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Abstract
We analyze the super-resolution reconstruction constraints.
In particular, we derive a sequence of results which all
show that the constraints provide far less useful informa-
tion as the magnification factor increases. It is well estab-
lished that the use of a smoothness prior may help some-
what, however for large enough magnification factors any
smoothness prior leads to overly smooth results. We there-
fore propose an algorithm that learns recognition-based
priors for specific classes of scenes, the use of which gives
far better super-resolution results for both faces and text.

1 Introduction
Super-resolution is the process of combining multiple

low resolution images to form a higher resolution one. Nu-
merous algorithms have been proposed for it, dating back to
the frequency domain approach of Huang and Tsai[1984].
In practice, however, the results obtained are mixed. While
the super-resolution images are usually a huge improve-
ment over the inputs, for large magnification factors the
high frequencies are generally not reconstructed very well.

Most super-resolution algorithms are based on the con-
straints that the super-resolution image, when appropriately
warped and down-sampled to model the image formation
process, should yield the low resolution input images. We
refer to super-resolution algorithms that explicitly use these
constraints asreconstruction-based.

These reconstruction constraints have been used by nu-
merous authors since first studied by Peleget al. [1987]
[Irani and Peleg, 1991]. The constraints can easily be em-
bedded in a Bayesian framework incorporating a prior on
the high resolution image[Schultz and Stevenson, 1996]
[Hardieet al., 1997] [Elad and Feuer, 1997]. The solution
can be estimated either in batch mode or recursively us-
ing a Kalman filter[Elad and Feuer, 1999] [Dellaertet al.,
1998]. Several refinements have been proposed, includ-
ing simultaneously computing structure[Cheesemanet al.,
1994] [Shekarforoushet al., 1996] and removing other de-
grading effects such as motion blur[Bascleet al., 1996].

In this paper, we first derive a sequence of results which
all show that super-resolution gets much harder as the mag-
nification factor increases. For square point spread func-
tions (and integer magnifications), we show that the recon-
struction constraints are not invertible, and that the dimen-

sion of the null space grows as a quadratic function of the
magnification. For more general point spread functions,
we show that both the condition number and the volume
of the set of solutions grow equally fast. (We emphasize
that these results hold even when the algorithms can use
as many low-resolution images as they wish. It is not just
that higher magnification requires more images.) The rate
of increase in the difficulty of the problem is so great that
beyond a magnification of around 8–16 (ineach direction),
the reconstruction constraints barely provide any new in-
formation. Our analysis shows that two factors combine to
cause these difficulties: (1) the discretiztion of the intensi-
ties into a finite set of grey-levels, and (2) the integration of
the illumination over a finite photosensitive area.

A partial solution to these problems is to impose a prior
on the super-resolution image. Beyond a point, however,
the use of typical “smoothness” priors cannot compensate
for the fact that the reconstruction equations do not provide
any more useful information. High magnification super-
resolution results using smoothness priors therefore tend to
look overly smooth. See, for example, the results in Fig-
ure 1 for the algorithm of Hardieet al. [1997].

In the second half of this paper, we introduce the notion
of a recognition-basedprior as a prior that is a function of
a collection of recognition decisions. We propose an algo-
rithm to learn a recognition-based prior for specific classes
of objects, scenes, or images. We apply this algorithm to
super-resolution, both for faces and text, obtaining signif-
icantly better results than traditional reconstruction-based
super-resolution using standard smoothness priors.

2 The Reconstruction Constraints
Denote the low resolution images byLoi(m) and the

high (super) resolution image byHi(p), wherei is an in-
dex, andm = (m;n) andp = (p; q) are the pixel coor-
dinates inZ2. We assume that the low resolution images
have been registered with the coordinate frame of the high
resolution image (which is typically defined by one of the
low resolution images.) Supposeri(p) denotes the point
(pixel) in imageLoi that corresponds to the point (pixel)p
in Hi. The reconstruction constraints then take the form:

Loi(m) =
X
p

Wri
(m;p) �Hi(p): (1)
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No. of Input Images 1 4 16 64 256

Linear Magnification �1 �2 �4 �8 �16

Figure 1:The results of the reconstruction-based algorithm[Hardieet al., 1997] for various magnification factors. The original high-
resolution image is translated multiple times, blurred with a Gaussian, and down-sampled. The algorithm is provided with knowledge
of the point spread function and the translations. Comparing the images in the right-most column, we see that the algorithm does quite
well given the resolution of the input. The degradation in performance as the magnification factor increases, however, is very dramatic.

As will be shown in the remainder of this section, the ma-
trix of coefficients in this linear systemWri

(�; �) is a func-
tion of both the registrationri and the point spread function
PSFi(�) of theith low resolution image.
2.1 Derivation from the Point Spread Function

The reconstruction constraints in Equation (1) are de-
rived from the continuous image formation equation:

Loi(m) =

Z
Loi

PSFi(x �m) �E(x) dx (2)

whereE(�) is the continuous irradiance light-field that
would have reached the image plane ofLoi under the pin-
hole model,PSFi(�) is the point spread function of the
camera, andx = (x; y) 2 R2 are coordinates on the image
plane. (The additional integrations over time and illumi-
nation wavelength that are performed by a real camera are
omitted since they do not affect the spatial analysis.)
2.1.1 The Point Spread Function

The point spread function of a camera is usually decom-
posed into two components:

PSFi(x) = (ai � !i)(x) (3)

where!i(x) models the blurring caused by the lens,ai(x)
models the spatial integration performed by the sensor, and
� is the 2D convolution operator. The blurring factor!i(�)
is typically further split into a defocus factor that is ap-
proximated by a pill-box function[Born and Wolf, 1965],
and the diffraction-limited optical transfer function that is
approximated by the square of the first-order Bessel func-
tion of the first kind[Born and Wolf, 1965]. If the photo-
sensitive areas of the pixels are square[Barbe, 1980], the

spatial integration function is:

ai(x) =

(
1

S2
i

if jxj � Si

2
and jyj � Si

2

0 otherwise
(4)

whereSi 2 [0; 1] is the width of the photosensitive area.
The point spread function of a camera is therefore a very

complex function that depends upon a large number of pa-
rameters that describe the defocus effects, the diffraction
effects, and the shape and size of the photosensitive areas
of the pixels. In practice, it is easiest to assume a simple
parametric form forPSFi(�), for example that it is a Gaus-
sian, and then estimate the parameters empirically. Since
the point spread function of a sensor describes “the image
of an isolated point object located on a uniformly black
background”[Nalwa, 1993], it can be estimated from the
image of a point light source placed a large distance away.

2.1.2 What is Super-Resolution Anyway?
The integration in Equation (2) is performed over the

low resolution image plane. Transforming to the high res-
olution image plane using the registrationx = ri(z) gives:

Loi(m) =

Z
Hi

PSFi(ri(z)�m)�E(ri(z))�

����@ri@z

���� dz (5)

where
��@ri
@z

�� is the determinant of the Jacobian of the regis-
tration transformationri. (Note that here we have assumed
thatri is invertible. A similar analysis, albeit approximate,
can be conducted whereverri is locally invertible by trun-
cating the point spread function.) There are then at least
two interpretations of super-resolution:
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Super-Resolution As Image Restoration
The goal here is to recoverE(ri(z)), the irradiance

under the pinhole model transformed into the coordinate
frame ofHi. RecoveringE(ri(z)) requires both increasing
the resolution and “deblurring” the image; ie. removing the
effects of the convolution with the point spread function.
Super-Resolution As “Smaller Pixels”

Here the goal is to estimate(!i � E)(ri(z)), the irra-
diance reaching the sensor plane after passing through the
optics, again transformed into the coordinate frame ofHi.
From(!i �E)(ri(z)), it is easy to determine what the low
resolution images would have been had the sensor arrays
contained a larger number of smaller pixels.

In the remainder of this document, we consider the first
of these two possibilities. The analysis of the second case
is the same as the first under the special case that!i(x) is
set to be the 2D “unit-impulse” Dirac delta function�(x).
2.1.3 Representing Continuous Images

In order to proceed, we need to define which continu-
ous functionE(ri(z)) is represented by the discrete image
Hi(p) that we are trying to reconstruct. The simplest case
is thatHi(p) represents the piecewise constant function:

E(ri(z)) = Hi(p) (6)

for all z 2 (p� 0:5; p+0:5]� (q� 0:5; q+0:5] and where
p = (p; q) 2 Z2 are the coordinates of a pixel inHi. Then,
Equation (5) can be rearranged to give:

Loi(m) =
X
p

Hi(p)�

Z
p

PSFi(ri(z)�m)�

����@ri@z

���� dz (7)

where the integration is performed over the pixelp; ie. over
(p � 0:5; p + 0:5] � (q � 0:5; q + 0:5]. Comparing this
equation with Equation (1) gives:

Wri
(m;p) =

Z
p

PSFi(ri(z) �m) �

����@ri@z

���� dz: (8)

(Similar derivations can be performed for other representa-
tions ofE(ri(z)), such as piecewise linear ones.)

3 Analysis of the Reconstruction Constraints
The reconstruction constraints are therefore defined by

Equation (7) (wherei = 1; 2; : : :). We now analyze these
constraints under the following three ideal conditions:
The Point Spread Function is Constant and Known

We assume thatPSFi(�) is the same for all of the images
Loi (in particular the width of the photosensitive areaSi is
constant) and that full knowledge of it is available.
The Registration is Known and is a Translation

We assume that the registrationri(�) is fully known by
the super-resolution algorithm and that it takes the form:

ri(z) =
1

M
z+ ci (9)

whereci = (ci; di) 2 R2 is a known constant andM > 0
is thelinear magnificationof the super-resolution task.
Arbitrary Number of Images with Chosen Translation

The super-resolution algorithm can use as many images
as it wishes, and these images are captured with translations
ri(�) chosen by the super-resolution algorithm.

All of these conditions make the super-resolution algo-
rithm more powerful than in practice except: (1) assuming
the PSF is a constant, and (2) assuming that the registration
is a translation with constant magnification. If the PSF is
not constant, exact super-resolution could be obtained sim-
ply by changing the size of the pixels so that they match
those in the high resolution image. Similarly, if the reg-
istration were arbitrary, super-resolution could be obtained
by settingri(�) to be the identity. Both of these assump-
tions are also needed to give precise meanings toSi andM
which will appear in our analysis. One thing is clear, how-
ever. If we can derive limits on reconstruction-based super-
resolution under these ideal conditions, performing super-
resolution in practice will only be more difficult. Note that
similar assumptions were used by Elad and Feuer[1997]
[1999] to analyze super-resolution from varying defocus.
3.1 Real Valued Analysis, Square PSFs

First, we assume that all the quantities are real-valued;
ie. we neglect the discretiztion performed by the CCD and
the fact that the set of pixel grey-levels is bounded above
and below. Secondly, we assume that the point spread func-
tion is square; ie. either the blurring caused by the optics
can be ignored and so!i(x) = �(x) or we interpret super-
resolution as “smaller pixels”. These assumptions will be
removed in the following sections.

Under these assumptions, and using knowledge that the
registration is a translation, Equation (7) simplifies to:

Loi(m) =
X
p

Hi(p)

M2
�

Z
p

ai

�
1

M
z+ ci �m

�
dz:

(10)
To interpret this equation, remember thatai(z) is 1

S2
i

iff:

z 2 (�0:5 � Si; 0:5 � Si]� (�0:5 � Si; 0:5 � Si] (11)

The integral in Equation (10) is1=S2i times the area of the
intersection of the two squares in Figure 2. We then have:

Theorem 1 If M � Si is an integer greater than 1, then for
all choices ofci the set of Equations (10) is not invertible.
Moreover, the minimum achievable dimension of the null
space is(M � Si � 1)2. If M � Si is not an integer,ci’s can
be chosen such that the equations are invertible.

Proof: We provide a proof only for 1D images since the
extension to 2D is straight-forward, but messy.

The null space of Equations (10) is defined by the con-
straints

P
p
W 0(m;p) � Hi(p) = 0 whereW 0(�; �) is the
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Figure 2: The integral in Equation (10) equals1=S2

i times the
area of the intersection of the two highlighted squares.

area of intersection of the two squares in Figure 2. For
1D we just consider one row of the figure. By changing
ci to slide the large square along the row by some small
amount, we immediately see thatHi(p) must equal both
Hi(p+ (dM � Sie; 0) andHi(p+ (bM � Sic; 0). If M � Si
is not an integer (or is 1), this proves that neighboring val-
ues ofHi(p) must be equal, and hence0. If M � Si is an
integer this constraint places anupper bound ofM � Si � 1
on the dimension of the null space (since the null space is
contained in the set assignments toHi that are periodic with
periodM � Si.) This value can also be shown to be a lower
bound on the dimension of the null space by the space of
assignments for which

PM�Si�1
i=0 Hi(p+ (i; 0)) = 0. 2

To validate this theorem, we solved the reconstruction
constraints using gradient descent for the two casesM =
2:0 andM = 1:5, whereSi = 1:0. The results are pre-
sented in Figure 3. The input in both cases consisted of
multiple down-sampled images similar to the one at the top
of column 2 in Figure 1. As can be seen, forM = 2:0
the additive error is an approximately periodic image with
period 2 pixels. ForM = 1:5 the equations are invertible.
3.2 Real Valued Analysis, Arbitrary PSFs

Any linear system that is close to being not invertible is
usually ill-conditioned. It is no surprise then that changing
from a square point spread function to an arbitrary function
PSFi = ai � !i results in an ill-conditioned system:

Theorem 2 Suppose!i(x) is an optical blurring function
for which!i(x) � 0 for all x and

R
!i(x) dx = 1. Then,

the condition number of the linear system defined by re-
placingai with ai � !i in Equation (10) is� (M � Si)

2.

Proof: We first prove the result for a square point spread
function and then generalize. The condition number of a
linear operatorA can be written as:

Cond(A) =
supkxk1=1 kAxk1

infkxk1=1 kAxk1
: (12)

From Equation (10), it follows that ifHi(p) = 1 for all
p, then Loi(m) = 1 for all m. Hence, the numera-

(a)M = 2:0 (b)M = 1:5

Figure 3:Validation of Theorem 1: The results of solving the re-
construction constraints using gradient descent for a square point
spread function withSi = 1:0. (a) WhenM �Si is an integer, the
equations are not invertible and so a random periodic image in the
null space is added to the original image. (b) WhenM is not an
integer, the reconstruction constraints are invertible.

tor in Equation (12) is at least1. SettingHi(p) to be a
checkerboard pattern (1 ifp+ q is even, -1 if odd), we find
that jLoi(m)j � 1=(M � Si)2, since the integration of the
checkerboard over any square is2 [�1; 1]. (Proof omitted
for brevity.) Hence, the denominator is at most1=(M �Si)2.

For arbitrary point spread functions, note that Equa-
tion (10) can be rewritten as:

Loi(m) =

Z
Hi

Hi(z)

M2
� ai

�
1

M
z + ci �m

�
dz

=
�
ai �Hi

�
(m� ci) (13)

where we have changed variablesx = 1

M
z, used the fact

thatai is even, and setHi(x) = Hi(M � x). Both of the
properties that we used for square point spread functions
therefore also hold withai replaced byai � !i using stan-
dard properties of the convolution operator. 2

If we could work with noiseless, real-valued quantities
and could perform arbitrary precision arithmetic, then the
fact that the reconstruction constraints are ill-conditioned
would not be a problem. In reality, however, the low reso-
lution images will be (intensity) discretized. There is there-
fore always noise in the measurements, even if it is only
plus-or-minus half a grey-level. Before we present empiri-
cal results to validate Theorem 2, we prove a stronger ver-
sion of it for quantized values.
3.3 Quantized Analysis, Arbitrary PSFs

Suppose thatint[�] denotes the quantization operator
which takes a real-valued irradiance measurement and re-
turns an integer-valued intensity in grey-levels. If we in-
corporate this quantization, Equation (13) becomes:

Loi(m) = int

�Z
Hi

Hi(z)

M2
� PSFi

� z

M
+ ci �m

�
dz

�
(14)

Suppose also thatHi is a finite size image withn pixels.
We then have:
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Figure 4: An illustration of Theorems 2 and 3 using the same
inputs as in Figure 1. The reconstruction error is much higher than
the residual, as would be expected for an ill-conditioned system.
For low magnifications, the prior is unnecessary and so the results
are worse than predicted. For high magnifications, the prior does
help, but at the price of overly smooth results. (See Figure 1.)

Theorem 3 If int[�] is the standard rounding operator
which replaces a real number with the nearest integer, then
the volume of the set of solutions of Equation (14) asymp-
totically grows at least as fast as(M �Si)2�n (treatingn as
a constant andM andSi as variables.)

Proof: First note that the space of solutions is convex since
the operator is linear. Next note that one solution of Equa-
tion (14) is the solution to:

Loi(m)� 0:5 =

Z
Hi

Hi(z)

M2
� PSFi

� z

M
+ ci �m

�
dz

(15)
The properties of the convolution give0 � PSFi � 1=S2i .
Therefore, adding(M � Si)

2 to any pixel inHi is still a
solution since the right hand side of Equation (15) increases
by at most 1. The volume of solutions therefore contains
ann-dimensional simplex, where the angles at one vertex
are all right-angles, and the sides are all(M � Si)

2 units
long. The volume of such a simplex grows like(M � Si)2n

(treatingn as a constant andM andSi as variables). 2

In Figure 4 we present quantitative results to illustrate
Theorems 2 and 3. We again used the reconstruction-based
algorithm[Hardieet al., 1997]. We verified our implemen-
tation in two ways: (1) we checked that for small mag-
nification factors and no prior, our implementation does
yield perfect reconstructions, and (2) for magnifications of
4, we checked that our numerical results agree with those in
[Hardieet al., 1997]. We also tried the related algorithm of
[Schultz and Stevenson, 1996] and obtained similar results.

Using the same inputs as Figure 1, we plot the recon-
struction error against the magnification; ie. the difference
between the reconstructed high resolution image and the
original. We compare this error with the residual error;

ie. the difference between the low resolution inputs and
their predictions from the reconstructed high resolution im-
age. As expected for an ill-conditioned system, the recon-
struction error is much higher than the residual. We also
compare with a prediction of the reconstruction error ob-
tained by multiplying the lower bound on the condition
number (M � S2i ) by an estimate of the residual, assuming
the grey-levels are discretized from a uniform distribution.
For low magnification factors, this estimate is an under-
estimate because the the prior isunnecessary for noise free
data; ie. better results would be obtained without the prior.
On the other hand, for high magnifications the prediction is
an over-estimate because the assumption of local smooth-
ness does help the reconstruction. This assumption is at the
expense of the overly smooth results in Figure 1.

We also plot interpolation results in Figure 4; ie. using
just a single image reconstruction constraint. The differ-
ence between this curve and the reconstruction error curve
is a measure of how much information the reconstruction
constraints provide. Similarly, the difference between the
reconstruction error and the predicted error is a measure of
how much information the smoothness prior provides. For
a magnification of16, we see that the prior provides more
information than the reconstruction constraints. This is the
reason the results in Figure 1 are so smooth.

4 Class-Specific Recognition-Based Priors
Suppose it is possible to recognize an object (or part

of an object) in the low resolution images. This addi-
tional information could then be incorporated into a super-
resolution algorithm, and perhaps better results obtained.
For example, if the image contains text data, OCR (opti-
cal character recognition) would provide strong constraints
on the reconstructed image. In this section, we propose an
algorithm to learn arecognition-basedprior which can be
used to improve the performance of super-resolution. (For
lack of space, many of the details and results are omitted,
but can be found in[Baker and Kanade, 1999].)

Our approach is closely related to that of[Freeman and
Pasztor, 1999] who recently, and independently, proposed
a learning framework for low-level vision, one application
of which is image interpolation. Besides being applicable
to an arbitrary number of images, the other major advan-
tage of our approach is that it uses a prior that is both spe-
cific to the type (class) of object (in the “class-based” sense
of [Riklin-Raviv and Shashua, 1999]) and a set of (local)
recognition decisions. Our algorithm is also closely related
to [Edwardset al., 1998], in which the parameters of an
“active-appearance” model are used for super-resolution.
4.1 Bayesian MAP Formulation

One way of incorporating a prior into super-resolution
is to estimate the maximuma posteriori (MAP) solu-
tion: argmaxHi Pr[Hi jLoi]. (See[Schultz and Stevenson,
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1996], [Hardieet al., 1997], and[Elad and Feuer, 1997].)
Bayes law for this estimation problem is:

Pr[Hi jLoi] =
Pr[Loi jHi] � Pr[Hi]

Pr[Loi]
: (16)

Since Pr[Loi] is a constant becauseLoi is an input, and
since the logarithm function is a monotonically increasing
function, we have:argmaxHi Pr[Hi jLoi] =

argmin
Hi

(� lnPr[Loi jHi]� lnPr[Hi]) : (17)

The first term in this expression� lnPr[Loi jHi] is the
(negative log) probability of reconstructing the low reso-
lution imagesLoi, given that the high resolution image is
Hi. It is therefore normally set to be a quadratic (energy)
function of the reconstruction error in Equation (1).
4.2 Recognition-Based Priors

The second term� lnPr[Hi] is the prior on the high
resolution image. Usually� lnPr[Hi] is chosen to be a
smoothness prior. We would like to choose it to be a func-
tion of a set of recognition decisions. Suppose that the out-
puts of the recognition decisions partition the set of inputs
Loi into a set of subclassesfCk j k = 1; 2; : : :g: We then
define arecognition-basedprior as follows:

Pr[Hi] =
X
k

Pr[Hi jLoi 2 Ck] � Pr[Loi 2 Ck]: (18)

Once the low resolution inputsLoi are available, the recog-
nition algorithm(s) can be applied, and it can be determined
which subclassCk the inputs lies in. The prior Pr[Hi] then
reduces to the more powerful prior Pr[Hi jLoi 2 Ck].
4.3 Learning a Recognition-Based Prior

Suppose we have a set of high resolution training images
Ti. We can compute their GaussianG0(Ti); : : : ; GN (Ti)
and LaplacianL0(Ti); : : : ; LN (Ti) pyramids, the horizon-
tal H0(Ti); : : : ;HN (Ti) and verticalV0(Ti); : : : ; VN (Ti)
first derivatives of the Gaussian pyramids, and the horizon-
tal H2

0(Ti); : : : ;H
2
N(Ti) and verticalV 2

0 (Ti); : : : ; V
2
N (Ti)

second derivatives of the Gaussian pyramids[Baker and
Kanade, 1999]. We can then form a pyramid of feature
vectors:

Fj(Ti) =
�
Lj(Ti);Hj(Ti); Vj(Ti);H

2

j (Ti); V
2

j (Ti)
�
(19)

for j = 0; : : : ; N .
Given a low resolution imageLoi that is M = 2k

times smaller than the training samples, we can com-
pute the Gaussian pyramid from levelk and upwards
Gk(Loi); : : : ; GN(Loi). Similarly, we can compute the
feature pyramids for those levelsFk(Loi); : : : ;FN (Loi).
We know nothing at all, however, about the lower levels
F0(Loi); : : : ;Fk�1(Loi), and in particularF0(Loi).
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Figure 5:A comparison of our recognition-based algorithm with
those of[Schultz and Stevenson, 1996] and[Hardieet al., 1997].
Our algorithm out-performs these standard reconstruction-based
algorithms across the entire range of number of input images.

Our recognition-based prior is based on an algorithm for
predictingF0(Loi) from the training pyramidsFj(Ti). To
describe the algorithm, we need one further piece of nota-
tion. If (m;n) is a pixel in thelth level of a pyramid, its
parent at thel+ 1th level is(

�
m
2

�
;
�
n
2

�
). We therefore de-

fine the Parent Structure vector of a pixel(m;n) in thelth

level to be:PSl(Loi)(m;n) =�
Fl(Loi)(m;n); : : : ;FN (Loi)(

j m

2N�1

k
;
j n

2N�1

k
)
�
:

(20)
We then use the following algorithm to predictF0(Loi).
(We use over-line to denote predicted values.) The algo-
rithm operates by recognizing the closest matching train-
ing sample in the higher levels of the pyramid, and then
copying the values for the lowest level from it.
Gradient Prediction Algorithm
For each pixel(m;n) in the bottom level of the feature
pyramid to be predictedF0(Loi)(m;n), do:

1. Findj = argminlPSk(Loi)(jm
2k

k
;
j n
2k

k
) �PSk(Tl)(

jm
2k

k
;
j n
2k

k
)


2. CopyF0(Tj)(m;n) intoF0(Loi)(m;n).

In this algorithm, Step 1. recognizes the closest matching
training sample, and Step 2. copies the information about it
into the lowest level of the feature pyramid forLoi.

OnceF0(Loi) has been estimated, the horizontal and
vertical derivatives of the high resolution image (H0(Hi)
and V 0(Hi)) can be predicted from it by extracting the
derivatives ofLoi using Equation (19) and accounting for
the translation. The derivatives ofHi should equal these
values. Parametric expressions forH0(Hi) and V0(Hi)
can be derived in terms of the unknown pixels in the
high resolution imageHi. We assume that the errors are
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(a) Input12� 16 (b) Recognition-Based (c) Cubic B-Spline (d) Schultz & Stevenson (e) Hi-Resolution

(f) Input 12� 16 (g) Recognition-Based (h) Cubic B-Spline (i) Schultz & Stevenson (j) Hi-Resolution

Figure 6:Selected results where the input consists of only three 12 x 16 pixel images. Note how high frequency features such as the
eye-brows, lips, and nose are reconstructed even though there is almost no evidence for them in the input.

i.i.d. and Gaussian with covariance�2r. Therefore we set:
� lnPr[Hi] = K + 1

2�2
r

P
i;m;n

�
H0(Hi)(m;n) �H0(Loi)(m+ ci; n+ di)

�2
+

�
V0(Hi)(m;n)� V 0(Loi)(m + ci; n+ di)

�2
(21)

whereK is a constant that only depends upon�2r (and
therefore can be ignored.) This prior is a recognition-based
prior because it is a function of the recognition decisions
made in Step 1. of the gradient prediction algorithm.

This algorithm is similar to the random texture synthe-
sis algorithm of[De Bonet, 1997]. One major difference
is that our algorithm is deterministic. It chooses the most
likely values for the Parent Structure vector, rather than ran-
domly sampling from a set of values. Another difference
is that we take the class-based approach of[Riklin-Raviv
and Shashua, 1999]. For each pixel(m;n), the algorithm
therefore only looks at the corresponding pixels in the train-
ing samples since the image statistics will be a function of
space. (For text data, where the image statistics are largely
independent of the spatial location, we do actually consider
all of the pixels in the training data.)
4.4 Experimental Results for Faces

Our experiments for faces were conducted with a sub-
set of the FERET data set[Philips et al., 1997] consist-
ing of 596 images of 278 individuals (92 women and 186
men). The images (which are all frontal) must be aligned
in the class-based approach so we can assume that the same
part of the face appears in roughly the same part of the im-
age[Riklin-Raviv and Shashua, 1999]. This alignment was
performed by hand marking the location of 3 points; the

centers of the eyes and the lower tip of the nose. We used
a “leave-one-out” methodology to test our algorithm; for
each image in the test set, we removed all images of that
individual from the training set and then re-trained. Since
this step is quite time consuming, we used a test set with
100 images chosen randomly from the FERET data.

We compared our algorithm with those of[Schultz and
Stevenson, 1996] and [Hardieet al., 1997]. In Figure 5
we plot the RMS pixel error of the algorithms against the
number of images used. We also plot results for cubic B-
spline interpolation for comparison. (Since cubic B-spline
is an interpolation algorithm, only one image is used and
so the performance is independent of the number of im-
ages.) In Figure 5 we see that our recognition-based algo-
rithm does out-perform both of the other super-resolution
algorithms. We present some example images in Figure 6,
where the input consists of only three12 � 16 pixel im-
ages. The recognition-based results are a huge improve-
ment over both cubic B-spline interpolation and the Schultz
and Stevenson algorithm[Schultz and Stevenson, 1996].
(The results for[Hardieet al., 1997] are similar.) In par-
ticular, note how high resolution features such as the eye-
brows and lips are recovered, even though there is little
evidence for them in the input. Also try squinting at the
images, a standard test of enhancement quality. Unlike the
results in[Freeman and Pasztor, 1999], a marked difference
can be seen between the input and the output.

4.5 Experimental Results for Text Data
We also tried our algorithm on text data. We grabbed an

image of an X-window displaying one page of a letter and
down-sampled it. The image was split into disjoint train-
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(a) Input Image. (Just one image is used.) (b) Recognition-based, RMS Error 24.5

(c) Schultz and Stevenson, RMS Error 48.4 (d) Original High Resolution Image

Figure 7:The results of enhancing the resolution of some text by a factor of two using a single input. Our algorithm produces a sharp
result using no explicit knowledge that the input is text (unlike the results in[Chiang and Boult, 1997] which assume step discontinuities.)

ing and test samples. (The training and test data therefore
contain the same font, are at exactly the same scale, and the
data is noiseless.) Our super-resolution results in Figure 7
are for a single input image and the magnification factor is
2. The recognition-based result in Figure 7(b) is by far the
best reconstruction, both visually and in terms of the RMS
grey-level pixel error (only 24.5 grey levels compared to
over 48.4 for[Schultz and Stevenson, 1996].) The results
for cubic B-spline and[Hardieet al., 1997] are similar.

5 Discussion
We have shown that the super-resolution reconstruction

constraints get weaker very rapidly as the magnification
factor increases. The major cause is the averaging over the
photosensitive area; ie. the fact thatSi is non-zero. This re-
sult means that there are fundamental limits on traditional
reconstruction-based super-resolution algorithms. We have
also shown that recognition algorithms can be embedded
into the reconstruction process to enhance the performance
of super-resolution algorithms; if the “scene” can be recog-
nized it can be reconstructed far more accurately. Similar
approaches may aid other (ie. 3D) reconstruction tasks.
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