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Abstract

In most surveillance scenarios there is a large distance between the camera and the

objects of interest in the scene. Surveillance cameras are also usually set up with wide �elds

of view in order to image as much of the scene as possible. The end result is that the objects

in the scene normally appear very small in surveillance imagery. It is generally possible

to detect and track the objects in the scene, however, for tasks such as automatic face

recognition and license plate reading, resolution enhancement techniques are often needed.

Although numerous resolution enhancement algorithms have been proposed in the

literature, most of them are limited by the fact that they make weak, if any, assumptions

about the scene. We propose an algorithm that can be used to learn a prior on the spatial

distribution of the image gradient for frontal images of faces. We proceed to show how such

a prior can be incorporated into a super-resolution algorithm to yield 4-8 fold improvements

in resolution (16-64 times as many pixels) using as few as 2-3 images. The additional pixels

are, in e�ect, hallucinated. We also apply our algorithms to text data.
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1 Introduction

There is a large distance between the camera and the scene in most surveillance scenarios.

Surveillance cameras are also usually set up with wide �elds of view, in order to image as

much of the world as possible. The end result is that objects of interest typically appear

very small in surveillance imagery. Hence, for tasks such as automatic face and license plate

recognition, resolution enhancement is usually needed.

We are primarily interested in human faces in this paper. To gauge how di�cult

resolution enhancement is for faces, we took a high resolution image of a face and repeatedly

down-sampled it until it was unrecognizable. The results are shown in Table 1. The size of

the initial image was 96 � 128 pixels, and at each step the image was down-sampled by a

factor of 2 in each direction by averaging the pixel intensities. After 4 iterations, the image

is 6 � 8 pixels and is no longer obviously an image of a face.

The image begins to look like a face at around 12 � 16 pixels. For comparison, most

face detectors use a window size of about 20 � 20 pixels [Rowley et al., 1998] [Sung and

Poggio, 1999] [Schneiderman and Kanade, 1998]. Although these detectors res-ample the

image to detect faces at di�erent scales, the 12� 16 pixel image in Table 1 is approximately

the smallest size at which they operate reliably. Determining the identity of the person

in the 12 � 16 image, however, would be very di�cult, even for a human. It is only at

approximately 24 � 32 pixels that identity begins to be recognizable. Most papers on face

recognition do not give the size of the input images used, but typically the resolution is at

least 96 � 128 pixels. For example, the faces in the FERET test set [Philips et al., 1997]

are all at least this large. From Table 1, however, it appears that it should be possible to

recognize faces at image sizes 48 � 64 pixels and above. Finally, facial features, such as the

corners of the eyes and the mouth, are often used by facial analysis algorithms, for example,

to determine where the person is looking [Gee and Cipolla, 1994] [Horsprasert et al., 1996].
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Table 1: A relatively high resolution (96� 128 pixels) image of a face repeated down-sampled by

pixel averaging. At around 24 � 32 pixels the facial features such as the corners of the eyes and

the mouth are barely discernible, at around 12� 16 pixels the identity of the person is very hard

to recognize, and at around 6� 8 pixels the image is not even clearly an image of a face.

96� 128 48� 64 24� 32 12� 16 6� 8

Detect? Yes Yes Yes Maybe No

Recognize? Yes Yes Maybe No No

Features? Yes Maybe No No No

These features are barely visible in the 48� 64 pixel image, but in the 96� 128 pixel image

they can be seen clearly and localized accurately.

Most automated face processing tasks should therefore be possible with (low noise)

96 � 128 pixel images. On the other hand, the smallest faces that can be reliably detected

are approximately 12� 16 pixels. In this paper, we will attempt to bridge this gap. We will

develop a resolution enhancement algorithm, speci�cally for faces, that can convert a small

number (� 3) of 24� 32 or 12� 16 pixel images of a face into a single 96� 128 pixel image.

1.1 Related Work: Single Image Interpolation

One way of increasing the resolution of an image is to interpolate the pixel intensities. A wide

variety of interpolation algorithms have been proposed, the most well known and frequently

used being nearest-neighbor, bilinear, and variants of cubic spline interpolation [Pratt, 1991]

[Wolberg, 1992]. A brief survey of several more sophisticated algorithms, including re�ne-
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Table 2: The RMS interpolation error (per pixel in grey levels) obtained using the standard

cubic B-spline algorithm [Wolberg, 1992] on a set of 596 faces like the one in Table 1. Each row

corresponds to a �xed input image size and each column to a �xed output image size. These results

show that, at least for faces, interpolation gets more di�cult as the images get smaller.

in n out 12� 16 24� 32 48� 64 96� 128

48� 64 11.9

24� 32 15.5 22.2

12� 16 20.4 29.2 33.9

6� 8 26.1 36.7 42.4 45.4

ments to the cubic spline algorithms [Chen and deFigueiredo, 1985], regularization-based

approaches [Karayiannis and Venetsanopolous, 1991], edge-preserving techniques [Xue et al.,

1992], and Bayesian algorithms [Schultz and Stevenson, 1994], is contained in the excellent

paper by Schultz and Stevenson [1996].

Another approach to interpolation is to learn how to interpolate from a set of high

resolution training samples, together with corresponding low resolution versions of them. In

[Freeman and Pasztor, 1999], the high resolution image is modeled as a Markov network,

where each pixel is attached to its neighbors and the corresponding pixel in the low resolution

image. Another approach suggested by John Platt [1999], might be to estimate the average

cross-correlation (spectrum) of the high resolution training samples, and then use that as the

input to the optimal linear interpolation algorithm proposed by Malvar and Staelin [1988].

While interpolation can give good results when the input images are fairly high reso-

lution, it often performs worse as the input images get smaller, as is illustrated in Table 2.

We took a set of 596 faces similar to the one in Table 1 and down-sampled them in the same

manner. We then used the standard cubic B-spline algorithm [Wolberg, 1992] to reconstruct

the higher resolution images. The RMS error per pixel over the entire set is presented in
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Table 2 for various input/output size combinations. (The interpolation results for one of

the 596 faces are shown in Figure 1.) The results show that, at least for faces, interpolation

becomes much more di�cult as the image size gets smaller. Interpolating from 6�8 pixels to

12� 16 pixels yields an RMS error of 26.1 grey-levels compared with only 11.9 interpolating

from 48� 64 to 96� 128 pixels. The magni�cation factor is the same in both cases, yet the

results are far worse for the lower resolution image. If we wish to use 12 � 16 pixel images,

we will therefore need to use more powerful techniques than single image interpolation.

1.2 Related Work: Multiple Image Super-Resolution

It is possible to do much better if multiple images are available. It helps if there is some

(small) relative motion between the camera and the scene, but motionless multiple image

super-resolution is possible too [Elad and Feuer, 1997]. If there is relative motion, the �rst

step to super-resolution is to register the images; i.e. compute the motion of pixels from one

image to the others. The motion is often assumed to take a simple parametric form [Bergen

et al., 1992], but instead could be a full optical ow �eld [Elad, 1996].

Once the pixel-wise correspondences between the images have been estimated, the

low resolution input images need to be fused to form the high resolution image. A number of

di�erent techniques have been proposed to do this, including, frequency domain approaches

[Huang and Tsai, 1984] [Kim et al., 1990] [Ur and Gross, 1992] and edge-based approaches

[Chiang and Boult, 1997]. Most approaches are, however, based on the constraints that the

high resolution image, when appropriately warped and down-sampled, should yield the low

resolution (input) images [Irani and Peleg, 1991] [Irani and Peleg, 1993]. These constraints

can easily be embedded in a Bayesian framework with priors placed on the high resolution

image [Schultz and Stevenson, 1996] [Hardie et al., 1997], and can be estimated recursively

using a Kalman �lter [Dellaert et al., 1998]. Several re�nements and extensions have been
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input n correct
12� 16 24� 32 48� 64 96� 128

48� 64 �2

24� 32 �2 �4

12� 16 �2 �4 �8

6� 8 �2 �4 �8 �16

Figure 1: The results for one of the images used in Table 2. As the resolution gets lower (i.e. moving

down the rows), the interpolation results get worse, even for a �xed magni�cation of say �2 or �4.
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proposed to the various super-resolution algorithms, including simultaneously computing

structure [Cheeseman et al., 1994] [Shekarforoush et al., 1996], compensating for motion

blur [Bascle et al., 1996], and dealing with varying illumination [Chiang and Boult, 1997].

For comparison, we implemented the algorithms of Schultz and Stevenson [1996] and

Hardie et al. [1997] The results obtained using the Schultz and Stevenson algorithm on the

same data as that used in Figure 1 are presented in Figure 2. The only slight di�erence

is that the high resolution 96 � 128 pixel image was randomly translated multiple times

before it was down-sampled to give the multiple inputs needed at lower resolutions. (We

used enough input images so that the total number of pixels in all the low resolution images

equals the number of pixels in the high resolution image. The results are similar even if

either twice as many or half as many images are used, but are omitted for brevity.)

On comparing Figures 1 and 2 we see that the super-resolution algorithm does perform

signi�cantly better than pure interpolation. The results for the 6 � 8 and 12 � 16 pixel

images are still, however, far from perfect, even though enough images have been used that

in the ideal case the high resolution image should be reconstructible. There are two possible

reasons the performance is so poor. First, the registration (which is computed using the low

resolution images) must be accurate relative to the size of the pixels in the high resolution

image. When the ratio of the sizes of these pixels is 8{16, and the images are severely

aliased, this task is very di�cult. We did, however, experiment with variants of the iterative

registration algorithm in [Hardie et al., 1997] and found that, although it does do a very good

job of estimating the registration (translation), the super-resolution results (again omitted

for brevity) are not signi�cantly improved by this step.

We therefore suspect that the major cause of the poor performance is the second

possibility, the grey level intensity noise. When the resolution is enhanced by a factor of

16 in each direction, any pixel in the high resolution image can be perturbed by 256 grey
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input n correct
12� 16 24� 32 48� 64 96� 128

48� 64 �2 (4 images)

24� 32 �2 (4 images) �4 (16 images)

12� 16 �2 (4 images) �4 (16 images) �8 (64 images)

6� 8 �2 (4 images) �4 (16 images) �8 (64 images) �16 (256 images)

Figure 2: The results obtained using the super-resolution algorithm of Schultz and Stevenson [1996]

on the data of Figure 1. The super-resolution algorithm does do much better than cubic B-spline

interpolation, but the results for the larger magni�cations are still poor. (See text for explanation.)
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levels and still only change a handful of the pixels in the predicted low resolution images

by just 1 grey level. Since we are working with 8-bit images, any algorithm that takes

into account any noise in the input image intensities can therefore only impose fairly weak

constraints on the high resolution images. The result is that the prior on the high resolution

image becomes more important as the factor by which the resolution is enhanced gets larger.

Since the Schultz and Stevenson prior [1996] is that the image has zero gradient, the results

enhancing the resolution by 8{16 times contain much less high-frequency detail than they

should. Removing the prior will, of course, not help. It will simply amplify the noise that is

always present (even if only in the form of the discretization to an 8-bit intensity value.)

1.3 Class-Based Super-Resolution Using Gradient Priors

The prior on the high resolution image therefore becomes relativelymore important for larger

magni�cation factors. The Markov Random Field priors used by Schultz and Stevenson and

Hardie at al. are too general to compensate for the fact that the image constraints are much

weaker. In this paper, we propose an algorithm for learning a prior on the image gradient

and show how it can be incorporated into a super-resolution algorithm. The speci�c learning

algorithm we use is based on the multi-resolution algorithm proposed by De Bonet and Viola

for texture recognition [De Bonet and Viola, 1998], image de-noising [De Bonet and Viola,

1997], and random texture synthesis [De Bonet, 1997]. The super-resolution algorithm is a

modi�cation of the Schultz and Stevenson [1996] algorithm.

Besides the choice of the learning algorithm, and the applicability of our algorithm

to multiple images, the other major di�erence between our approach and the interpolation

learning algorithm of Freeman and Pazstor [1999] is that our approach is \class-based" in

the sense of [Riklin-Raviv and Shashua, 1999]. As will be shown, our results are a great

improvement over previous methods, partly because they use multiple images, but partly
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because the algorithms are dedicated to frontal images of faces. (We will also demonstrate

that our approach works for text data when provided with an appropriate training set.)

Another class-based approach is the recent work of Edwards et al. [1998]. In this

paper, a parameterized model of a face, referred to as an active appearance model, is used to

enhance the resolution of a video sequence. The parameters of the face model are estimated

from the low resolution sequence, and then used to re-render a higher resolution version.

Although closely related to our approach, it is unlikely that such an algorithm would work

on images as small as 12 � 16 pixels. Active appearance models are based on the location

of around 50 points on the face. When the image itself only contains 100-200 pixels, the

triangulated elements on the model essentially become degenerate points.

2 Theory and Algorithms

2.1 Background: Gaussian, Laplacian, and Feature Pyramids

We follow the non-parametric, multi-resolution approach of De Bonet and Viola [1997]. In

this approach the images are decomposed as three types of pyramids; Gaussian pyramids,

Laplacian pyramids, and feature pyramids. These pyramids are all illustrated in Figure 3.

The Gaussian pyramid [Burt, 1980] [Burt and Adelson, 1983] of an image I, starting at level

l = k, is the set of images Gk(I); Gk+1(I); : : : ; GN (I), where:

Gl(I) =

8><
>:

I if l = k

REDUCE(Gl�1(I)) if k < l � N
(1)

and N is chosen so that GN (I) is (smaller than) some �xed size. The operator REDUCE(�)

combines a (Gaussian) smoothing step and a down-sampling step. The details of this oper-

ator vary somewhat from author to author. In [De Bonet, 1997], REDUCE(I) = 2 # [I 
 g],
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(c) Laplacian Pyramid (d) Feature (Derivative) Pyramids

Figure 3: (a) A Gaussian pyramid is created by repeatedly smoothing and down-sampling an image.

(b) Given a lower resolution image, we can create the pyramid starting at a higher level. Resolu-

tion enhancement can then be thought of as estimating the missing lower levels in the pyramid.

(c) Each level of the Laplacian pyramid is de�ned as the di�erence between the corresponding level

of the Gaussian pyramid and the two-fold up-sampling (expansion) of the next higher level. The

lowest level of the Gaussian pyramid G0 can be estimated from a higher level G2 by sub-sampling

and adding the (appropriately sub-sampled) lower Laplacian levels L0 and L1; i.e. resolution en-

hancement can be performed by predicting the lower levels of the Laplacian pyramid. (d) Feature

pyramids can also be generated from the Gaussian pyramid by taking horizontal and vertical deriva-

tives. It is possible to use more sophisticated features, such as Freeman and Adelson's steerable

�lters [Freeman and Adelson, 1991].
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where 2 # [�] is the two-fold down-sampling operator, and I
g is the convolution of I with g,

a two dimensional Gaussian kernel. We found the performance of our algorithms to be largely

independent of the choice of the operator REDUCE(�). We actually chose REDUCE(�) to

be the pixel averaging function:

REDUCE(I)(m;n) =
1

4

1X
i=0

1X
j=0

I(2 �m+ i; 2 � n+ j) (2)

because the results using this de�nition were slightly better, and also because this de�nition

is more consistent with image formation as integration over the pixel. The \Gaussian"

pyramid of the 96 � 128 pixel image considered in Table 1 is illustrated in Figure 3(a).

In terms of the Gaussian pyramid, a resolution enhancement algorithm is a function

from Gl(I) to G0(I) where l > 0. Given a lower resolution image we can create a Gaussian

pyramid starting at a higher level. For example, if the image is 2k times smaller (in each

direction), we start at level l = k, as is illustrated in Figure 3(b) for k = 2. Resolution

enhancement then consists of determining the missing lower levels Gk�1(I); : : : ; G0(I).

Like the Gaussian pyramid, the Laplacian pyramid [Burt and Adelson, 1983] consists

of a set of images Lk(I); Lk+1(I); : : : ; LN (I). It is de�ned in terms of the Gaussian pyramid

as:

Ll(I) =

8><
>:

Gl(I)� EXPAND(Gl+1(I)) if k � l < N

Gl(I)) if l = N .
(3)

where EXPAND(�) is the pixel replication (sub-sampling) operator:

EXPAND(I)(m;n) = I(
�
m

2

�
;
�
n

2

�
): (4)

The Laplacian pyramid is useful for resolution enhancement because:

G0(I) = EXPANDk(Gk(I))+EXPANDk�1(Lk�1(I))+ : : :+EXPAND(L1(I))+L0(I): (5)

To estimate the high resolution imageG0(I), the low resolution imageGk(I) can be expanded

the appropriated number of times, and the lower Laplacian levels (appropriately expanded)
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added to it. To estimate G0 from G2 in Figure 3(b), we therefore just need to predict the

Laplacian pyramid at the lower levels L0 and L1. Figure 3(c) contains the Laplacian pyramid

corresponding to the Gaussian pyramid in Figure 3(a). (The grey level of 127 corresponds

to a Laplacian value of 0 for all of the levels except the top one L4 = G4.) The lower levels

of the Laplacian pyramid can be thought of as containing the high frequency components

that must be added to the low resolution image to give the high resolution version.

The �nal type of pyramid considered by De Bonet and Viola is a pyramid of \local

texture measures" (or features) created using a �lter bank. In [De Bonet, 1997], the �lters

are �rst and second derivatives, but in later work steerable �lters [Freeman and Adelson,

1991] are used. We used horizontal and vertical, �rst and second derivative operators. The

horizontal derivative pyramid is also a set of images Hk(I);H1(I); : : : ;HN (I) de�ned by:

Hl(I) = Gl(I)
 h for k � l � N (6)

where h is a horizontal derivative kernel. The vertical derivative pyramid Vl(I) and the second

derivative pyramids H2
l (I) and V 2

l (I) are de�ned similarly. (We used (�1; 8; 0;�8; 1)=16:0

for the �rst derivative and (�1;�2; 6;�2;�1)=12:0 for the second derivative.) The horizontal

and vertical �rst derivative pyramids of the Gaussian pyramid in Figure 3(a) are displayed

in Figure 3(d). We did try di�erent de�nitions of the features, but found the performance

of our algorithms to be largely independent of the choice.

2.2 Predicting Laplacians and Gradient Priors

We developed a modi�cation of De Bonet's random sampling algorithm [De Bonet, 1997]

to predict the lower levels of the Laplacian for resolution enhancement. Our algorithm is

deterministic. It chooses the most likely values for the Laplacian (and the features) rather

than randomly sampling from a set of likely values. For this reason, it is possible to perform

the algorithm in one step from the low resolution image to the high resolution image.
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Another di�erence is that (for faces) the decision is spatially variant. At each pixel,

the algorithm only looks at the corresponding pixels in the training samples. It is able to do

this: (1) because we have multiple training samples (unlike De Bonet who deliberately just

uses a single texture example), and (2) because we take the class-based approach of [Riklin-

Raviv and Shashua, 1999] we know that the images are aligned. Hence, corresponding pixels

are images of roughly the same point on the face. (For text data, De Bonet's assumption

that the texture is spatially invariant is more appropriate and so we do use it. For text data,

we use all of the pixels in all of the training samples to predict the Laplacian.)

We describe our algorithm in terms of (a minor modi�cation of) the \parent structure"

vector introduced by De Bonet and Viola. Given an image I, its Laplacian and feature

pyramids are constructed starting at some level. The lth level parent structure at pixel

(m;n) of image G0(I) is then the 5 � (N + 1� l) dimensional vector:

Sl(I)(m;n) = ( Ll(I)(
j
m

2l ;
n

2l

k
); Ll+1(I)(

j
m

2l+1 ;
n

2l+1

k
); : : : ; LN (I)(

j
m

2N ;
m

2N

k
)

Hl(I)(
j
m

2l
; n

2l

k
);Hl+1(I)(

j
m

2l+1
; n

2l+1

k
); : : : ;HN (I)(

j
m

2N
; m

2N

k
)

Vl(I)(
j
m
2l
; n
2l

k
); Vl+1(I)(

j
m

2l+1
; n
2l+1

k
); : : : ; VN (I)(

j
m
2N
; m
2N

k
)

H2
l (I)(

j
m

2l ;
n

2l

k
);H2

l+1(I)(
j

m

2l+1 ;
n

2l+1

k
); : : : ;H2

N (I)(
j
m

2N ;
m

2N

k
)

V 2
l (I)(

j
m

2l ;
n

2l

k
); V 2

l+1(I)(
j

m

2l+1 ;
n

2l+1

k
); : : : ; V 2

N (I)(
j
m

2N ;
m

2N

k
) ): (7)

If (m;n) is a pixel in the ith level of a pyramid, its parent at the i + 1th level is (
j
m

2 ;
n

2

k
).

The parent structure therefore gets its name from the fact that it consists of the Laplacian

and feature values of the lth parent of (m;n), that pixel's parent, it's parent, and so on up

to the top of the pyramids. See Figure 8 in [De Bonet, 1997] for an illustration.

Given a high resolution training sample Ti, we can construct it's lth level parent

structure Sl(Ti)(m;n) for any l = 0; 1; : : : N . (The values can be copied from the Laplacian

and feature pyramids.) Suppose now we are given a lower resolution image t. Suppose t is
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2k times smaller in each direction than the training samples Ti. We can only construct the

pyramids from level l = k and above; i.e. we set Gk(t) = t and work upwards to the top of

the pyramids as in Figure 3(b). The parent structure Sl(t)(m;n) is therefore only de�ned

for l = k; k+1; : : :N . If we could predict S0(t)(m;n), we could extract the Laplacian values

for the levels 0; 1; : : : k � 1 from it, and then use Equation (5) to predict the high resolution

version of t, namely, the bottom Gaussian pyramid level G0(t).

The information we use to predict S0(t)(m;n) is, Sk(t)(m;n) the kth level parent

structure of the low resolution image t, Sk(Ti)(m;n) the kth level parent structures of the

high resolution training images Ti, and S0(Ti)(m;n) the 0th level parent structures of the

high resolution training images. The prediction algorithm works by comparing Sk(t)(m;n)

to each Sk(Ti)(m;n), �nding the closest matching training sample Tj, and then copying the

appropriate data from S0(Tj)(m;n) to S0(t)(m;n). The details are as follows:

Parent Structure Prediction Algorithm for Spatially Variant Phenomena

For each pixel (m;n) in the high resolution image to be predicted G0(t), do:

1. Create S0(t)(m;n) and copy all information for levels k : : :N from Sk(t)(m;n).

2. Find j = arg mini kSk(t)(m;n)� Sk(Ti)(m;n)k

3. Copy all information for levels 0 : : : k � 1 from S0(Tj)(m;n) into S0(t)(m;n).

The distance function k � k is a weighted L2 norm. We found the performance to be largely

independent of the weights, but eventually decided to give the feature components half as

much weight as the Laplacian values and to reduce the weight by a factor of 2 for each

increase in the pyramid level. For spatially invariant phenomena, such as text, the only

di�erence is to search over all of the pixels in all of the training samples:

Parent Structure Prediction Algorithm for Spatially Invariant Phenomena

For each pixel (m;n) in the high resolution image G0(t), do:
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(a) Input: 24� 32 (b) Interpolated (c) Predicted (d) Gradient Prior (e) Original

Figure 4: An example of using parent structure prediction for resolution enhancement. The

algorithm is used to predict the parent structure, which is then used to predict the Laplacian. The

high resolution image is then estimated using Equation (5). The results in (c) are much sharper

than the cubic B-spline interpolation results in (b), but are still both quite blocky and noisy. The

results of using the same algorithm to predict the gradient, and then incorporating it as a prior

in a super-resolution algorithm are shown in (d). They are much less noisy because the gradient

information spans the blocks in (c). The �nal result in (d) is visually much closer to the high

resolution image in (e) than it is to the input low resolution image in (a).

1. Create S0(t)(m;n) and copy all information for levels k : : :N from Sk(t)(m;n).

2. Find (j; r; s) = arg min(i;p;q) kSk(t)(m;n)� Sk(Ti)(p; q)k

3. Copy all information for levels 0 : : : k � 1 from S0(Tj)(r; s) into S0(t)(m;n).

Given S0(t)(m;n), the values of the Laplacian L0(t)(m;n), L1(t)(
j
m

2
; n
2

k
), : : :, can simply be

extracted and copied into the Laplacian pyramid. Some entries in the Laplacian pyramid

appear in several parent structures S0(t)(m;n); i.e. for di�erent pixels (m;n). These multiple

values will be the same since this occurs when two pixels share the same parent at the kth

level. The same decision will therefore have been made in Step 2. of the algorithm. This

fact can also be used to make the algorithms more e�cient by performing Step 2. for groups

of pixels that share the same parent at the kth level, rather than for each pixel individually.

An example of using the parent structure prediction algorithm and Equation (5) for

resolution enhancement is shown in Figure 4. Although the results in Figure 4(c) are sharper

than the cubic B-spline interpolated image in Figure 4(b), they are quite noisy, and there
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are considerable blocking artifacts. These blocking artifacts derive from the fact that the

prediction decisions in Step 2. are made separately for each block of pixels that share the

same parent at the higher level. The derivative information in the parent structure spans

these blocks. The result of incorporating these predicted gradients as priors in a super-

resolution algorithm is shown in Figure 4(d) and is a great improvement. We now describe

how this step is performed. An additional advantage of performing the prediction in this

manner is that the method generalizes naturally to an arbitrary number of images.

2.3 Incorporation into a Super-Resolution Algorithm

We follow the Bayesian approach of Schultz and Stevenson [1996] and Hardie et al. [1997].

Besides the high resolution training images Ti, we also assume we are given multiple low

resolution images tj. (The formulation is valid if there is only one such image.) We begin

by describing the assumptions which we make about how the images tj were formed.

2.3.1 Observation Model

Suppose we wish to enhance the resolution by a magni�cation factor of 2k in each direction.

We can form the Gaussian pyramids of the low resolution images starting at level k to get

Gk(tj); Gk+1(tj); : : : ; GN (tj). The 0th level of the �rst of these pyramidsG0(t0) de�nes a pixel

coordinate frame that is 2k times higher resolution than that of Gk(t0) = t0. We assume

there is an underlying high resolution image T de�ned in this coordinate frame. We also

assume that the low resolution images tj are related to T in the following way:

tj(m;n) =
X
(p;q)

W (m; p; xj)W (n; q; yj)T (p; q) + �(m;n; j): (8)

This expression says that the low resolution pixel tj(m;n) is the weighted sum of the high

resolution pixels T (p; q) plus an additive noise term �(m;n; j). The weights relating the pixels
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W (�) are a function of how much the low resolution pixels (m;n) and the high resolution

pixels (p; q) overlap. We assume that the images tj are related by a translation (xj; yj). (For

image t0 we assume the translation is zero; i.e. (x0; y0) = (0; 0).) We therefore set:

W (m; p; xj) = LENGTH(
�
p

2k
;
p + 1

2k

�
\ [m+ xj;m+ xj + 1]) (9)

where LENGTH([a; b]) = b�a is a function that returns the length of a (contiguous) interval

of the real line. We use this expression since the x extent of the high resolution pixel (p; q) ish
p

2k ;
p+1
2k

i
in the coordinate frame of the low resolution pixels (m;n). The low resolution pixel

(m;n) has x extent [m;m+ 1], but is translated by xj so is moved to [m+ xj;m+ xj + 1].

The same argument applies in the y direction. We assume the pixels are square, and so the

overlap is the product of two of these expressions, one for each direction x and y.

Equation (8) is an implicit expression for the unknown high resolution image T in

terms of the the known low resolution images tj, the unknown translations (xj; yj), and the

noise �(m;n; j). Unfortunately this expression is non-linear in the unknowns. The usual

approach, therefore, is to estimate the translations (xj; yj) directly from the low resolution

images t0 and tj using a parametric motion algorithm [Bergen et al., 1992]. This is the

approach taken in [Schultz and Stevenson, 1996]. It is possible, however, to estimate the

unknowns in a single step using an iterative joint estimation algorithm [Hardie et al., 1997].

(It is also possible to generalize the form of the registration to an arbitrary parametric motion

�eld [Bergen et al., 1992], or even to a complete optical ow �eld [Elad, 1996].)

Even when the translation is known, Equation (8) still cannot be used to solve directly

for the unknown high resolution image T for two reasons: (1) the noise �(m;n; j) is unknown,

and (2) there may be more unknowns in T than equations. The usual approach in this

situation is to solve for the maximum a posteriori (MAP) solution using Bayes law. This is

the approach taken in both [Schultz and Stevenson, 1996] and [Hardie et al., 1997].
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2.3.2 Bayesian MAP Formulation

The maximum a posteriori estimate of the high resolution image T is argmaxT Pr(T j tj).

Bayes law for this estimation problem is:

Pr(T j tj) =
Pr(tj jT ) � Pr(T )

Pr(tj)
: (10)

Since Pr(tj) is a constant if tj is known already, and since the logarithm function is a

monotonically increasing function, we have:

argmax
T

Pr(T j tj) = argmin
T

(� lnPr(tj jT )� lnPr(T )) : (11)

The �rst term in this expression � lnPr(tj jT ) is the (negative log) probability of getting

the low resolution images tj, given that the high resolution image is T . It depends upon the

distribution of the noise � in Equation (8). As was done in [Schultz and Stevenson, 1996],

and in [Hardie et al., 1997], we assume that the noise �(m;n; j) is i.i.d. and Gaussian, with

covariance �2�. We therefore have:

� lnPr(tj jT ) = C1 +
1

2�2�

X
m;n;j

0
@tj(m;n)�

X
(p;q)

W (m; p; xj)W (n; q; yj)T (p; q)

1
A
2

(12)

where C1 is a constant that only depends upon �2�. Hence C1 can be ignored in Equation (11).

Up to this point, our Bayesian formulation has been exactly the same as those in

[Schultz and Stevenson, 1996] and [Hardie et al., 1997]. Where our approach di�ers is in

the choice of the prior term � lnPr(T ). Whereas both Schultz and Stevenson and Hardie et

al. use standard Markov Random Field priors, we use a prior on the gradient of T which is

based on the gradient prediction algorithm described in Section 2.2.

2.3.3 Predicted Gradient Prior

Given the low resolution input images tj, and the high resolution training images Ti, one of

the Parent Structure Prediction algorithms can be used to estimate S0(tj) for each tj. From
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S0(tj), the predicted horizontal and vertical derivatives of the high resolution image (H0(tj)

and V0(tj)) can be extracted using Equation (7). The derivatives of T should equal these

values. Parametric expressions for H0(T ) and V0(T ) can be derived in terms of the unknown

pixels in the high resolution image T . We assume that the errors between the predicted and

actual derivatives are i.i.d. and Gaussian with covariance �2
r
. Therefore, we set:

� lnPr(T ) = C2 +
1

2�2
r

X
m;n;j

�
H0(tj)(m+ xj � 2

k; n+ yj � 2
k) �H0(T )(m;n)

�2

+
1

2�2
r

X
m;n;j

�
V0(tj)(m+ xj � 2

k; n+ yj � 2
k) � V0(T )(m;n)

�2
(13)

where C2 is a constant that only depends upon �2
r
(and which can therefore be ignored.)

Note that � lnPr(T ) is a function of tj. This is legitimate for the following reason.

The gradient prediction algorithm divides the set of all possible values of tj into a collection

of subclasses. If these are denoted Ki, then Pr(T ) =
P

i Pr(T j tj 2 Ki) �Pr(tj 2 Ki). Once tj

is known, it can be determined which class it is in. If this class isKk, the expression for Pr(T )

simpli�es to Pr(T j tj 2 Kk). It is really this probability that is denoted in Equation (13).

The expressions H0(tj)(m + xj � 2k; n + yj � 2k) and V0(tj)(m + xj � 2k; n + yj � 2k)

are simply numbers that can be estimated by interpolating the predicted derivatives H0(tj)

and V0(tj) at the correct place to take account of the translation (xj; yj) of image tj. The

expressions H0(T )(m;n) and H0(T )(m;n) are linear expressions in the unknowns T (m;n).

When combined, Equations (11), (12), and (13) form a weighted least squares problem in

the unknown high resolution image pixels T (m;n):

argmin
T

2
64 1

2�2�

X
m;n;j

0
@tj(m;n) �

X
(p;q)

W (m; p; xj)W (n; q; yj)T (p; q)

1
A
2

+

1

2�2
r

X
m;n;j

�
H0(tj)(m+ xj � 2

k; n+ yj � 2
k) � H0(T )(m;n)

�2
+

1

2�2
r

X
m;n;j

�
V0(tj)(m+ xj � 2

k; n+ yj � 2
k) � V0(T )(m;n)

�2 35 (14)
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(Robust norms, such as the Huber norm used by Schultz and Stevenson [1996], could be

used instead of the L2 norm. More sophisticated ways of combining the multiple estimates

of the gradient could also possibly be explored in future work.)

2.3.4 Gradient Descent Optimization

Although Equation (14) is a linear least squares problem, it can be very high dimensional.

The number of unknowns is the number of pixels in the high resolution image T (m;n).

Directly solving a linear system of such size can prove problematic. We therefore used a

gradient descent algorithm using the standard diagonal approximation to the Hessian [Press

et al., 1992] to determine how large the step size should be in a similar way to [Szeliski and

Golland, 1998]. Since the error function is quadratic, the algorithm converges to the single

global minimum anyway. We have not, as yet, conducted a systematic study of the speed of

convergence, but did not encounter any problems with slow convergence.

3 Experimental Results on Human Faces

3.1 Experimental Setup

Our experiments for human faces were conducted with a subset of the FERET data set

[Philips et al., 1997] consisting of 596 images of 278 di�erent individuals (92 women and 186

men). There is a fairly wide sampling of di�erent races, although the sample is probably

not very representative of the population as a whole. Each person appears between 2 and 4

times, under various conditions. Most of the people appear twice, with the images taken on

the same day under the same illumination conditions, but with di�erent facial expressions.

One image has a neutral express, the other not. (The second expression is usually a smile.)

A small number of people appear 4 times, with the images taken on two di�erent days.
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The images in the FERET data set are 256 � 384 pixels. The area of the image

occupied by the face varies considerably across the data set. Most of the faces, however, are

around 96 � 128 pixels or larger. In the class-based approach, the input images (which are

all frontal) need to be aligned, so that we can assume that the same part of the face appears

in roughly the same part of the image every time. This alignment was performed by hand

marking the location of 3 points, the centers of the eyes and the lower tip of the nose. These

3 points de�ne an a�ne warp [Bergen et al., 1992], which was used to warp the images into

a canonical form. The canonical image is 96 � 128 pixels with the right eye at (31; 63), the

left eye at (63; 63), and the lower tip of the nose at (47; 83). These 96 � 128 pixel images

were then repeatedly down-sampled by pixel averaging, as in Table 1.

We used a \leave-one-out" methodology to test our algorithm. To test on any par-

ticular person, we removed all occurences of that individual from the training set. We then

trained the algorithm on the reduced training set, and tested on the images of the individual

that had been removed. Because this process is quite time consuming, we used a test set of

100 images of 100 di�erent individuals rather than the entire training set. The test set was

selected at random from the training set. As will be seen, the test set spans sex and race

reasonably well. For some of our experiments, we added 8 synthetic variations of each image

to the training set by translating the image 8 times, each time by a small amount. This step

enhances the performance of our algorithm slightly, although it is not vital.

We conducted two major sets of experiments, one for single images in which our

algorithm is compared with image interpolation, and one for multiple images in which our

algorithm is compared with Schultz and Stevenson [1996] and Hardie et al. [1997]. In the

multiple image experiments, the inputs are generated by randomly translating the original

FERET input image by small amounts several times before it is normalized and then down-

sampled. Finally, we also conducted several brief experiments with missing data.
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Figure 5: Empirical validation that our hallucination algorithm learns how to enhance the resolu-

tion of faces, and only faces. In (a) the performance of the algorithm can be seen to improve with

the number of training samples. In (b) the results show that our algorithm works for faces, the

type of image it was trained on, but not for other types of image.

3.2 Single Image Results

Initially we restrict attention to the case of enhancing 24� 32 pixel images to give 96� 128

pixel images. Later we will consider the variation in performance across image sizes.

3.2.1 Demonstration of Learning

Our �rst set of experiments are designed to show that our algorithm does learn how to

enhance the resolution. First we varied the number of training samples. We graph the

results in Figure 5(a). The average (RMS) pixel error is plotted against the number of

training samples. We used 9 training samples per image in the training set, the original

and 8 synthetic variations. Hence the number of training samples runs up to just under

596 � 9 = 5364. Two curves are plotted, one for our face hallucination algorithm, and one

for the cubic B-spline algorithm [Wolberg, 1992]. As might be expected, our algorithm does

perform better than cubic B-spline interpolation, which incorporates no knowledge of the

type of image being used. The other important point to note is that the performance of our
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(a) Input 24� 32 (b) Hallucinated (c) Cubic B-spline (d) Original 96� 128

(e) Input 24� 32 (f) Hallucinated (g) Cubic B-spline (h) Original 96� 128

Figure 6: The best and worst results in Figure 5(a). In (a){(d) we display the results for the best

performing image in the 100 image test set (in terms of the RMS pixel error and for the largest

number of training samples.) The results for the worst image are presented in (e){(h).

algorithm does improve as the number of training samples increases, as should be expected.

The results in Figure 5(a) are an average over the 100 images in the test set. To get

an idea of the variation in the results across the test set, we also plot in Figure 5(a) the

percentage of times that the hallucination algorithm does worse than cubic B-spline. By

around 5000 training samples, this percentage has dropped to almost zero. Therefore, given

enough training samples, we can be reasonably sure that the hallucination algorithm will

perform better than cubic B-spline, and most of the time much better.

23



(a) Random (b) Hallucinated (c) Misc. Image (d) Hallucinated (e) Hal. Constant

Figure 7: The results of applying our hallucination algorithm to images not containing faces. We

have omitted the low resolution input and have just displayed the original high resolution image.

As is evident, a face is hallucinated by our algorithm even when none is present. The input to (e)

was a constant intensity image with approximately the mean intensity of (e).

As further justi�cation that our algorithm performs well for any frontal face image,

in Figure 6 we display the results for both the best and worst performing images in the 100

image test set. The results for the best performing image are presented in Figures 6(a){

(d) and those for the worst are presented in Figures 6(e){(h). As can be seen, there is

little qualitative variation in the performance between these two images. Also note how the

hallucinated image in the second column is much higher resolution than the input in the �rst,

and also how it contains much more high resolution detail than the cubic B-spline result in

the third column. Qualitatively the results appear very similar to the correct high resolution

image in the third column, although they still are a little noisy.

In Figure 5(b) we present similar results for images that do not contain faces. For

comparison across di�erent types of image, we plot the relative RMS pixel error compared

to the cubic B-spline algorithm, instead of plotting the RMS pixel error itself; i.e. we divide

the RMS pixel error for the hallucination algorithm by that for cubic B-spline. A value

of less than 1.0 therefore denotes an improvement. We plot curves of the relative RMS

pixel error for faces, random images, and 50 miscellaneous images from an image database

(mostly consisting of images of outdoor scenes.) We �nd that the hallucination algorithm

is an improvement only for faces. For random images there is no di�erence, and for the
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Figure 8: The robustness of our algorithm to two types of noise. In (a) we see that the algorithm

is relatively robust to additive pixel intensity noise. Gaussian noise with standard deviation of

4.0{8.0 grey levels can be added without degrading the performance too much. In (b) we see that

the algorithm is quite sensitive to alignment noise. If the feature point locations are perturbed

with Gaussian noise with standard deviation 2.0 pixels, the performance drops o� dramatically.

miscellaneous image set the hallucination algorithm actually does worse. The reason can

be seen in Figure 7, which contains examples of the results. The hallucination algorithm

hallucinates a face, even when there is not one there. For random images, this does not e�ect

the numerical results since any interpolant is roughly equally likely to be as far wrong. For

miscellaneous images not containing faces, however, the face that is hallucinated increases

the error over that of cubic B-spline. We also ran experiments for constant images. We

display the results for one constant image in Figure 7. No curve is plotted for constant

images in Figure 5(b) because the error for the cubic B-spline algorithm is zero.

3.2.2 Robustness to Noise

Next we investigated how robust the performance is in the presence of noise. We investigated

two types of noise, additive pixel intensity noise and noise in the alignment of the images.

The results for additive pixel intensity noise are presented in Figure 8(a). We ran exactly the

same experiments as in Figure 5(a), but before applying our algorithm we added Gaussian
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noise with various standard deviations to the down-sampled images. For standard deviation

0.0 the results are the same, however in Figure 8(a) we plot the relative RMS pixel error

rather than the absolute value. We also plot curves for standard deviations of 2:0, 4:0, 8:0,

and 16:0 grey levels. The results show that for standard deviations up to around 4.0{8.0 the

performance is relatively una�ected by the noise, but around standard deviation 16.0 the

performance drops o� very quickly. Hence, our algorithm is reasonably robust to this type

of noise. It can tolerate 2-3 bits of noise without much degradation in performance. This

conclusion is con�rmed by Figure 9, which shows the results for one image in the test set.

Our alignment noise results are presented in Figures 8(b) and 10. We added Gaussian

noise to the 2D locations of the features in the down-sampled image. We then used these

feature locations in the a�ne face alignment step. In Figure 8(b) we plot results for standard

deviations of 0:0, 0:5, 1:0, and 2:0 pixels. The results show that the performance begins to

degrade around standard deviation of 2:0 pixel. Figure 10 contains the results for one image

in the test set and clearly illustrates why the algorithm breaks down. In the down-sampled

image, the centers of the two eyes are only (63 � 31)=4 = 8 pixels apart. For fairly small

perturbations of the feature locations, therefore, the a�ne warp does not correctly register

the face. Naturally, our algorithm is sensitive to the alignment of the face. The a�ne

alignment algorithm using the feature point locations is the major problem. In the future,

we intend to look into more robust ways of aligning the low resolution face images.

3.3 Multiple Image Results

We now present our results for multiple images. In the traditional super-resolution manner,

we assume that we have a video of the face. Hence, multiple slightly translated images are

available. We simulate this using the FERET database by randomly translating the original

FERET images multiple times by sub-pixel amounts to form the inputs. Demonstrating that
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(a) Input Noise 0.0 (b) Hallucinated (c) Cubic B-spline (d) Hi-Res. + Noise

(e) Input Noise 4.0 (f) Hallucinated (g) Cubic B-spline (h) Hi-Res. + Noise

(i) Input Noise 8.0 (j) Hallucinated (k) Cubic B-spline (l) Hi-Res. + Noise

(m) Input Noise 16.0 (n) Hallucinated (o) Cubic B-spline (p) Hi-Res. + Noise

Figure 9: Results on one image in the test set in the presence of additive pixel intensity noise.

Gaussian noise with standard deviation 4.0{8.0 grey levels can be added to the down-sampled image

and our algorithm still performs reasonably well. Around 16.0 grey levels, however, the algorithm

breaks down. The images in the fourth column are included to illustrate the e�ect of the same

amount of noise on the high resolution images. These images are not used in the experiments.
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(a) Input Noise 0.0 (b) Hallucinated (c) Cubic B-spline (d) Hi-Res. + Noise

(e) Input Noise 0.5 (f) Hallucinated (g) Cubic B-spline (h) Hi-Res. + Noise

(i) Input Noise 1.0 (j) Hallucinated (k) Cubic B-spline (l) Hi-Res. + Noise

(m) Input Noise 2.0 (n) Hallucinated (o) Cubic B-spline (p) Hi-Res. + Noise

Figure 10: Results on the image of Figure 9 in the presence of alignment noise. If Gaussian noise

with standard deviation 2.0 pixels is added to the feature point locations, the alignment algorithm

breaks down. The hallucination algorithm, which assumes precise alignment, also breaks down as

a result. The reason is quite simply that in the low resolution image the features are very close

together. For example, in the 24� 32 pixel images the centers of the eyes are only 8 pixels apart.
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Figure 11: A comparison of our algorithm with those of Schultz and Stevenson [1996] and Hardie

et al. [1997]. In (a) we vary the number of images used. Our algorithm outperforms the others

for all values. In (b) we vary the amount of additive noise. Again we �nd that our algorithm does

better than the others, especially as the standard deviation of the noise increases.

our approach works for real video sequences is left as future work.

3.3.1 Comparison with Super-Resolution Algorithms

In our �rst set of experiments, we compare our algorithm with those of Schultz and Stevenson

[1996] and Hardie et al. [1997]. In Figure 11(a) we plot the RMS pixel error of the algorithms

against the number of images used. All of the algorithms work with just 1 image, the results

for which correspond to those of the previous section. We also plot the results for cubic

B-spline interpolation for comparison. Since cubic B-spline is an interpolation algorithm,

only one image is used and so the performance is independent of the number of images.

In Figure 11(a) we see that our hallucination algorithm does outperform both of the

other super-resolution algorithms. Moreover, all of the algorithms improve with the number

of images at about the same rate. These results are con�rmed by Figures 12 and 13 which

contain the results for the best and worst performing images in the test set for our halluci-

nation algorithm in terms of the RMS pixel error. As before, the variation in performance
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(a) One Input (b) Cubic B-spline (d) Hi-Resolution

(e) Hallucinated-1 (f) Hallucinated-3 (g) Hallucinated-9 (h) Hallucinated-25

(i) Schultz-1 (j) Schultz-3 (k) Schultz-9 (l) Schultz-25

(m) Hardie-1 (n) Hardie-3 (o) Hardie-9 (p) Hardie-25

Figure 12: Some of the results for the image that performed the best for our hallucination algorithm

in the experiments conducted to produce Figure 11(a). These results should be compared with those

in Figure 13 for the worst such image. Since there is little perceptible di�erence in quality, these

results validate that our algorithm performs similarly for all face inputs.
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(a) One Input (b) Cubic B-spline (d) Hi-Resolution

(e) Hallucinated-1 (f) Hallucinated-3 (g) Hallucinated-9 (h) Hallucinated-25

(i) Schultz-1 (j) Schultz-3 (k) Schultz-9 (l) Schultz-25

(m) Hardie-1 (n) Hardie-3 (o) Hardie-9 (p) Hardie-25

Figure 13: Some of the results for the image that performed the worst for our hallucination

algorithm in the experiments conducted to produce Figure 11(a). Note that the hallucination

algorithm does better than the others, particularly for a small number (1{3) of images.
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Table 3: The RMS pixel errors for our hallucination algorithm as a function of the input and

output image sizes for 4 input images. These results should be compared with Table 2 for cubic

B-spline interpolation. (The numbers in parentheses are the ratios of these two sets of values.)

in n out 12� 16 24� 32 48� 64 96� 128

48� 64 9.2 (0.77)

24� 32 11.9 (0.77) 12.4 (0.56)

12� 16 16.9 (0.83) 16.9 (0.58) 19.5 (0.57)

6� 8 23.7 (0.91) 25.3 (0.69) 29.0 (0.68) 33.3 (0.73))

between the best and worst cases is barely perceptible. Note that the hallucination algo-

rithm seems to bene�t the most from the addition of the second and third images, a useful

property in scenarios when the face is frontal for only a eeting moment.

In Figure 11(b) we present results for additive noise, similar to those in Figure 8(a).

The variation in the performance of the 4 algorithms is plotted against the standard deviation

of the additive noise. The results for the three super-resolution algorithms use 4 images. The

results for cubic B-spline just use one. For small to medium levels of noise, therefore, the

super resolution algorithms all perform somewhat better than the results in Figure 8(a). In

Figure 11(b) we note that as the standard deviation of the noise increases, the performance

of all 4 algorithms gets worse. The interpolation algorithm and the hallucination algorithm

seem to be more robust, however, than the other super-resolution algorithms.

3.3.2 Variation in Performance Across Input Sizes

Table 3 contains the RMS pixel errors for our hallucination algorithm for all input-output

image size combinations. Figures 14 and 15 contain examples for two images. These results

were all computed using 4 input images. The numbers in the table should be compared with
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input n correct
12� 16 24� 32 48� 64 96� 128

48� 64 �2

24� 32 �2 �4

12� 16 �2 �4 �8

6� 8 �2 �4 �8 �16

Figure 14: The results of our hallucination algorithm for one of the images used to compute

Table 3. The results are an improvement over those in Figures 1 and 2 (except for 6� 8 images.)
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input n correct
12� 16 24� 32 48� 64 96� 128

48� 64 �2

24� 32 �2 �4

12� 16 �2 �4 �8

6� 8 �2 �4 �8 �16

Figure 15: The results of our hallucination algorithm for another of the images used to compute

Table 3. Hallucination works well down to 12� 16 pixel images, but not for 6� 8 pixel images.
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those in Table 2 for cubic B-spline interpolation. The ratios of these values are also recorded

in Table 3 (in parentheses) for convenience.

We do not expect our hallucination algorithm to work for all the input sizes. Once

the input gets too small, the decision made in Step 2. of the algorithm is based on essentially

no information. In the limit that the input image is just a single pixel, the algorithm will

always generate the same face, but with di�erent average grey levels. Looking down the

fourth (right-most) column of Figures 14 and 15, we see that our algorithm works down

to images of size 12 � 16 pixels, but no further. (Note that this is about where existing

face detectors begin to fail.) The images for the 6� 8 pixel inputs look like pieced-together

combinations of other peoples faces, and not like the face they are supposed to be.

The results for 12 � 16 pixel images, however, are excellent. The input images are

barely recognizable as faces and the facial features only consist of a handful of pixels. The

outputs, albeit slightly noisy, are clearly recognizable to the human eye. The facial features,

such as eyes, eye-brows, and mouths, are also clearly discernible. Since we have already

presented numerous results for 24 � 32 pixel images, in Figure 16 and 17 we include a few

further results for the 12� 16 pixel case. Notice how crisp and clear the hallucinated results

are compared to both the input low resolution input images, and to the super-resolution

results of Schultz and Stevenson. Some of the inherent di�culties in enhancing such small

images are illustrated in Figures 17(m){(p). An open mouth smile is hallucinated when the

person's lips are actually tight together. Presumably the reason for this is that the woman's

lips are lighter in color than her skin. This occurs relatively infrequently in our training set,

in which black people are under-represented.

Finally note that for any �xed input size the RMS pixel error in Table 3 is fairly

constant, whatever the output size. This indicates that the inherent di�culty in resolution

enhancement is recognizing primitive elements in the low resolution image. Once recognized,
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(a) Input 12� 16 (b) Hallucinated (b) Schultz (d) Hi-Resolution

(e) Input 12� 16 (f) Hallucinated (g) Schultz (h) Hi-Resolution

(i) Input 12� 16 (j) Hallucinated (k) Schultz (l) Hi-Resolution

(m) Input 12� 16 (n) Hallucinated (o) Schultz (p) Hi-Resolution

Figure 16: Selected results for 12�16 pixel images, the smallest input size for which our algorithm

works reliably. Note how sharp the hallucinated results are compared to the input and the results

of the Schultz and Stevenson super-resolution algorithm. The results for Hardie et al. are similar.
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(a) Input 12� 16 (b) Hallucinated (b) Schultz (d) Hi-Resolution

(e) Input 12� 16 (f) Hallucinated (g) Schultz (h) Hi-Resolution

(i) Input 12� 16 (j) Hallucinated (k) Schultz (l) Hi-Resolution

(m) Input 12� 16 (n) Hallucinated (o) Schultz (p) Hi-Resolution

Figure 17: A few more results for 12� 16 pixel images. Note how the closed mouth smile in (p) is

hallucinated as an open mouth smile in (n), presumably because the woman's lips are lighter than

her skin, a rare occurrence in our training set which has relatively few black people in it.
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however, enhancing these elements is relatively straightforward

3.4 Results with Missing Data

Our �nal set of experiments for faces are for missing data. Given a high resolution image

with a hole in it, it is possible to �ll in the hole with the following algorithm (sketch). The

bottom two levels of the Laplacian pyramid is computed everywhere possible. The gradient

prediction algorithm is then used to predict the gradients. When computing Step 2. of the

algorithm is not possible, the value is interpolated using a nearest neighbor algorithm from

the closest possible location outside the hole. The hole can then be �lled by running the

hallucination algorithm enforcing the reconstruction constraints only where applicable.

The results of applying this algorithm to several high resolution face images with

holes are presented in Figure 18. The hallucination algorithm is also compared with a

simple �lling algorithm that iteratively replaces any pixel in the hole that has 3 neighbors

outside the hole, with the average of those 3 pixels. The results using the hallucination

algorithm are much better than the simple �lling algorithm. In Figure 18(o), for example,

the simple �lling algorithm truncates the mouth, something that does not happen for the

hallucination algorithm. In Figure 18(g), the simple �lling algorithm leaves a dark region to

the right of the eye which is not present either in the hallucinated version or in the original

high resolution image.

When compared with other texture synthesis hole �lling algorithms such as [Efros

and Leung, 1999], our algorithm di�ers because it is class-based. The way in which any hole

in the face is �lled depends upon where it is in the face, not only upon the texture nearby.

Holes close to the eyes are �lled in a di�erent way to areas around the mouth. Finally,

note that hole �lling and resolution enhancement are possible at the same time using our

hallucination algorithm, although the results obtained doing so are omitted.
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(a) Input (b) Hallucinated (b) Filled (d) Hi-Resolution

(e) Input (f) Hallucinated (g) Filled (h) Hi-Resolution

(i) Input (j) Hallucinated (k) Filled (l) Hi-Resolution

(m) Input (n) Hallucinated (o) Filled (p) Hi-Resolution

Figure 18: Results obtained with missing data. The gradients in the holes are predicted by

interpolating (using a nearest neighbor algorithm) the decision made in Step 2. of the prediction

algorithm into the hole. The hole is then �lled using the hallucination algorithm.
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4 Experimental Results on Text Data

We tried our algorithm for spatial invariant phenomena on text data. (See Section 2.2 for

the details of the algorithm.) We grabbed an image of an X-window displaying one page of

a letter and down-sampled it several times using pixel averaging. The image was split into

disjoint training and test samples. The training and test data therefore contain the same

font, are at exactly the same scale, and the data is noiseless. Our results are presented in

Figures 19 and 20. Figure 19 contains the results using a single input image. The input in

Figure 19(a) is half the resolution of the original in Figure 19(f). The hallucinated result in

Figure 19(c) is by far the best reconstruction, both visually and in terms of the RMS error

(24.5 grey levels compared to over 48 for the other algorithms.)

Figure 20 contains the results for multiple images. Here, the input resolution in

Figure 20(a) is one quarter of the original in Figure 20(f) and 3 translated versions of the

low resolution image are used. Although the hallucination algorithm is visually still the

easiest to read and its RMS error is the lowest, the improvement over the other algorithms

is less dramatic. We suspect the reason to be that the input is too low resolution for the

\recognition step" (Step 2.) in the algorithm to work. The size of the letters in the original

is as small as it could meaningfully be; the letter \a" in the �rst word \Thanks" is only 2

pixels high. More understanding of the relationship between enhancement and recognition

may perhaps lead to better solutions, as is discussed in Section 5.1.

5 Discussion

We have presented an algorithm to learn gradient priors and shown how to incorporate these

priors into a super-resolution algorithm. We have demonstrated these algorithms on two

speci�c classes of images: (1) frontal images of human faces, and (2) text. We have shown
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(a) Input Image. (Just one image is used.)

(b) Cubic B-spline, RMS Error 51.3

(c) Hallucinated, RMS Error 24.5

(d) Schultz and Stevenson, RMS Error 48.4

(e) Hardie et al., RMS Error 48.5

(f) Original High Resolution Image

Figure 19: The results of enhancing the resolution of a piece of text by a factor of two using a

single input image. Hallucination produces a clear, crisp image using no explicit knowledge that

the input is text; i.e. other than the implicit information in the training data.
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(a) Input Image. (One of three translated versions.)

(b) Cubic B-spline (1 Image only), RMS Error 65.4

(c) Hallucinated, RMS Error 56.8

(d) Schultz and Stevenson, RMS Error 59.6

(e) Hardie et al., RMS Error 59.7

(f) Original High Resolution Image

Figure 20: The results of enhancing the resolution of a piece of text four-fold using 3 input images.

The hallucination results are not as dramatic as in Figure 19. We suspect the reason is that the

recognition step in the algorithm is not able to work with so low resolution input. The letter \a"

in the word \Thanks" is 2 pixels high in the input. (See text for more explanation.)
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these algorithms to be a huge improvement over both existing interpolation and super-

resolution algorithms. A small number of 12� 16 pixel images of a human face can be fused

into a single 96 � 128 pixel image that closely resembles the original face.

Probably the one factor that most contributes to the high performance of these al-

gorithms is that they are trained for a speci�c class of image; to use the terminology of

[Riklin-Raviv and Shashua, 1999] they are \class-based." This fact is demonstrated, both by

the experiments in Section 3.2.1 where the algorithms are shown to work only on the type of

image that they were trained on, and by the experiments in Section 3.2.2 where the results

are shown to be very sensitive to the alignment of the face.

As well as being one of the major reasons that our approach works so well, the need to

align the image of the face accurately is also one of the major limitations. That the face must

be frontal is another. Although not demonstrated, it is likely that these two limitations also

apply to [Riklin-Raviv and Shashua, 1999]. As will be discussed in Section 5.2, developing

better ways of localizing facial features and estimating the pose of the face are both tasks

that we are actively studying. One possible source of information for such algorithms is some

measure of how well resolution enhancement (or illumination normalization) works.

5.1 Recognition and Resolution Enhancement

We have demonstrated that our algorithms are an improvement over previous techniques,

both in terms of the average pixel intensity reconstruction error, and in terms of how they

look to the human eye. We have not had time, however, to demonstrate that they improve

either face recognition or feature localization (as was suggested in Table 1.) Although we

leave this task as future work, we would like to mention a couple of points.

No new information has been added during resolution enhancement. Our resolution

enhancement algorithms do use the training data of high resolution faces, and do use the
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knowledge that the object is a face, just as the illumination normalization algorithm of

Riklin-Raviv and Shashua [1999] does. All of this information is, however, available to face

recognition and feature localization algorithms. Theoretically, therefore, face recognition and

feature localization algorithms could be developed that work as well on the low resolution

images, as they do on the output of our algorithm.

What, then, is the utility of our approach? (1) Our algorithms should make the

development of high performance face recognition algorithms easier, since researchers do not

have to worry about the additional complications introduced by low resolution images. The

same is true for feature localization algorithms. (2) Our algorithms are useful for humans.

As we have shown, the output of our algorithms is much more visually appealing than that

of other techniques. If a person were shown an image of a face and asked whether they had

seen the person before, they would be much more con�dent in their response when shown a

96 � 128 pixel image, than when shown a 12 � 16 pixel image.

There is a great deal of similarity between image (both resolution and illumination)

enhancement and recognition. First, our approach works using a limited form of recognition.

A discrete recognition decision is made in Step 2. of the gradient prediction algorithms to

determine which of the training samples looks most like the input, and then the gradient

information from that sample is used as a prior on the high resolution gradient. In a way,

a local feature detector is applied, and how the resolution is enhanced depends upon which

feature is detected. In the extreme case, a complete face or text recognition algorithm

could be used for enhancement. If the person or the words could be recognized from the

low resolution data, the face or the letters could be reconstructed, either by looking up the

person in a database, or by looking up the font de�nition. See [Edwards et al., 1998] for an

example of this approach for the enhancement of faces.

The di�erence between these extremes is the scale at which the recognition decision
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is made. In our approach it is a local feature detector. At the other extreme, the decision

is a global one. This issue is related to the question of the scale at which the image can be

enhanced. As we showed, our results work very well for 24 � 32 and 12 � 16 pixel images,

but not very well for 6�8 pixel images. This result says something about the scale at which

facial features become unique to an individual. Small features, such as the corner of the eye,

look similar for all people, but when put together with other features at a higher scale to

form a complete eye, the feature is unique to a person.

5.2 Future Work

All of the results we have presented for faces are on hand-registered images from the FERET

data set [Philips et al., 1997]. To show our approach is useful in real surveillance scenarios,

we need to try out our algorithms on data captured using surveillance cameras. To build an

automatic system we will also need to implement face tracking, pose estimation, and feature

localization algorithms. As we have shown, our approach is sensitive to the registration of the

faces to the training images. Some work may be needed to get existing algorithms to work for

the low resolution data we wish to use. One improvement may come from registering using

the face contour, rather than feature locations. We may also determine how well resolution

enhancement is working, and use that to re�ne the registration.

Another area for future work is demonstrating that our approach improves face recog-

nition performance (and other tasks such as feature localization.) As discussed in the previ-

ous section, this question touches on the area of recognition-based enhancement algorithms.

Another area we are interested in exploring, therefore, is that of enhancement (both resolu-

tion and illumination) algorithms that make explicit recognition decisions.

The learning algorithm at the heart of our approach is just a simple nearest neighbor

algorithm. Many more sophisticated algorithms could be used instead. We would like to
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perform a systematic comparison of these techniques. We would also like to explore the use

of di�erent feature spaces. In particular, one of the most interesting questions is how \local"

the features should be to get the best performance.

As we showed in the introduction, existing super-resolution algorithms perform poorly

for magni�cation factors of 8{16 and above. We suggested a possible explanation there. We

would like to verify that the reason given there is indeed the major cause. We are also

interested in the use of super-resolution for sub-pixel alignment. We took the algorithm

of Hardie et al. [1997], modi�ed it slightly, and managed to get good sub-pixel registration

results even with highly aliased 12�16 pixel images. We would like to explore this algorithm

further, and possibly use it for very high accuracy structure recovery.

Another area that merits further investigation is the application to text data. There

are various properties of text that our algorithm does not explicitly incorporate. For example,

text data essentially consists of just binary intensity values. We would like to explore these

properties, and determine how to best combine them with our learning approach. Similarly,

we would like to look into the use of recognition-based enhancement algorithms for text data,

and their relationship with existing OCR algorithms.

The results we obtained for missing data are promising. As implemented right now,

however, the algorithm relies on the fact that the object is a human face. One important

open question in the texture synthesis world [De Bonet, 1997] is �lling in holes using the

texture information around those holes. There are elements of our algorithms that make

them appropriate for this task. In particular, the fact we try to predict the gradient, rather

than the intensities, is probably the better approach for hole �lling. A number of other

questions still need to be resolved however.
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