6. (a) Log power spectrum of the signal, based on measurements of natural scenes by van der Schaaf and van Hateren (1996), as a function
of radial spatial frequency and orientation. (b) Top: Cross-sections of this power spectrum as a function of orientation, taken at four fixed spatial
frequencies. Note that log power simply shifts downwards with increasing radial spatial frequency. Bottom: Cross-section at a fixed orientation,

showing the £~ 2 drop-off in power.

5.1. Contrast sensitivity function: high frequency

fall-off

Campbell et al. (1966) measured the contrast sensitiv-
ity function (CSF) for horizontal (0°), vertical (90°), as
well as two oblique orientations (45 and 135°). The
basic finding was that contrast sensitivity at higher
frequencies drops off earlier for oblique than for verti-
cal or horizontal gratings. There is also a small differ-
ence between vertical and horizontal gratings, with
greater sensitivity to the vertical than to the horizontal.
This experimental data is plotted in the left panel of
Fig. 7 on a log—linear scale in order to emphasize the
high frequency behavior. Straight lines represent least
squares fits to the data. Shown in the right panel are the
CSFs predicted by the optimal response envelope.
These predictions were obtained by sectioning the en-
velope along spatial frequency at the four orientations
(0° for horizontal; 90° for vertical: and 45° and 135° for
the two obliques). Again, curves are plotted on a linear
spatial frequency axis in order to emphasize the high-
frequency behavior of the CSFs. Since predictions for
the two oblique orientations are identical, only one
such curve is plotted. It is clear that the qualitative
behavior of the Campbell et al. (1966) data has been
captured.

5.2. Contrast sensitivity across orientations

Early psychophysical work (Campbell et al., 1966;
Mitchell, Freeman & Westheimer, 1967) revealed an
anisotropy in contrast thresholds across orientation. In
particular, human observers show greater sensitivity to
vertical and horizontal gratings compared to oblique
gratings. This effect is a function of retinal orientation,
and not of gravitational orientation (Banks & Stolarz,
1975). It is also known that the strength of this effect
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Fig. 7. Plotted in the left-hand panel are data from Campbell et al.
(1966), of contrast sensitivity as a function of spatial frequency for
three orientations. Straight lines are least squares fits to the data. The
right-hand panel shows the drop-off in contrast sensitivity for three
orientations as predicted by the theory. See text for more details.
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Fig. 8. The left-hand panel shows experimentally measured contrast
sensitivity as a function of orientation for four spatial frequencies.
Data is taken from Heeley and Timney (1988). The right-hand panel
shows the corresponding contrast sensitivities, as predicted from the
theory. These model predictions were based on measured properties
of the power spectrum of natural scenes (van der Schaaf and van
Hateren, 1996).

varies with spatial frequency: absent at low spatial
frequencies, it appears only beyond the peak of the
CSF, at roughly 4-8 cpd (Mitchell et al., 1967).

The data plotted on the left of Fig. 8, taken from
Heeley and Timney (1988), are measurements of con-
trast sensitivity as a function of orientation for four
spatial frequencies (2.5, 5, 10, and 20 cpd). The data
has been re-scaled so that the maximum contrast sensi-
tivity is unity. Note that contrast sensitivity is roughly
constant for 2.5 cpd gratings, whereas an orientation
anisotropy sets in for higher spatial frequency gratings.
In particular, for high spatial frequencies, human ob-
servers show greater sensitivity to vertical (90°) and
horizontal (0°) gratings. In the right panel of Fig. 8, we
have plotted the normalized predictions of the model.
In qualitative agreement with the data, the model pre-
dicts isotropic contrast sensitivity at 2.5 cpd, but an
anisotropy for higher spatial frequencies.

Earlier attempts have been made to establish a link
between the oblique effect and properties of the visual
environment (for example, Annis & Frost, 1973). Inter-
estingly, orientation anisotropy sets in only beyond the
peak of the CSF (Mitchell et al., 1967: Berkeley, Kit-
terle & Watkins, 1975). Therefore, as noted by Switkes
et al. (1978), because the anisotropy appears only at
higher spatial frequencies, these earlier proposals rely
on the assumption that horizontal and vertical orienta-
tions are disproportionately represented only at higher
spatial frequencies. Based on their measurements of
image power spectra, Switkes et al. (1978) found that
such an assumption is not valid. The current model, by
contrast, does not depend on such an assumption, and
thus differs from previous proposals. Recall that the
input power spectrum was composed as a separable
product of measurements across orientation and spatial
frequency (taken from van der Schaaf & van Hateren,
1996), so that anisotropy in the signal exists at all

spatial frequencies. This fact is seen most clearly in the
right-hand side of Fig. 6, where cross-sections at differ-
ent radial spatial frequencies are seen to simply shift
downwards on a logarithmic scale. According to the
current proposal, the preference for vertical and hori-
zontal only sets in beyond the peak of the CSF because
moving to higher spatial frequencies corresponds to
shifting to lower SNR. In this lower SNR regime, signal
power at oblique orientations is affected more seriously
by noise, and therefore is reduced relative to horizontal
and vertical. We elaborate further on this important
point in Section 6.

5.3. Other applications

Certain optical defects, among them astigmatism, will
lead to differences in the statistics of the images pre-
sented to the visual system. For instance, consider an
astigmatic subject in which horizontal gratings are de-
focused. For this subject. power at the horizontal (0°)
should drop off more quickly than for a non-astigmatic
observer. Therefore, the current proposal predicts re-
duced contrast sensitivity for horizontal gratings, and a
corresponding decrease in the maximum resolvable spa-
tial frequency at that orientation. These differences
have been documented by Freeman and Thibos (1975)
in an astigmatic subject in whom the horizontal was
defocused.

It is a rarer case of astigmatism in which the princi-
pal optical meridians are oblique. In such a subject, the
orientations of maximal and minimal defocus will lie on
oblique axes. Therefore, depending on the degree of
astigmatism, the current proposal predicts a reversal in
the ‘oblique effect’—namely, both the maximum and
minimum resolvable frequencies should be observed at
oblique orientations. This is in sharp contrast to the
normal pattern, where the maximum and minimum are
found at the vertical and oblique respectively. Freeman
and Thibos (1975) also documented this interesting
reversal in such an astigmatic subject.

6. Discussion
6.1. Two regimes of SNR

A comparison of the results on tilt adaptation and
natural scenes reveals an interesting feature of the
current proposal. First of all, in the context of tilt
adaptation, the theory predicts that sensitivity should
be reduced where the signal power is high. This reduc-
tion in sensitivity corresponds to an elevation in con-
trast threshold, which 1is experimentally observed
(Regan & Beverley, 1985), as shown in Fig. 3. On the
other hand, in Section 5 on natural scenes, the model
shows the opposite effect. Specifically, it predicts that
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for high spatial frequencies, contrast sensitivity should
be greatest for orientations where the signal power is
large (i.e. horizontal and vertical). This prediction,
shown in Fig. 8, again is consistent with experimental
measurements (Mitchell et al., 1967; Berkeley et al.,
1975; Heeley & Timney, 1988).

These two types of behavior emerge, because there
are two possible reasons for reducing sensitivity, each
corresponding to a different regime of SNR. The first
reason applies to regions of high SNR, where the signal
is sufficiently robust that sensitivity can be reduced,
thereby freeing up resources (i.e. the limited dynamic
range) to be allocated more efficiently elsewhere. This
reduction in sensitivity corresponds to a tendency to-
wards flattening the power spectrum. (In the absence of
noise, a flat power spectrum would be optimal for
information transmission.) Sensitivity reduction in such
a high SNR regime accounts for the low-frequency
drop-off in the CSF as a function of radial frequency
(Campbell & Robson, 1968), as has been pointed out
previously (Atick & Redlich, 1992; van Hateren, 1993).
In the context of the current work, behavior in tilt
adaptation also corresponds to a high SNR regime,
where the extended presentation of a high contrast
grating represents an extremely high power signal. Ac-
cording to the current proposal, the reduction in con-
trast  sensitivity observed following adaptation
corresponds to the tendency to flatten the power spec-
trum, which is strongly peaked around the adapted
orientation.

A second reason for reducing sensitivity corresponds
to the low SNR regime where the signal begins to fall
below the noise. In this regime, it becomes more effi-
cient to reduce sensitivity to signals with low SNR, so
that the associated noise does not occupy too much of
the dynamic range. This type of sensitivity reduction is
involved in the high-frequency drop-off of the CSF
(Atick & Redlich, 1992; van Hateren, 1993). In the
current proposal, it is this type of sensitivity reduction
that underlies the orientation anisotropy in contrast
sensitivity shown in Fig. 8. As radial spatial frequency
is increased, the oblique orientations are swamped by
noise before the vertical and horizontal orientations.
According to the current proposal, therefore, at high
spatial frequencies, sensitivity to oblique gratings
should be reduced (relative to vertical and horizontal
gratings).

6.2. Further predictions

With this basic intuition, we can turn to additional
theoretical predictions that are not addressed by the
data currently under consideration. First of all, for
spatial frequencies lower than the peak of the CSF, the
theory predicts an anisotropy in contrast sensitivity
opposite to that of the oblique effect. In particular.

contrast sensitivity should be greater for oblique than
horizontal/vertical gratings.

Fig. 9 shows cross-sections through orientation (from
the optimal response envelope obtained in Section 5)
taken at 0.5 cpd and 20 cpd. Note the reversal in the
direction of the orientation anisotropy in sensitivity
between the lower and higher spatial frequency. The 20
cpd points show the usual oblique effect, whereas the
0.5 cpd points show the reversed pattern of greater
sensitivity to oblique orientations.

The intuition underlying this prediction is that the
peak of the CSF roughly marks a transition between
higher and lower regimes of SNR. Frequencies higher
than the peak correspond to a lower SNR regime, so
that sensitivity should be reduced for the oblique orien-
tations, where the signal is weaker. As discussed, this
‘oblique’ effect is experimentally observed (Campbell et
al., 1966; Mitchell et al., 1966). On the other hand,
spatial frequencies below the peak of the CSF corre-
spond to a high SNR regime, where sensitivity should
be reduced for the stronger signals—namely, the hori-
zontal and vertical. In this regard, the data of Heeley
and Timney (1988) plotted in Fig. 8 (left panel) are
suggestive, but not conclusive, because sensitivity for
very low spatial frequencies (i.e. <1 cpd) was not
measured. Two caveats should be made regarding this
prediction. First of all, it could be difficult to test due
to well-known aperture issues in displaying very low
frequency gratings. Secondly, the prediction was based
on a power spectrum composed as a separable product
of measurements across orientation and spatial fre-
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Fig. 9. Theoretical predictions of contrast sensitivity as a function of
orientation at two spatial frequencies. Observe that the direction of
the anisotropy reverses between the low and high spatial frequency
cross-sections. The 20 cpd cross-section shows the usual oblique effect
(Campbell et al., 1966; Mitchell et al., 1967), whereas the 0.5 cpd
cross-section predicts that contrast sensitivity should be greater for
the oblique orientations.
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Fig. 10. Theoretical predictions of contrast sensitivity as a function of
orientation at four spatial frequencies, for a lower SNR (left) and
higher SNR (right). Note that the orientation anisotropy sets in
earlier for the lower SNR than the higher SNR.

quency (van der Schaaf & van Hateren, 1996). Serious
deviations from this separable form in the two-dimen-
sional power spectra of natural scenes could invalidate
this prediction.

The second prediction is related to the known
changes in the shape of the CSF as a function of mean
luminance. Specifically, peak sensitivity of the CSF
shifts to lower spatial frequencies as mean luminance is
reduced (e.g. Patel, 1966; Kelly, 1979). Recall that the
model predicts that orientation anisotropy in contrast
thresholds should set in only beyond the peak of the
CSF. Since moving to lower mean luminance shifts the
peak of the CSF, the theory predicts that orientation
anisotropy should be observed at lower spatial frequen-
cies, when tested under conditions of lower mean illu-
mination. This prediction is illustrated in Fig. 10.

Both plots show contrast sensitivity across orienta-
tion at four spatial frequencies. The right-hand plot, a
duplicate of the right plot in Fig. 8, displays theoretical
predictions at a higher SNR. In this case, the orienta-
tion anisotropy is largely absent at the lower frequen-
cies (2.5 and 5 cpd), but sets in with the shift to higher
frequencies. The left-hand plot corresponds to an SNR
lower by a factor of ~4.5. In this lower SNR case, the
usual oblique effect—greater sensitivity to vertical and
horizontal—is seen more clearly even at the lower
spatial frequencies. Again, the single caveat here is that
our power spectrum was based on a separable product
of measurements across orientation and spatial
frequency.

6.3. Relation to previous work

The relation to earlier work on the oblique effect in
natural scenes was addressed in Section 5.2. Laboratory
aftereffects (e.g. spatial frequency or orientation afteref-
fects) have also been the focus of previous work. Ross
and Speed (1991), studying spatial frequency adapta-
tion, modeled it as a shift in the semi-saturation con-
stant of a Naka—Rushton function. Similarly, Heeger

(1992) accounted for adaptation effects by a shift of the
semi-saturation constant in a divisive normalization
operation. In a gain control network, Wilson and Hu-
manski (1993) applied divisive operation with modifia-
ble synapses to model a range of adaptation effects.
Given their divisive (non-linear) nature, these models
can be applied to a wider range of data than the model
proposed here. The current theory differs primarily
from this earlier work in its motivation. Whereas a
significant thrust of this earlier work was towards un-
derstanding mechanism, the current proposal is moti-
vated more by statistical goals. In the current work, we
have shown that a number of adaptation effects (on
both short and longer time scales) emerge in a princi-
pled fashion from a single goal—namely, that visual
system responses are adjusted to the changing statistics
of their input in an information-theoretically optimal
manner.

In terms of its motivation, the current work is closest
in spirit to an earlier proposal by Barlow and Foldiak
(1989) that decorrelation among output units could be
the principle underlying aftereffects. Whereas this work
and Barlow’s proposal share a similar motivation, they
also differ in a number of ways. In the current pro-
posal, the optimization was performed at a macroscopic
level, in terms of an overall envelope of sensitivity. Due
to this choice, made primarily for reasons of analytic
simplicity, the tuning of individual output units (and
therefore possible correlations among them) was not
explicitly considered. Rather, the focus was on the
balance between reducing and retaining redundancy at
the image level, and how this optimal balance changes
depending on the SNR. On the other hand, Barlow and
Foldiak (1989) begin by assuming that the output units
have equal variance, and then advocate complete decor-
relation of these units. Thus, the proposal of Barlow
and colleagues does not take into account noise. In
contrast, by explicitly considering noise sources, the
current proposal exhibits different behavior, even when
the signal power spectrum is biased in the same way.
These differences, which depend on the SNR, were
discussed in detail in Section 6.1.

In terms of information transmission, explicit consid-
eration of the tuning of output units leads to a con-
strained optimization problem more general than either
the current approach, or the problem implicitly solved
by the decorrelation approach of Barlow and col-
leagues. Furthermore, consideration of statistical de-
pendencies beyond correlation will undoubtedly prove
important (see Section 6.4). Due to considerations of
analytic simplicity, we did not address these more gen-
eral problems here. Statistical dependencies among out-
put units are likely to be an important consideration,
especially with adapting ensembles involving more than
one stimulus type. Moreover, consideration of these
relations is certainly interesting for reasons other than
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information maximization. As emphasized by Barlow
(1990), there exist other compelling rationales for
decorrelation-like strategies, including the detection of
novel associations. This topic thus remains a fertile
ground for future research (see Wainwright & Simon-
celli, 1999).

6.4. Future directions

In the current work, the signal (i.e. images) and the
noise sources were characterized only by their power
spectra. On one hand, the simplicity of this statistical
characterization speaks to the power of the present
proposal. Specifically, second-order statistics suffice to
predict a number of differences in contrast sensitivity
across orientation and spatial frequency, under both
tilt-adapted conditions as well as natural scenes. Given
only knowledge of power spectra, we followed the
principle of least commitment (or maximum entropy
(Wu, 1997)) in characterizing the signal and noise as
Gaussian. However, previous work has shown that
applying a wavelet transform (corresponding to cortical
receptive fields) to natural images yields highly non-
Gaussian marginal distributions (e.g. Field, 1987; Si-
moncelli & Adelson, 1996). The non-Gaussian nature
of these marginals is one manifestation of higher-order
statistical structure in natural images, not captured by
the power spectrum. In a related issue, the current
model is a linear approximation to a system well-
known to be non-linear (e.g. Heeger, 1992; Tolhurst &
Heeger, 1997). Non-linearities in the system, as well as
the non-Gaussian nature of images, present further
interesting questions for research. Such issues are ad-
dressed by work currently in progress (Wainwright &
Simoncelli, 1999).

7. Conclusions

Building on previous work applying ideas of coding
theory to the visual system (e.g. Srinivasan et al., 1982;
Atick & Redlich, 1990; van Hateren, 1992a), we have
proposed an information-theoretic model for adapta-
tion at the cortical level. As a first illustration, we
applied this proposal to orientation adaptation, and
showed that it accounted for the standard effects, in-
cluding changes in contrast thresholds, the tilt after-
effect, and changes in orientation discrimination
thresholds. The effects of spatial frequency adaptation
are analogous, in that similar changes in contrast
threshold and shifts in perceived spatial frequency are
well-documented (e.g. Blakemore & Campbell, 1969; de
Valois, 1977). Although we have not presented such
simulations in this paper, the current proposal could
also be applied to the standard effects of spatial fre-
quency and motion adaptation. In a second applica-

tion, we considered adaptation operating on a longer
time scale. On the basis of measurements of the power
spectrum of natural images (van der Schaaf and van
Hateren, 1996), we showed that the proposal accounts
for various differences in contrast sensitivity across
spatial frequency and orientation. We also set forth
additional predictions, not currently addressed by data,
about the shape of the CSF across orientation and
radial frequency.

This work provides further support to the enterprise
of deriving visual system response properties in a prin-
cipled fashion—namely, from the statistics of its in-
puts. From the perspective advocated here,
well-documented effects of visual adaptation are reflec-
tions of information-theoretically optimal changes in
response properties. Thus, the current work simulta-
neously emphasizes the dynamic nature of visual re-
sponse properties, and provides a computational
rationale for these changes.
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Appendix A

For the sake of completeness. we provide a rough
outline of the derivation of Egs. (1) and (2) for the
information rate and response variance respectively,
which together constitute the constrained optimization
problem. As described in Section 3, our input consists
of an ensemble of images {&}, with an associated
power spectral density S(f,,f,). We can consider this
power spectrum either in Cartesian coordinates ( £, f,),
or polar coordinates ( f, ). A single image S(x, y) can
also be considered in this Fourier space, via its associ-
ated two-dimensional transform S(f., f,) or S(f. 0).

Since the system is assumed to act linearly, its opera-
tion on a single image can be characterized by its
transfer function F(f,,f,) as follows:

R(fo ) = F(fo INS(fa ) + Ni( o £} + No(fo /1)
)
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That is, frequency component by component, the re-
sponse is as schematized in Fig. 1. The signal S( Sol))
contaminated by the first noise source N,, is multiplied
by the transfer function F, after which a second noise
source N, is added.

Given the signal ensemble {#} and the noise sources,
each choice of the transfer function F determines a
response ensemble {Z#}. Each such response ensemble
conveys a certain amount of information about the
signal. Specifically, the mutual information between
response and signal is given by:

IS R) = H(S) — H(S|R) = H(R) — H( RS (6)

where # is the entropy. This quantity captures the
reduction in uncertainty about the signal provided by
the response ensemble. We wish to choose our transfer
function F (and thereby our response ensemble) so as to
maximize this reduction in uncertainty.

As previously noted, this problem is not well-defined
without a constraint on F; otherwise allowing the mag-
nitude of F to become arbitrarily large would render
the second noise source N, irrelevant. Two possible
choices of this constraint are a ‘hard’ maximum on the
amplitude of the response (i.e. |[R(f..f,)| < M?* Vf.. f,)
or, alternatively, an upper bound on the response vari-
ance (i.e. E[|R|’] < M?). Neurons rarely (if ever) operate
at firing frequencies near the limits imposed by biophys-
ical constraints, which are on the order of 1000 Hz. For
this reason, the ‘hard’ maximum does not seem to be a
reasonable choice. Rather, the second choice—that is,
a constraint on response variance—seems most natural.
This choice can be seen as a bound on the expected
power of the neural response, which could be inter-
preted in terms of metabolic cost. An alternative inter-
pretation follows from Chebyshev’s inequality: a
constraint on the response variance places a bound on
the probability of large deviations in the response from
its mean.

Therefore, we need to derive two equations: one for
the mutual information between signal and response,
and a second for the response variance. Both equations
will be in terms of the amplitude of the transfer func-
tion |F|, and the power spectra of the signal and noise
sources.

We begin by noting that Eq. (5) can be rewritten as

R(fo f,) = F(fu ,)S(fur i)}
FAF(f fIN\(fi f,) + No( fs )} (7

where the first term in curly braces corresponds to
signal, and the second term corresponds to noise. Thus,
for each frequency component the response is the sum
of a signal term and a noise term, which are assumed to
be uncorrelated. Therefore, the entropy of the response
given the signal (i.e. #/(%|¥)) is equal to the entropy of
the noise. Overall then, the mutual information is equal
to the entropy of the response minus the entropy of the

noise. For a Gaussian signal with variance ¢2, the
entropy is given by (ignoring irrelevant constant terms)
log(c?). Therefore, in our case, for a given frequency
component, the mutual information is given by (after
simplification):

I(fo /) = 1og{E[|R ]}

— log{E[|F(fo L )N:\(feo /) + Na(fo ST}
®)

where the argument of the second log corresponds to
the variance of the noise term in Eq. (7). Expanding
and simplifying, we find that the noise variance takes
the form

[FCfo SOPEIN (fo £+ EINS(fo £

whereas the response variance is equal to

ERP] = |F(fo fOPEIS(foo )]
+ [F(fo ) PEINL (S )P + ELNA fo )]

In both calculations, we have used the fact that signal
and noise are assumed to be uncorrelated.

Normalizing the variances by the sampling areas
(and eventually taking limits as the sampling size tends
to infinity) will yield power spectral densities S( f., f,),
N,, and N,. Frequency dependence for the two noise
power spectra are omitted, because they are assumed to
be constant. Consequently, for a given frequency com-
ponent, our expression for the mutual information be-
tween signal and response takes the form:

I(fot)

 Ea ERSUn f) + [P fIPN, + N,
- log{ (S f)PN, + N, ©)

Now we have applied a linear shift-invariant operation
to signal and noise sources that are stationary. There-
fore, by the spectral representation theorem (Doob,
1953), frequency components in the response are uncor-
related. Therefore, since we are characterizing our sig-
nal and noise only by their power spectra, we can
obtain the information between signal and response in
a collection of frequency components by summing
across them. That is, for some collection % of
frequencies:

1
a7 LS U ALAYG (10)

Recall that the spacing of frequency samples Af is
inversely proportional to the spatial distance over
which the signal is sampled. So normalizing by the
sampling area and taking limits allows us to pass to an
integral, and we obtain an expression for the informa-
tion rate in bits per degrees of visual angle squared:

oL =;J(.fx,fy) =
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-

{IF(f;,fy)PS(f.;,ﬂ;) +F(fo PN+ N,
[F(fo PN+ N,

In similar fashion, working from steps above, we obtain
that the overall response variance is given by:

sl - | |

}df_; a7, (D

log {|F(f.. /OPIS(feo £,) + Nil+ No}df, df,
(12)

which is assumed to be bounded above by M>.

These two equations constitute the constrained opti-
mization problem. In order to solve it, we make use of
the calculus of variations (Gel’fand & Fomin, 1963)
with a Lagrange multiplier 4. In this way, the optimal
response is found as a function of the Lagrange multi-
plier to be:

|F(fwfv)|2 =

— NL2N, + S(f /)] + /INoS(fo /)P + 4/AINNS( 3, /)]
2Ny[N, +S8(/5 /)]

(13)

The appropriate value of /4 is obtained numerically so
that the bound on the response variance in Eq. (12) is
satisfied.

Note that we can change variables from Cartesian
frequency coordinates ( f,, f,) to polar frequency coor-
dinates (f, #), where f is the radial spatial frequency
and 0 is the orientation. In the section on natural
scenes, we consider both radial spatial frequency and
orientation, whereas in applying the theory to the tilt
aftereffect, we consider only the orientation 6, and
ignore the radial frequency. In the latter case, one
should either think of pooling across a range of spatial
frequencies at each orientation 6, or of taking a circular
slice through the signal power spectrum at a fixed radial
frequency.
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