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Warland, David K., Pamela Reinagel, and Markus Meister. present work investigates the neural code employed by reti-
Decoding visual information from a population of retinal ganglion nal ganglion cells in transmitting visual information to the
cells. J. Neurophysiol. 78: 2336–2350, 1997. This work investigates brain. How do the spike trains of optic nerve fibers convey
how a time-dependent visual stimulus is encoded by the collective the visual scene projected on the retina? At this stage of the
activity of many retinal ganglion cells. Multiple ganglion cell spike visual system, questions regarding the neural code can be
trains were recorded simultaneously from the isolated retina of the phrased and answered particularly precisely for the follow-tiger salamander using a multielectrode array. The stimulus consisted

ing reasons: the ganglion cells are the only neurons transmit-of photopic, spatially uniform, temporally broadband flicker. From
ting visual information to the brain; the only variable theythe recorded spike trains, an estimate was obtained of the stimulus
encode is the time-varying image on the retina; this stimulusintensity as a function of time. This was compared with the actual
can be controlled experimentally using well-developed tech-stimulus to assess the quality and quantity of visual information con-
nology for generating images; finally, the activity of multipleveyed by the ganglion cell population. Two algorithms were used to

decode the spike trains: an optimized linear filter in which each action retinal ganglion cells can be monitored experimentally with-
potential made an additive contribution to the stimulus estimate and out damaging the retinal circuitry.
an artificial neural network trained by back-propagation to match spike There have been many thorough investigations of how
trains with stimuli. The two methods performed indistinguishably, individual retinal ganglion cells respond to light (for review,
suggesting that most of the information about this stimulus can be see Dowling 1987; Shapley and Lennie 1985; Stone 1983).
extracted by linear operations on the spike trains. Individual ganglion Typically one chooses a simple test stimulus, such as a flash-cells conveyed information at a rate of 3.2 { 1.7 bits/s (mean {

ing spot or a traveling grating, repeats the stimulus manySD), with an average information content per spike of 1.6 bits. The
times, and determines the time course of the ganglion cell’smaximal possible rate of information transmission compatible with
firing rate. Such studies have shown that one can clearlythe measured spiking statistics was 13.9 { 6.3 bits/s. On average,
distinguish different functional types in the ganglion cellganglion cells used 22% of this capacity to encode visual information.
population and have characterized the sensitivity of the gan-When a decoder received two spike trains of the same response type,

the reconstruction improved only marginally over that obtained from glion cell response depending on the temporal, spatial, and
a single cell. However, a decoder using an ON and an OFF cell extracted spectral composition of the light stimulus.
as much information as the sum of that obtained from each cell By comparison, we understand very little about how a
alone. Thus cells of opposite response type encode different and population of these neurons collectively represents a com-
nonoverlapping features of the stimulus. As more spike trains were plex visual scene and how subsequent stages of the visual
provided to the decoder, the total information rate rapidly saturated, system might extract features of the scene from this popula-
with 79% of the maximal value obtained from a local cluster of just tion activity. Therefore, the present work had two goals: tofour neurons of different functional types. The decoding filter applied

study the neural code at the level of a population of ganglionto a given neuron’s spikes within such a multiunit decoder differed
cells, rather than single neurons, and to analyze it from thesubstantially from the filter applied to that same neuron in a single-
point of view of the receiver of nerve messages. Thisunit decoder. This shows that the optimal interpretation of a ganglion
amounts to answering the following question: given a certaincell’s action potential depends strongly on the simultaneous activity
pattern of spikes on optic nerve fibers, what is the likelyof other nearby cells. The quality of the stimulus reconstruction varied
visual scene that produced this activity?greatly with frequency: flicker components below 1 Hz and above 10

Hz were reconstructed poorly, and the performance was optimal near In visual research, this approach to the neural code was
2.5 Hz. Further analysis suggests that temporal encoding by ganglion pioneered by FitzHugh (1957, 1958). A cat retinal ganglion
cell spike trains is limited by slow phototransduction in the cone cell was driven with dim flashes of light near the response
photoreceptors and a corrupting noise source proximal to the cones. threshold. Then a ‘‘statistical analyzer’’ was applied to the

ganglion cell spike train whose binary output reported
whether a flash occurred or not. The performance of the
analyzer was evaluated by the fraction of flashes detected

I N T R O D U C T I O N correctly. This task was solved efficiently by a decoder that
simply counted the number of spikes in a 30-ms window and

A fundamental question in neuroscience is how the infor- reported a flash whenever this count exceeded a threshold.
mation relevant to behavior is represented in the activity of This binary detection approach is appropriate for stimuli
neurons (for review, see Abbott 1994; Bialek and Rieke near the sensory threshold, where the retina can at best report

the presence or absence of light. However, most of biological1992; Perkel and Bullock 1968; Rieke et al. 1997). The

2336 0022-3077/97 $5.00 Copyright q 1997 The American Physiological Society

9k20 j123-7/ 9k20$$no38 10-29-97 14:19:33 neupas LP-Neurophys



DECODING VISUAL INFORMATION 2337

vision happens far above threshold. In this regime, the retinal ability to extract the neural information, and a poor choice of
decoder would compromise subsequent conclusions. There-output can discriminate many different possible stimuli. Fur-

thermore, the natural environment presents to the eye a very fore, two very different decoding strategies were compared.
One consisted of a multineuronal linear filter, a direct exten-large ensemble of different inputs. This suggests an exten-

sion of FitzHugh’s approach: constructing a decoder that sion of the linear strategy used in previous reconstruction
studies with single neurons (Bialek et al. 1991; Rieke et al.estimates not only the presence or absence of light, but how

much light there was at various times in the past. This 1993; Roddey and Jacobs 1996). The other used an artificial
neural network trained by back-propagation to match a givenamounts to reconstructing the visual stimulus sequence that

led to the observed neural activity. set of spike trains with the preceding stimulus. Remarkably,
the two methods performed very similarly. The quality ofSuch a reconstruction method was implemented by Bialek

and colleagues (Bialek et al. 1991) to analyze how visual the decoder’s reconstruction was found to vary greatly de-
pending on the number and types of neurons whose spikemotion is encoded in the spike trains of neuron H1 in the

fly’s lobula plate. The fly’s retina was presented with a large trains were used. Analysis of this relationship revealed to
what extent ganglion cells carry redundant or independentensemble of stimuli from a randomly moving grating pattern.

A decoder was constructed to estimate the velocity of the information. Finally, we analyzed which stimulus features
were best represented in the spike trains. In particular, itpattern from the recorded H1 spike train. In analogy to the

binary detection task, the performance of the decoder was was found that the reconstruction quality depended strongly
on flicker frequency, and we propose an explanation for theevaluated by analyzing its errors, namely the difference be-

tween the estimated and the actual stimulus. One such mea- form of this relationship.
sure of performance is the Shannon information (Shannon
and Weaver 1963) contained in the reconstruction about the
true stimulus. M E T H O D S

Although the fidelity of the neural code could be assessed
in other ways, this information measure has enjoyed increas- Preparation and recording
ing popularity (de Ruyter van Steveninck and Laughlin
1996; Heller et al. 1995; Laughlin 1981; Rieke et al. 1995, Experiments followed the procedures described by Meister et al.
1997; Theunissen and Miller 1991). One reason is that, (1994). Briefly, retinae from dark-adapted larval tiger salamanders
owing to its definition, information can only decrease in the (Ambystoma tigrinum) were isolated under infra-red illumination
course of signal processing. Therefore, if the output of a into oxygenated Ringer medium. A piece 3–4 mm in diameter was
man-made decoder of spike trains conveys a certain amount cut and placed ganglion cell side down in a superfusion chamber

whose bottom contained a microelectrode array. The retina wasof information about the stimulus, then the spike trains them-
superfused with oxygenated Ringer medium at 227C. Action poten-selves must contain at least as much information. Further-
tials were recorded from 61 electrodes distributed over an area ofmore, the structure of the decoder will reveal how to extract
Ç0.5 mm diameter. Typically, spikes from 20 to 30 individualthis knowledge. Another advantage is that the information
ganglion cells could be distinguished and recorded continuouslymeasure abstracts from the specifics of the underlying com-
for an experiment lasting several hours.munications process: information has dimensionless units.

Thus one can compare the performance of the neural code
across neurons, stimulus modalities, sensory systems, and

Stimulationspecies.
On this background, the present study was designed as

The retina was stimulated by focusing an image of a computerfollows (Fig. 1): To simplify subsequent analysis, we fo-
monitor onto the photoreceptor layer. The screen was uniformlycused on the encoding of temporal aspects of the stimulus.
gray and modulated in intensity. The average intensity in eachThe isolated retina of a tiger salamander was stimulated with
experiment was 7 mW/m2 at the retina. The wavelength spectruma uniform gray field whose intensity varied randomly in
was as illustrated in Brainard (1989). For the salamander’s redtime. Spike trains were recorded simultaneously from many cone photoreceptor, the mean intensity produced an equivalent

ganglion cells using a multielectrode array. Then a multineu- photon flux at the peak absorption wavelength (lmax Å 630 nm)
ronal decoding algorithm was designed that took a collection of 9,500 photons/mm2/s.
of spike trains as input and produced an estimate of the time For diagnostic purposes, each experiment began with a brief
course of the light intensity. period of stimulation using square-wave flashes with a period of

2 s. This was followed by 2–6 h of random flicker stimulation.Clearly it is essential that the decoding algorithm have the

FIG. 1. Schematic overview of experi-
ments and analysis. Gaussian random
flicker of intensity s( t) is projected onto the
retina. Spike trains, rn( t) , recorded from
multiple ganglion cells, are presented to a
decoding algorithm that extracts an esti-
mate of the stimulus, u( t) .
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For this purpose, the screen intensity was updated once every 15 contribution to this stimulus estimate reaching a period NDt back
in time. The time course of this contribution is given by the valuesms or every 90 ms, by drawing a new value from a Gaussian

probability distribution. The standard deviation of the Gaussian of the decoding filter, f n
j . The length of this filter, NDt , was chosen

distribution, that is the root-mean-square contrast of the stimulus, empirically as 0.96 s: at times earlier than this the computed decod-
was 35 or 24% of the mean. One experiment was performed using ing filters were close to zero. To obtain higher frequency resolution
a binary stimulus distribution with the intensity drawn from only in calculations of information spectra (see below), we sometimes
two possible values. used filters of length 3.84 s.

For compact notation, a vector formalism is useful for these
relationships. Define a response matrix, R , and vectors for the
stimulus, s , and reconstruction, uGanglion cell types

For each ganglion cell, the reverse correlation of its spike train
to the random flicker stimulus was computed (Meister et al. R Å

1 r 1
0 r 1

1 ??? r 1
N01 ??? r n

0 ??? r n
N01

1 r 1
1 r 1

2 ??? r 1
N ??? r n

1 ??? r n
N

1 ??? ??? ??? ??? ??? ??? ??? ???
1 r 1

M01 r 1
M ??? r 1

N/M02 ??? r n
M01 ??? r n

N/M02
1994) . From the shape of this function—in particular its time-
to-peak, t—and the responses to flash stimulation, four types of
light responses could be distinguished (Meister et al. 1995; M.
Meister, unpublished data) : fast OFF ( typical t É 57 ms), slow
OFF (t É 72 ms) , weak OFF (t É 82 ms, with ON-OFF behavior s Å

s0

s1

???
sM01

, u Å
u0

u1

???
uM01

(4)
under high-contrast light steps) , and ON (t É 107 ms) . Fast-OFF

cells are further distinguished by their unusually large action
potentials and form the most numerous class in our recordings.
As observed previously, only Ç20% of recorded neurons were where
ON cells. For all cell classes, the responses to this flicker stimulus
appear to be rectified strongly (Berry et al. 1997) . The same

(N / M 0 1)Dt Å duration of the recording (5)response properties have been observed on many other occasions
(Smirnakis et al. 1997) .

The detailed calculation of visual information rates reported here Then the reconstruction is obtained as
is based on 35 ganglion cells from three preparations. A fourth
experiment, using the binary stimulus distribution, yielded different u Å Rrf (6)
absolute information rates but very similar results regarding the
high-frequency roll-off of information transmission and the interac-

where the transpose, f T , of the multineuron decoding filter, f , istions between different cells.
given by

f T Å [a f 1
0 f 1

1 rrr f 1
N01 rrr f n

0 rrr f n
N01] (7)Optimal linear decoder

This filter is optimized to minimize the squared difference betweenFor numerical analysis, the stimulus intensity was scaled to zero
e stimulus and the reconstruction over the course of the experiment,mean and unit variance and discretized at time intervals of Dt Å

(s 0 u)T(s 0 u) . The solution is obtained as15 ms.

si Å stimulus value in ith time interval [ iDt , ( i / 1)Dt] f Å (RTR)01
r(RTs) (8)

Å Ii 0 M

C
(1)

Note this is an analytic result with no free parameters. The term
RTs corresponds to the reverse correlation between the stimulus
and the spike trains. The term RTR contains correlation functionswhere Ii is the intensity in the i th time interval, M is the mean

intensity, and C is the standard deviation of the intensity. Simi- among the spike trains. Thus the statistics of the spike trains and
the stimulus completely determine the optimal decoding filter.larly, the response was discretized by counting spikes in the corre-

sponding time intervals The limiting case of very sparse spike trains is instructive: if the
spikes are spaced more than NDt apart, then the correlation matrix
RTR is diagonal and each cell’s decoding filter is equal to ther n

i Å number of spikes from cell n in i th time interval (2)
cell’s spike-triggered average stimulus. This can be understood
because, in this limit, each spike provides a message about theAn estimate of the stimulus was obtained from the ganglion cell
stimulus independent of that of all other spikes. The estimate ofresponses by convolving each spike train with a linear filter and
the preceding stimulus that minimizes the squared error is simplyadding the results along with a constant offset term
the mean of the stimulus distribution conditional on a spike. In
general, however, many spikes are observed within one integration

ui Å stimulus estimate in i th time interval time, particularly if several neurons are included in the analysis.
In this case, RTR alters the shape of the reverse correlation toÅ a / ∑

n

∑
N01

jÅ0

r n
i0j f n

j (3)
produce the optimal decoding filter.

Finally, given stimulus s and response R , the optimal reconstruc-
tion is found to bewhere a is the constant offset, f n

j is the value of the decoding
filter for cell n at time jDt before the spike, and NDt is the length
of the decoding filters. Each spike from cell n makes an additive u Å Rrf Å R(RTR)01RTs (9)
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stimulus, HsÉu , by approximating the conditional distribution withPower spectra
a Gaussian

The power spectrum of the stimulus was computed as fol-
lows. The stimulus, si , was divided into nonoverlapping blocks

p(sÉu) Å 1√
(2p)Ndet E

e0(1/2)(s0u)TE01(s0u) (15)
of length NDt , equal to the length of the decoding filters. Each
block was Fourier transformed, without data windowing, to
yield

This leads to a lower bound on the information conveyed by the
stimulus reconstruction

sI j Å Fourier transform of stimulus at frequency j /2NDt (10)

Is,u Å Hs 0 HsÉu ú log2

√
det (SE01) (16)

At each frequency, the squared modulus of the Fourier coefficient
was averaged over all blocks. Power at negative frequencies was

This expression is valid in any orthonormal basis of stimulusadded to the value at the corresponding positive frequency, produc-
space, but it is evaluated most easily in the frequency domain.ing the ‘‘one-sided’’ power spectrum
In this basis, s and u contain the Fourier components of the
stimulus and reconstruction. The covariance matrices S and E are

P (S)
j Å power spectral density of stimulus at frequency j /2NDt diagonal due to time translation invariance, and their elements

correspond to the power spectra of the stimulus and the recon-Å »ÉsI jÉ2 / ÉsI 0 jÉ
2
…blocks (11)

struction error, respectively. Thus one finds

Power spectra of the reconstruction, P (U )
j , and of the reconstruction

error, P (E )
j , were computed in the same fashion, by Fourier trans- Is,u ú ∑

N /2

jÅ0

Ij Å ∑
N /2

jÅ0

log2 (P (S)
j /P (E)

j ) (17)
forming ui and (ui 0 si ) , respectively.

where Ij Å information spectral density at frequency j /2NDt Å
log2 (P (S )

j /P (E )
j ).

In practice, the above sum over frequencies was truncated atTransmitted information
20 Hz because higher frequencies made little systematic contri-
bution. Furthermore, this estimate of mutual information wasTo assess the overall quality of the reconstruction, we deter-
corrected for the finite duration of the experiment. For this pur-mined how much information it contained about the visual stimu-
pose, a second decoding filter was computed with the samelus. Let s and u denote short segments of length NDt of the stimulus
number of elements, N , but constrained to positive times afterand the reconstruction, respectively. Following Shannon (Rieke et
the action potential. Because this decoder effectively was askedal. 1997; Shannon and Weaver 1963), the mutual information
to predict the future of the stimulus, one expects no systematicbetween s and u corresponds to the reduction in uncertainty about
relationship between stimulus and prediction. Correspondingly,s obtained by observing u
the mutual information was very small, typically 0.002 bits / s.
This confirms that the recordings were sufficiently long to aver-

Is,u Å Hs 0 HsÉu (12) age over random coincidences between stimulus and spike trains
and that the decoding filters truly reflect neural function. The
information in the prediction was subtracted from the informa-where Hs Å entropy of the stimulus Å 0(

s
p(s) log2 p(s),

tion in the reconstruction to obtain a lower bound on the informa-
p(s) Å a priori probability of s in the stimulus ensemble, HsÉu Å tion extracted from the spike trains.
conditional entropy of the stimulus given knowledge of u Å
0(

u
p(u) (

s
p(sÉu) log2 p(sÉu), p(u) Å probability of u, and

p(sÉu) Å probability of s given knowledge of u . In the present Capacity
experiments, s was drawn from a Gaussian distribution, indepen-
dently in subsequent time bins, and thus

To assess the efficiency of information transmission, we esti-
mated the capacity of individual neuronal spike trains. This
amounts to the maximal information transmission rate such a neu-p(s) Å 1√

(2p)Ndet S
e0(1/2)sTS01s (13)

ron could sustain and is limited by its spiking statistics, specifically
the entropy rate of the spike train (MacKay and McCulloch 1952;
Shannon and Weaver 1963). To estimate the entropy, successivewhere S Å covariance matrix of the stimulus Å » ss T

…. Whereas
interspike intervals were taken to be independently generated sym-the a priori probability distribution of the stimulus, p ( s ) , is
bols, which leads toknown by construction, the conditional distribution, p ( sÉu ) ,

must be measured. This is difficult to achieve in full generality,
but a partial measure is given by the second moment of the HDt Å entropy per unit time of a spike train binned at a resolution of Dt
reconstruction error

Å 0
(
n

pn log2 pn

(
n

pnnDt
(18)

E Å covariance matrix of the reconstruction error

Å »(s 0 u)(s 0 u)T
… (14)

where pn Å probability of an interspike interval of nDt. This
estimate ignores any possible correlations among nearby interspikeGiven the second moment, the probability distribution with the

maximal entropy is a Gaussian (Cover and Thomas 1991). Thus intervals, and thus represents an upper bound on the spike train
entropy (Rieke et al. 1993). Because the above methods producedone obtains an upper bound on the conditional entropy of the
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a lower bound on transmitted information (Eq. 17) , the ratio of
information rate to capacity

e Å efficiency of transmission

Å information rate
capacity

Å I

H
(19)

is estimated by a lower bound.
Both the spike train entropy and the information rate depend on

the time resolution Dt with which the spike trains are binned. As
Dt increases, the entropy rate decreases, because many discrimina-
ble spike intervals are lumped together in the same value. Similarly,
the information rate decreases once Dt exceeds the timing accuracy
of the action potentials (Rieke et al. 1997). Under the present
stimulus conditions, salamander ganglion cells fire spikes whose
time of arrival jitters with a standard deviation of 5–10 ms across
identical stimulus repeats (Berry et al. 1997). Correspondingly,
we measured the entropy and the information rate for a range of
bin sizes between 4 and 16 ms. Over this range, the coding effi-
ciency varied very little, by only 11% on average over 14 cells,
suggesting that this is indeed close to the intrinsic timing accuracy
of the spike trains. All subsequent calculations of information rate
and capacity were performed with Dt Å 15 ms.

Artificial neural networks
FIG. 2. Artificial neural network used to decode the ganglion cell spike

trains. See description in text.
Artificial neural networks were constructed and trained using

the University of Toronto Simulator (UTS) libraries (Department
of Computer Science, University of Toronto, Toronto, ON M5S

£j Å output unit weights1A4, Canada; freely accessible at ftp.cs.toronto.edu:pub/xerion/) .
Three-layer, fully connected, feed-forward networks with ten hid-

£0 Å bias weight (20)den units were used, as illustrated in Fig. 2.
The input layer to the network was presented with a window

of spike trains 0.96 s long, binned at 15 ms resolution. Each Weights were initialized to random values chosen from a
input unit represented the number of spikes in one time bin of Gaussian distribution with a mean of 0 and a standard deviation
one cell’s spike train. The value of the output unit represented inversely proportional to the number of weights in the layer.
the stimulus estimate for the first time bin of the input window. Three different random initial conditions were used for each
In addition to the weighted outputs of the preceding layer, each network. The networks were trained by back-propagation
hidden unit and the output unit also received a bias weight. For (Rumelhart et al. 1986) to minimize the mean squared error
a given sample of the spike trains, the activity of the various (MSE) between the stimulus estimate and the true stimulus. The
units was given by direction of the change to each weight was computed using

conjugate gradient descent (cgRudi in UTS) , and the size of the
step was computed by line search, which provides an adaptive

r n
i Å number of spikes from ganglion cell n in time bin i

learning rate ( lsRay in UTS) . The network’s performance was
tested during training by reconstructing the stimulus for part
of the recording not used to train the network. Training wasaj Å activity of hidden unit j Å f S∑

n,i

r n
i wn

ij / w0jD
terminated when the MSE for this test segment stopped decreas-
ing. Finally, the network’s performance was assessed using a
third data set reserved for validation. The reported measure-
ments of mutual information between the stimulus and its recon-wn

ij Å hidden unit weights
struction are from this validation data set.

Several nets were developed with variations on these methods,
which affected the time required for training but produced now0j Å bias weight
difference in decoding performance. Specifically, fully con-
nected nets were trained with fewer or more hidden units (0–
25) ; sparsely connected nets were trained with five hidden unitsf ( x) Å 1

1 / e0x dedicated to each ganglion cell and five hidden units dedicated
to each coarse time window; the activation function in Eq. 20
was changed to f ( x ) Å tanh (x ) ; the error measure was changed

u Å activity of output unit Å f S∑
j

aj£j / £0D to the adaptive sum square (MSE normalized to the variance of
the noise in each run) ; and nets were compared with and without
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FIG. 3. Linear decoding of 2 ganglion cell spike trains. A : 2 ganglion cell spike trains (brief segments in left and bottom
of right panel) are convolved with their respective decoding filters (middle) and summed to yield the stimulus estimate
(right , thick trace) to be compared with the real stimulus (right , thin trace) . Decoding filters were 3.84 s long, and only
the 1st 0.5 s is shown. B : power spectral density as a function of frequency for the real stimulus, P (S) , the reconstruction,
P (U) , and the reconstruction error, P (E) . C : information spectral density of this reconstruction as a function of frequency.

weight decay (scale 0.001 in UTS) and with and without injected DECODING FILTERS. The shapes of the decoding filters pro-
noise. vide a measure of each cell’s visual message. For a few tens

of milliseconds before the action potential (which occurs at
time 0) , the decoding filter makes no contribution to the
stimulus estimate because of the finite response latency of

R E S U L T S
the ganglion cell. Due to delays in phototransduction and
subsequent neural processing, the occurrence of a spike con-

A linear multineuronal decoder veys no information about the immediately preceding stimu-
lus. Similarly, the filter function vanishes at very early times

To assess how a local population of ganglion cells repre- far preceding the spike. The intervening period of Ç0.5 s
sented a random flicker stimulus, we attempted to reconstruct reflects the ganglion cell’s integration time. Within this inter-
the intensity time course from the recorded spike trains val, both cells’ filters have a biphasic waveform. This sug-
alone. The first method employed a linear filter, extending gests that their firing was dependent on changes in the light
the single-neuron methods pioneered by Bialek et al. (1991) intensity rather than the absolute level. The two waveforms
to an array of cells. During stimulus reconstruction, each differ in sign: one of these cells was triggered preferentially
spike from a ganglion cell adds a contribution to the stimulus by an increase, the other by a decrease in light intensity.
estimate that extends a short period into the past. The shapes
of the various cells’ filter functions are adjusted to minimize

SPECTRAL ANALYSIS OF THE RECONSTRUCTION. The recon-the mean-squared difference between the stimulus estimate
struction in Fig. 3A appears to capture large and slow varia-and the true stimulus over the duration of a long experiment
tions in the stimulus reasonably well, but fails to track it(Eq. 8) . The decoding process is illustrated in Fig. 3A,
during periods of rapid flicker. To assess more quantitativelywhich shows two typical ganglion cell spike trains, the tem-
what fraction of the stimulus was reconstructed at eachporal profiles of the optimal decoding filters for these cells,
flicker frequency, we calculated the power spectral densityand the stimulus reconstruction obtained by passing the spike

trains through the two-cell filter. of the stimulus, the reconstruction, and the reconstruction
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error (see METHODS). Figure 3B shows that the power in
the stimulus was fairly constant over the range 0–20 Hz.
However, the power in the reconstruction dropped off
sharply at high frequencies. For this cell pair, the 50% roll-
off point is at 9 Hz. At frequencies ú15 Hz, the reconstruc-
tion power essentially vanished and thus the decoder ex-
tracted no information about the stimulus.

Interestingly, the reconstruction power also dropped
off sharply at low frequencies. This was not caused by the
limited length of the decoding filters: the filter function is
essentially zero at times before 00.5 s and tests with
longer filter functions did not improve the reconstruc-
tions. At low frequencies, the 50% roll-off was near 1
Hz. The peak power in the reconstruction was found at
2.5 Hz.

ESTIMATE OF INFORMATION TRANSMISSION. By comparing
the stimulus reconstruction to the true stimulus, one can
obtain an estimate of how much information the decoder
extracted from the spike trains (Bialek et al. 1991, 1993;
Rieke et al. 1997). As derived in METHODS, a lower bound
on this information rate is given by the power spectra of the
stimulus and the reconstruction error

I Å extracted information rate

Å *
`

0

I( f )d f (21)

where I( f ) Å information spectral density at frequency fú
log2 [P (S ) ( f ) /P (E ) ( f )], P (S ) ( f ) Å power spectral density
of the stimulus, and P (E ) ( f ) Å power spectral density of
the reconstruction error. Figure 3C shows the information
density I( f ) derived from the same two-cell reconstruction.
As observed above for the reconstruction power, the infor- FIG. 4. Redundancy between 2 spike trains. A : 2 OFF-type cells, named
mation rate dropped sharply at frequencies õ1 Hz and ú9 A and H . Information density vs. frequency, derived from decoding only

cell H (IH, thin trace) , only cell A (IA, medium trace) , and both cells (IAH,Hz with a peak information rate at 2.5 Hz. Overall, the
thick trace) . Inset compares the sum of the information in the 2 single-celldecoder extracted from these two cells ¢7.5 bits /s of infor-
reconstructions (IA / IH, thin trace) to the information obtained from themation about the visual stimulus. Such information density 2-cell reconstruction (IAH, thick trace) . B : an OFF cell (cell A) and an ON

curves will be used in subsequent sections to summarize the cell (cell B) . Information density vs. frequency plotted as in A . IB, thin
trace; IA, medium trace; IAB, thick trace. Inset compares IA / IB (thin trace)performance of various decoders.
to IAB (thick trace) .

Redundancy
concludes that these two cells transmitted redundant infor-
mation.To explore whether ganglion cells carry independent or

Figure 4B shows the information density curves derivedredundant information about the stimulus, we compared the
from a fast-OFF cell and an ON cell. Note that the fast-OFFreconstruction obtained from a pair of cells with the recon-
cell conveys information to significantly higher frequen-structions based on either cell alone. Because the stimulus
cies, consistent with the longer integration time of the ONwas spatially uniform, each ganglion cell received the same
response (see METHODS and the filters in Fig. 3A ) . Wheninput. Thus if a decoder using two cells recovers more infor-
the two responses were combined, they provided signifi-mation than decoders using either cell alone, this reflects the
cantly more information about the stimulus than either cellextent to which the cells differ in their encoding of the same
taken separately. In fact, the information density recoveredstimulus.
from the two spike trains was essentially equal to the sumFigure 4A shows the information density curves for two
of the information densities recovered from each cell. Thisfast-OFF cells. Note that the reconstruction using both spike
means that ON cells and OFF cells differ not only by thetrains simultaneously performed only slightly better than that
sign of their response to light, but rather each encodesusing either spike train alone. The information recovered by
aspects of the stimulus that are not covered at all by thethe two-cell decoder was much less than the sum of the

information recovered by the two single-cell decoders. One other cell.
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Saturation of temporal information the best multineuron linear decoder does not recover all of
the visual stimulus, and it misses large amounts of informa-
tion at very low and very high frequencies. Does this reflectAs Figs. 3 and 4 show, the two-cell decoders reconstruct
a deficiency of the decoder or is the information simply notonly a fraction of the true stimulus. There is ample room
contained in the spike trains? It appears useful to determinefor improvement, particularly at frequencies ú10 Hz and
whether the missing information could, in principle, be car-õ1 Hz. How would the quality of the stimulus estimate
ried by the ganglion cell signals. Do the measured firingimprove as the spike trains from more and more cells are
rates and firing statistics allow the transmission of moreincluded?
information than has been extracted by the decoder?Figure 5A shows a brief segment of stimulus and spike

The capacity of a spike train, that is the highest rate attrains for 14 ganglion cells (named A–N) . By successively
which it could transmit information, can be estimated byadding more spike trains (in alphabetic order of cell name),
monitoring its variability during a long period of time while14 different linear decoders and their stimulus reconstruc-
it is encoding many different stimuli. A very regular spiketions were computed. As expected, the spectrum of the infor-
train, for example one with a constant interspike interval,mation density increased monotonically as more and more
can encode little or no information because variations in thecells were included in the reconstruction (Fig. 5B) . How-
stimulus cannot translate into variations in the spike train.ever, this curve changed very little for reconstructions using
The formal information-theoretic measure of such variabilitymore than four cells.
is the entropy of the spike train. In the present analysisThe total information rate summed over all frequencies
we estimated an upper bound on this entropy, H , from thereached a plateau of Ç10 bits /s as more cells were included
variation in the interspike intervals (see METHODS). Oncefor the reconstruction (Fig. 5C) . The exact shape of this
the entropy of the spike train, H , is known, together withcurve depended somewhat on the order in which cells were
the rate at which it carries visual information, I , one canadded, though the final plateau was independent of this order.
evaluate how efficiently the spike train is used byBecause neurons of the same functional type tended to carry

redundant information, we began by combining cells with
recognizably different light responses (see METHODS). As

e Å coding efficiency Å I

H
(22)

seen in Fig. 5C , combining one cell each from the four
different response types already providedú79% of the maxi-
mal information. When the decoder was restricted to cells Figure 7 illustrates results from this analysis for a popula-
of the fast-OFF functional type, 10 neurons provided only tion of fast-OFF ganglion cells. Among different cells, the
20% more information than a single cell. Apparently, a hand- information rate varied over more than an order of magni-
ful of ganglion cells can convey all the information available tude, with an average of 3.7 { 1.5 bits /s (mean { SD).
about this stimulus. Similarly, the spike train entropy varied over a great range

with an average of 14.4 { 5.9 bits /s. Remarkably, both
the visual information and the entropy rates varied almost
proportionally to the mean firing rate, with an average en-Spike meaning depends on the context from other cells
tropy of 6.6 bits /spike and information of 1.9 bits /spike.
Thus the coding efficiency was almost constant across theAs derived in METHODS, the optimal decoding filter for a
population of fast-OFF cells with values clustered near 26%.given neuron depends not only on the response properties
The same relationship was found in three different prepara-of that cell, but also on the responses of other cells included
tions and under various stimulus conditions. On averagein the same decoder. Figure 6A shows that these effects can
over all cells analyzed, the efficiency was 22%. Thus thesebe very strong. It compares the filter function for an OFF-
ganglion cells used Ç1/4 of their spike train capacity totype cell in several different decoders: from one using only
encode the visual stimulus. Although this conclusion is sub-that cell’s spike train, to one using eight additional spike
ject to a possible overestimation of the entropy (see METH-trains as well. The shape of the optimal filter function
ODS), it appears likely that the statistical structure of a gan-changed substantially in the context of responses from these
glion cell spike train does not significantly restrict its visualother neurons. In particular, the amplitude decreased and the
information content.time course became far more oscillatory. Neurons with very

similar single-cell decoders often showed strikingly different
filters within a multicell decoder (Fig. 6B) . This implies
that the optimal interpretation of an action potential from Artificial neural networks
one ganglion cell depends strongly on the messages received
from other neurons. Thus temporal information appears to Finally, one is led to consider whether the information
be distributed across several neurons and only can be recov- missing from the stimulus reconstructions is in fact repre-
ered fully by processing their signals simultaneously. sented in the spike trains but cannot be accessed by a linear

decoder. It might be encoded in a form such that an optimal
estimate of the stimulus requires a very nonlinear combina-

Coding efficiency tion of different action potentials, for example, the recogni-
tion of a particular pattern of many spikes.

Clearly, the reconstruction of the stimulus obtained from In principle, this problem could be approached systemati-
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cally by expanding the stimulus estimate into higher and terms of 0th and 1st order; all subsequent terms would con-
tribute a nonlinear reconstruction. However, the number ofhigher powers of the response spike trains (Bialek et al.

1991). In such a Taylor series, Eq. 6 represents only the coefficients in these higher order filters explodes rapidly.
When many spike trains are to be combined, this problem
is further amplified, and it is not practical to calculate even
the most general second-order filter from the available data.
As an alternative approach to finding a nonlinear decoder,
we have trained artificial neural networks (hereafter neural
networks) to perform the decoding task. This allowed explo-
ration of a wide space of possible nonlinear decoders, al-
though the algorithm for exploring that space is not guaran-
teed to find the best solution.

A segment of all ganglion cell spike trains was presented
to the input layer of a feed-forward neural network with
three layers (Fig. 2, Eq. 20) . The network output consisted
of a single unit whose value was taken as the stimulus esti-
mate at the beginning of the spike train window. Both at the
hidden layer and in the convergence to the final output unit,
signals were combined nonlinearly through a sigmoidal acti-
vation function. The weights in the network were trained
by back-propagation to minimize the mean squared error
between the estimated and the true stimulus. Qualitatively
this procedure entailed presenting a spike train segment to
the network, determining the error in the output, determining
the amount by which each weight should be changed to
decrease the error, and repeating this for all time segments
on multiple cycles through the data set until the network
was trained fully (see METHODS for details) .

Figure 8A compares the stimulus reconstructions obtained
from the fully trained neural network and the optimal linear
filter, using spike trains from 14 cells in the experiment
of Fig. 5A. Note that the two reconstructions are virtually
superimposable. No systematic deviations could be recog-
nized between the two stimulus estimates.

To further assess the performance of the ANN, we com-
puted the mutual information between its stimulus recon-
struction and the real stimulus using the same approach ap-
plied to the linear reconstruction (see METHODS and Fig. 5) .
As the number of spike trains used by the decoder was
increased from 1 to 14, the neural network recovered almost
the same amount of information as the optimal linear filter
(Fig. 8B) . Under all conditions tested, the information rates
derived from the neural network and the linear filter differed
by, at most, 10%. We conclude that the neural network and
the linear decoder are indistinguishable in performance, with
regard to both the quantity and the qualitative features of
the visual information extracted from ganglion cell spike
trains.

One might expect such a tight correspondence if the neural

FIG. 5. Visual information from a population of ganglion cells. A : brief
segment of the stimulus ( top , thin trace) , the spike trains of 14 retinal
ganglion cells (bottom) , and the stimulus reconstructions from various
multicell decoders ( top , thick trace) . B : information density derived by
adding successive ganglion cells to the decoder, using cell A alone ( trace
1) , A and B (2) , cells A–C (3) , up to cells A– F (6) . C : total information
derived as successive ganglion cells are added to the decoder. Symbol shape
denotes the response type of the last ganglion cell added: ., fast OFF; l,
ON; j, weak OFF; and l, slow OFF. Open symbols show the information
density derived from decoding only spike trains from cells of the fast OFF

type.
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and the stimulus information contained in the reconstructions
was computed as above. As expected, the linear filter and
neural network extracted very similar amounts of informa-
tion from these simulated spike trains (Fig. 9) .

To produce a nonlinear code for the same stimulus, two
spike trains were constructed by adding the spikes of the
OFF cell to each of the ON cell spike trains. This mimics two
ON-OFF ganglion cells, whose OFF signal derives from a
shared input neuron. The optimal interpretation of these two
spike trains requires the decoder to recognize that synchro-
nous spikes from the two cells mean something very differ-
ent from solitary spikes in only one cell; in fact, these two
events signal stimulus episodes of the opposite sign. These
distinct interpretations cannot be achieved by a linear filter
decoder. Operating on these two spike trains, the neural
network extracted about twice as much information as the
linear filter (Fig. 9) . This proves that the neural network
decoder can significantly outperform the linear decoder
when the stimulus is represented in a very nonlinear fashion.

In these simulations, the neural network did not recover
all the information originally present in the three separate
spike trains, in part because occasional spurious coinci-
dences of spikes from the two ON cells create an unresolvable
ambiguity. Moreover, the neural network failed to outper-
form a linear decoder on some other contrived nonlinear

FIG. 6. Dependence of spike meaning on context from other cells. A :
codes that we tested in these simulations. Thus the trainingfilter function for an OFF cell (cell A in Fig. 5A) in a single-cell decoder
algorithm is not guaranteed to find the optimal interpretation( trace 1) and in decoders using additional cells (2–9) . Inset : traces 1 ( thin

line) and 9 ( thick line) scaled to the same peak. B : same comparison for of spike trains, but the network decoder can clearly adapt
3 other OFF cells, displayed as in the inset of A . to a broader variety of codes than the linear filter.

When operating on a population of real ganglion cell spike
trains, however, the performance of neural network and lin-
ear filter was always indistinguishable even though the neu-network effectively acted as a linear filter, for example, by

only using the linear portion of the activation curve (Eq. ral network did explore its nonlinear operating range. Thus
it appears that the linear decoder has access to most of the20) . Instead, it was found that the hidden units of the neural

network explored their entire nonlinear response range over stimulus information contained in ganglion cell spike trains
and that the deficiencies of the stimulus reconstruction atthe ensemble of input data. Figure 8C shows the distribution

of output values of the 10 hidden units for a neural network low and high flicker frequencies are not due to the simple
architecture of the linear decoder.processing 14 spike trains whose output is shown in Fig.

8A . Comparison with the activation function shows that all
the hidden units produced outputs in a nonlinear part of the
range for some of the spike train examples. Thus the neural
network transformed the spike train nonlinearly to a com-
pressed representation in the hidden layer, yet the final com-
putation was equivalent to a linear transformation. Clearly,
the design of the neural nets did not constrain them to a
linear regime.

Finally, we tested whether these neural networks could in
practice extract nonlinear spike codes that were inaccessible
to a linear decoder. For this purpose, artificial spike trains
were generated with known coding properties. Three spike
trains were simulated, two ON-type and one OFF-type, whose
instantaneous firing rate varied as a linear function of the
stimulus (Fig. 9) . No attempt was made to emulate the
detailed spiking statistics of ganglion cells, but the mean
firing rates and visual integration times were chosen to match

FIG. 7. Coding efficiency. Entropy rate (closed symbols) and decodedtypical neurons. The response function was chosen so that
information rate (open symbols) for individual fast-OFF cells plotted as athe firing rate did not saturate; therefore, all the stimulus
function of the mean firing rate. Stimulus parameters in the 3 experimentsinformation available in the spike trains was encoded lin- were: 15-ms update interval and 35% contrast ( triangles and squares); 90-

early. These three spike trains were presented for a stimulus ms update interval and 24% contrast (circles) . Inset : histogram of the
coding efficiency, namely the ratio of information rate to entropy.reconstruction to a linear decoder and to a neural network,
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FIG. 8. Comparison of 2 types of decoder.
A : brief segment of the reconstructions of the
stimulus (thin line) from the spike trains of 14
cells, obtained by the optimal linear decoder
(medium line) , and a fully trained artificial neu-
ral network (thick line) . B : total decoded infor-
mation obtained by the neural network (s) and
the optimal linear decoder ( ) as successive
ganglion cells were added to the decoder. For
each set of cells, 3 networks were trained from
different initial weight settings. C : histograms
of activity levels for the 10 hidden units in the
neural network that produced the reconstruction
in A . Bottom : activation curve for each hidden
unit to illustrate the limited range of linear oper-
ation.

D I S C U S S I O N time course of the intensity from the spike trains. This does
not imply an assumption that the salamander ultimately
attempts to reconstruct the raw visual image. Instead, itStimuli and their reconstruction
provides a way to explicitly reveal which aspects of the
stimulus are well encoded and which are not. Note, how-Our experiments employed a rather simple visual stimu-
ever, that the spike trains could encode stimulus featureslus: a uniform gray field whose intensity varied randomly
that are not at all useful for a reconstruction. For example, ain time. This focus on temporal processing served to limit
cell might fire depending on the absolute value of intensitythe complexity of the analysis. In the first study of neural
fluctuations. In absence of another cell that encodes thecoding by simultaneous spike trains, it seemed essential to
sign of the intensity fluctuation, that spike train can makekeep the computations efficient so that we could survey a
no contribution to the stimulus reconstruction even thoughrange of phenomena in multineuronal decoders. Furthermore
it obviously transmits visual information. Thus our esti-under these conditions, all ganglion cells experienced the
mates of visual information in the spike trains are by neces-same stimulus, and it became feasible to compare directly
sity lower bounds.the coding properties of different neurons, even if recorded

in different parts of the retina. Nevertheless, many ganglion
cells are driven more strongly by a flickering checkerboard

Information rates and coding efficiencythan by a uniform field of the same temporal contrast owing
to their antagonistic receptive field profile (Smirnakis et al.

The absolute information rates achieved by single sala-1997). Thus one certainly expects further insights from an
analysis of responses to spatially varying stimuli, and the mander ganglion cells are relatively low by comparison to

other neural systems: ca 4 bits /s compared with 23 bits /sassociated technical difficulties are being tackled.
We assessed how well the visual stimulus was repre- in frog auditory afferents stimulated with broadband sounds

(Rieke et al. 1995), 64 bits /s in the fly’s H1 neuron (Bialeksented in the spike trains by explicitly reconstructing the
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Interactions between neurons

Two cells of the same response type typically encoded
redundant information, that is, the stimulus reconstruction
did not improve much by monitoring two or more cells.
This was a somewhat unexpected result, because it often is
assumed that the brain must average over many noisy neural
signals to obtain a reliable message. Instead, it appears that

FIG. 9. Performance of the linear decoder and the artificial neural net- individual ganglion cells are sufficiently reliable, at least
work on simulated ganglion cell spike trains. Stimulus consisted of binary under the stimulus conditions employed here (Berry et al.
flicker—as used during one of the experiments—with values si Å 0 or 1,

1997). Furthermore, as argued below, it appears that nearbyupdated randomly every time interval Dt . Three spike trains (A–C) were
ganglion cells share a limiting noise source, such that observ-simulated as follows: in the i th time bin, [ iDt , ( i / 1)Dt] , a spike was

generated with probability ing several spike trains of the same type does not improve
knowledge of the stimulus. By comparison, ON and OFF cells
generated mostly independent information. Thus a good
stimulus reconstruction required the inclusion of only one
ganglion cell from each recognizably different functionalpi Å 0.2

1
r 0 l

∑
i/r01

jÅi/l

sj , for ON cells

1 0 1
r 0 l

∑
i/r01

jÅi/l

sj , for OFF cells type. Nevertheless, it is known that some of these functional
types have a high degree of receptive field overlap (Meister,
unpublished data) . A full understanding of the coding prop-

These simulated cells simply integrate the stimulus over the interval [ lDt , erties in such an arrangement will require an analysis with
rDt] and modulate their firing probability linearly with the result. Parame- spatially varying stimuli (Warland and Meister 1995).
ters were chosen as follows: A , ON, l Å 08, r Å 04; B , OFF, l Å 04, r Å Within a decoder that monitored many spike trains simul-02; C , ON, l Å 05, r Å 02. To produce a nonlinear code for the same

taneously, the decoding filter associated with a given neuronstimulus, the spikes in the OFF-type spike train (B) were added into each
was quite different from the corresponding filter in a single-ON-type spike train (A / B , B / C) ; spikes from B are marked with thick

lines. Information per time interval Dt that the optimal linear filter and a neuron decoder. Thus the meaning of a cell’s action poten-
fully trained artificial neural network extracted from each of these represen- tials depends critically on the spikes from other nearby cells.
tations is given below.

Note that none of these interactions within the ganglion cell
population could have been detected by recording from one

et al. 1991), 155 bits /s in vibratory receptors of the bullfrog cell at a time. Thus attempts to derive a ‘‘population code’’
sacculus (Rieke et al. 1993), and 294 bits /s in cricket mech- from serial single-neuron recordings may well be incomplete
anoreceptors (Rieke et al. 1993). As argued below, retinal (Georgopoulos 1990).
information transfer likely is limited by the slow process of
phototransduction in the receptors. On the other hand, the
average information content of a ganglion cell spike, ca 1.8 Limits to retinal information transferbits, is comparable with that found in other neural systems
even though the total information rates vary dramatically:

As more and more ganglion cell spike trains were re-0.66 bits for frog auditory afferents, 0.75 bits in the fly study
cruited to reconstruct the visual stimulus, the information(Rieke et al. 1997), 2.6 bits for bullfrog vibratory receptors,
clearly saturated (Fig. 5C) even though the reconstructionand 3.2 bits for the cricket mechanoreceptors. Thus an infor-
was still lacking much of the true stimulus, particularly atmation content per spike ofÇ1–3 bits emerges as a constant
high temporal frequencies exceeding 10 Hz (Fig. 5B) . Thisacross many different sensory systems. Similarly, the effi-
deficiency was not due to a limitation of the ganglion cells’ciency of information transmission, namely the fraction of
information capacity (Fig. 7) . Furthermore, both linear anda spike train’s capacity used for coding, is comparable across
nonlinear decoders experienced this saturation (Fig. 8) .systems: 22% averaged over all cells in the present study
Thus the information that cannot be reconstructed must havecompared with 11% for frog auditory afferents, 30% in the
been discarded in the course of processing by the retinalfly (F. Rieke and D. K. Warland, unpublished data) , and
circuit. What determines this strict limit to visual informa-50–60% in the bullfrog and cricket studies. Considering
tion? The steep roll-off at high flicker frequencies points tothat these efficiency values are likely underestimates (see
the slowest neuron in the circuit, namely the photoreceptor.

METHODS), it appears that the statistics of the spike trains,
particularly their firing rates, generally are well matched to
the needs for information transmission. However, it should CONE FLASH RESPONSES. Figure 10A shows flash responses

of a salamander cone at mean light intensities comparablebe noted that the efficiency of the neural code can depend
strongly on the stimulus ensemble used to evaluate it. Rieke with our measurements. The outer segment membrane cur-

rent, measured in an isolated photoreceptor (Matthews etet al. (1995) observed a fourfold to fivefold increase in
both the information rate and the coding efficiency of frog al. 1990), shows a monophasic time course. However, the

membrane voltage, recorded in the intact retina (Pasino andauditory afferents when using sounds whose spectra were
shaped like natural frog calls rather than white noise. It Marchiafava 1976), has a much faster, biphasic flash re-

sponse. This difference, which is more pronounced underremains to be seen how retinal ganglion cells behave under
stimuli with more naturalistic spatio-temporal statistics. uniform than local illumination, arises in part from the de-
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I( f ) Å log2 S1 / S( f )
N( f ) D (23)

where S( f ) is the power spectrum of the stimulus transduced
by the receptor, N( f ) is the power spectrum of the noise,
and all spectra are ‘‘one-sided,’’ evaluated only at positive
frequencies (Shannon and Weaver 1963). Using this relation
and the information density of Fig. 5B (6 cells) , we plot
the signal-to-noise ratio (SNR), S( f ) /N( f ) , equivalent to
the best stimulus reconstruction (Fig. 10B) . One finds that
this spectrum is very similar to the spectrum of the cone’s
membrane potential, S( f ) ; in particular the two have ap-
proximately the same high-frequency roll-off. This implies
that the noise, N( f ) , added downstream from the cones has
a rather flat power spectrum.

Note that the spectrum of the cone’s membrane current
lies at much lower frequencies than that of the membrane
voltage or the SNR. If the dominant noise source were within
the cone, adding to the membrane current derived from pho-
totransduction, its peak would have to be at even lower
frequencies to produce the measured SNR spectrum. This
would conflict with our current understanding of photorecep-
tor noise, which includes a component with the same spec-
trum as the flash response (‘‘discrete noise’’) and compo-
nents at higher frequencies (‘‘continuous noise’’) (Baylor
et al. 1980).

Even if the SNR for individual cones is low at high fre-
quencies, one might still expect that the high-frequency sig-
nal could be extracted from the network noise: individual
ganglion cells pool signals from many cones, and the
multicell decoder can access the signals of many ganglion
cells. The fact that this was not possible could be explained
if the limiting noise source is shared among many ganglion
cells such that pooling their signals no longer improves theFIG. 10. Light response of salamander red cone photoreceptors, light-

adapted to the mean intensity of our experiments. A : flash response of the SNR. This also is suggested by recent measurements of cor-
outer segment current ( thin trace) (from Matthews et al. 1990) and the relations between ganglion cell spike trains: nearby cells
membrane potential ( thick trace) ( transformed from the Bode plot in Pasino have a strong tendency to fire synchronously both with andand Marchiafava 1976). B : power spectrum of the flash response of the

without visual stimulation (Meister et al. 1995). Theseouter segment current ( thin trace) , obtained from Fourier transform of the
trace in A , and the membrane potential ( thick trace) , an interpolation strong correlations may result from shared amacrine cell
through data of Pasino and Marchiafava (1976), shown with a filled circle. input. They are limited to an intercellular distance of about
Equivalent signal-to-noise ratio of the best stimulus reconstruction (Eq. 23) one ganglion cell receptive field diameter, and thus further
is shown with dotted line. C : estimated membrane potential of a red cone,

visual information might be obtained by combining the spike
£( t) ( thin trace) , and its reconstruction, £est ( t) ( thick trace) , by the optimal

trains from more distant cells. However, under natural condi-14-cell linear decoder of Fig. 5A .
tions this is not an option because distant points on the retina
receive different stimulation.

layed inhibitory feedback that the cone receives from hori-
zontal cells (Baylor et al. 1971).

RECONSTRUCTION OF THE CONE SIGNAL. Given that theIf the cone transduces the flickering light stimulus lin-
photoreceptors play such an important part in shaping theearly—a reasonable approximation given the moderate in-
visual signal, one might ask how faithfully the ganglion celltensity contrast of 0.35—the output signal will again be
spike trains represent the output of the cones. Assuming thatGaussian with a power spectrum given by the Fourier trans-
the cone responds linearly under our stimulus conditions,form of the flash response. These spectra are plotted in Fig.
its membrane potential £( t) is obtained by convolving the10B : clearly the high-frequency components of the stimulus
stimulus time course, s( t) , with the flash response, i( t) ,are attenuated greatly, more so in the membrane current than
(Fig. 10C)in the membrane voltage.

RELATION TO THE RECONSTRUCTION QUALITY. The trans-
mitted information depends not only on attenuation of the £( t) Å * s( t *) i( t 0 t *)dt* (24)
signal but also on the magnitude of the noise. If the output
of the cone photoreceptor is corrupted by the addition of a
Gaussian noise, then the summed signal transmits informa- What is the optimal linear reconstruction of this signal given

the spike trains? Note that the stimulus reconstruction bytion about the stimulus at a spectral density of
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the optimal decoder u( t) is a linear function of the true see whether this property is borne out in the processing of
spatially varying stimuli. There are indications that specificstimulus s( t) (Eq. 9) . Because £( t) is a linear transform of

s( t) , £est ( t) is the same linear transform of u( t) . Thus the patterns of spikes across ganglion cells play a role in encoding
spatial information (Meister 1996; Warland and Meister 1995),optimal reconstruction of the membrane potential £est ( t) is

given by convolving u( t) with the cone flash response and their optimal interpretation may well require more than a
linear decoder.

£est ( t) Å * u( t *) i( t 0 t *)dt * (25)
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