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Abstract sion of the null space grows as a quadratic function of the
We analyze the super-resolution reconstruction constraintgnagnification. For more general point spread functions,
In particular, we derive a sequence of results which allwe show that both the condition number and the volume
show that the constraints provide far less useful informaOf the set of solutions grow equally fast. (We emphasize
tion as the magnification factor increases. It is well estab-that these results hold even when the algorithms can use
lished that the use of a smoothness prior may help someés many low-resolution images as they wish. Itis not just
what, however for large enough magnification factors anythat higher magnification requires more images.) The rate
smoothness prior leads to overly smooth results. We theredf increase in the difficulty of the problem is so great that
fore propose an algorithm that learns recognition-basedbeyond a magnification of around 8—16 €ach direction),
priors for specific classes of scenes, the use of which give§e reconstruction constraints barely provide any new in-
far better super-resolution results for both faces and text. formation. Our analysis shows that two factors combine to
cause these difficulties: (1) the discretiztion of the intensi-
1 Introduction ties into a finite set of grey-levels, and (2) the integration of
Super-resolution is the process of combining multiplethe illumination over a finite photosensitive area.
low resolution images to form a higher resolution one. Nu- A partial solution to these problems is to impose a prior
merous algorithms have been proposed for it, dating back ton the super-resolution image. Beyond a point, however,
the frequency domain approach of Huang and T5884.  the use of typical “smoothness” priors cannot compensate
In practice, however, the results obtained are mixed. Whiléor the fact that the reconstruction equations do not provide
the super-resolution images are usually a huge improveany more useful information. High magnification super-
ment over the inputs, for large magnification factors theresolution results using smoothness priors therefore tend to
high frequencies are generally not reconstructed very welllook overly smooth. See, for example, the results in Fig-
Most super-resolution algorithms are based on the condre 1 for the algorithm of Hardiet al. [1997.
straints that the super-resolutionimage, when appropriately In the second half of this paper, we introduce the notion
warped and down-sampled to model the image formatiomf a recognition-basegbrior as a prior that is a function of
process, should yield the low resolution input images. Wea collection of recognition decisions. We propose an algo-
refer to super-resolution algorithms that explicitly use thesgithm to learn a recognition-based prior for specific classes
constraints ageconstruction-based. of objects, scenes, or images. We apply this algorithm to
These reconstruction constraints have been used by nguper-resolution, both for faces and text, obtaining signif-
merous authors since first studied by Petgcal. [1987 icantly better results than traditional reconstruction-based
[Irani and Peleg, 1991 The constraints can easily be em- super-resolution using standard smoothness priors.
bedded in a Bayesian framework incorporating a prior on
the high resolution imagESchultz and Stevenson, 1996 2 The Reconstruction Constraints
[Hardieet al, 1997 [Elad and Feuer, 1997The solution Denote the low resolution images fiy; (m) and the
can be estlma.ted either in batch mode or recursively uspigh (super) resolution image B (p), wherei is an in-
ing a Kalman filterElad and Feuer, 1999Dellaertetal,  gex andm = (m,n) andp = (p,¢) are the pixel coor-
199d. Several refinements have been proposed, includginates inz?. We assume that the low resolution images
ing simultaneously computing structUi@heesemast al,  paye been registered with the coordinate frame of the high
1994 [Shekarforousket al, 1996 and removing other de-  resolution image (which is typically defined by one of the
grading effects such as motion blBascleet al, 1996. low resolution images.) Supposg(p) denotes the point
In this paper, we first derive a sequence of results whichpixel) in imageLo; that corresponds to the point (pixgl)

all show that super-resolution gets much harder as the magn 1. The reconstruction constraints then take the form:
nification factor increases. For square point spread func-

tions (and integer magnifications), we show that the recon- Lo;(m) = ZWr, (m, p) - Hi(p). (1)

struction constraints are not invertible, and that the dimen- o
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Figure 1:The results of the reconstruction-based algoriflitardieet al, 1997 for various magnification factors. The original high-
resolution image is translated multiple times, blurred with a Gaussian, and down-sampled. The algorithm is provided with knowledge
of the point spread function and the translations. Comparing the images in the right-most column, we see that the algorithm does quite
well given the resolution of the input. The degradation in performance as the magnification factor increases, however, is very dramatic.

As will be shown in the remainder of this section, the ma-spatial integration function is:
trix of coefficients in this linear systeW,., (-, -) is a func-
tion of both the registration; and the point spread function L if|z|< FFand |yl < 5
PSF;(-) of the:*" low resolution image. ai(x) = 0 otherwise 4)
2.1 Derivation from the Point Spread Function
The reconstruction constraints in Equation (1) are dewhereS; € [0, 1] is the width of the photosensitive area.
rived from the continuous image formation equation: The point spread function of a camera is therefore a very
complex function that depends upon a large number of pa-
Loj(m) = / PSF;(x —m) - F(x)dx (2)  rameters that describe the defocus effects, the diffraction
Lo effects, and the shape and size of the photosensitive areas
where E(-) is the continuous irradiance light-field that of the pixels. In practice, it is easiest to assume a simple
would have reached the image pland.of under the pin-  parametric form foPSF; (), for example that it is a Gaus-
hole model,PSF;(-) is the point spread function of the sian, and then estimate the parameters empirically. Since
camera, anat = (r,y) € R? are coordinates on the image the point spread function of a sensor describes “the image
plane. (The additional integrations over time and illumi-of an isolated point object located on a uniformly black
nation wavelength that are performed by a real camera argackground’{Nalwa, 1993, it can be estimated from the

omitted since they do not affect the spatial analysis.) image of a point light source placed a large distance away.
2.1.1 The Point Spread Function 2.1.2 What is Super-Resolution Anyway?
The'pomtspread function of a camera is usually decom-  The integration in Equation (2) is performed over the
posed into two components: low resolution image plane. Transforming to the high res-
PSFi(x) = (a; % wi)(x) 3) olution image plane using the registration- r;(z) gives:

81‘2'

wherew; (x) models the blurring caused by the lengx) PSF; (15 (2)—m)- E(xi (2)) ‘
i\ls - ) 7 ) a

models the spatial integration performed by the sensor, andLOi(m) - /H
* is the 2D convolution operator. The blurring factax-)

is typically further split into a defocus factor that is ap- Where| %‘;’ is the determinant of the Jacobian of the regis-
proximated by a pill-box functiobBorn and Wolf, 1965 tration transformatiom;. (Note that here we have assumed
and the diffraction-limited optical transfer function that is thatr; is invertible. A similar analysis, albeit approximate,
approximated by the square of the first-order Bessel funcean be conducted whereveris locally invertible by trun-
tion of the first kind[Born and Wolf, 196%& If the photo-  cating the point spread function.) There are then at least
sensitive areas of the pixels are squiBarbe, 1980 the  two interpretations of super-resolution:

dz (5)

i Z




Super-Resolution As Image Restoration wherec; = (¢;,d;) € R? is a known constant antl/ > 0
The goal here is to recoveE(r;(z)), the irradiance is thelinear magnificatiorof the super-resolution task.
under the pinhole model transformed into the coordinatérbitrary Number of Images with Chosen Translation
frame ofHi. RecoveringZ(r;(z)) requires both increasing The super-resolution algorithm can use as many images
the resolution and “deblurring” the image; ie. removing theas it wishes, and these images are captured with translations
effects of the convolution with the point spread function. r;(-) chosen by the super-resolution algorithm.
Super-Resolution As “Smaller Pixels” All of these conditions make the super-resolution algo-
Here the goal is to estimaie; * E)(r;(z)), the irra-  rithm more powerful than in practice except: (1) assuming
diance reaching the sensor plane after passirautirthe the PSF is a constant, and (2) assuming that the registration
optics, again transformed into the coordinate framélof is a translation with constant magnification. If the PSF is
From(w; * F)(r;(z)), itis easy to determine what the low not constant, exact super-resolution could be obtained sim-
resolution images would have been had the sensor arraysy by changing the size of the pixels so that they match
contained a larger number of smaller pixels. those in the high resolution image. Similarly, if the reg-
In the remainder of this document, we consider the firstistration were arbitrary, super-resolution could be obtained
of these two possibilities. The analysis of the second casby settingr; () to be the identity. Both of these assump-
is the same as the first under the special caseu}faf is  tions are also needed to give precise meanings tmd M
set to be the 2D “unit-impulse” Dirac delta functiéfx). which will appear in our analysis. One thing is clear, how-
2.1.3 Representing Continuous Images ever. If we can derive limits on reconstruction-based super-
In order to proceed, we need to define which continufesolution under these ideal conditions, performing super-
ous fUﬂCtiOﬂE(I‘Z’ (Z)) is represented by the discrete imageresolution in practice will onIy be more difficult. Note that
Hi(p) that we are trying to reconstruct. The simplest casesimilar assumptions were used by Elad and F¢687
is thatHi(p) represents the piecewise constant function: [1999 to analyze super-resolution from varying defocus.
. 3.1 Real Valued Analysis, Square PSFs
E(ri(z)) = Hi(p) (6) First, we assume that all the quantities are real-valued;
forallz € (p— 0.5, p+0.5] x (¢— 0.5, ¢+0.5] and where i€ We neglect the discretiztion performed by the CCD and
p = (p, q) € Z? are the coordinates of a pixel fi. Then, ~ the fact that the set of pixel grey-levels is bounded above
Equation (5) can be rearranged to give: a}nd pelow. Secpndly, we assume Fhat the point spread fqnc-
tion is square; ie. either the blurring caused by the optics
dz (7) °an be ignored and sa (x) = §(x) or we interpret super-
resolution as “smaller pixels”. These assumptions will be
removed in the following sections.
where the integration is performed over the pixgle. over Under these assumptions, and using knowledge that the
(p —0.5,p+0.5] x (¢ — 0.5,¢ + 0.5]. Comparing this registration is a translation, Equation (7) simplifies to:

equation with Equation (1) gives: o)
Hi(p 1
Lo;(m) = ~/ai (—z—l—ci —m) dz.
dz. (8) Zp: M2 ), \M

(10)
(Similar derivations can be performed for other representao interpret this equation, remember thafz) is = iff:
tions of E(r;(z)), such as piecewise linear ones.) '

3 Analysis of the Reconstruction Constraints
The reconstruction constraints are therefore defined bfhe integral in Equation (10) is/S? times the area of the
Equation (7) (whereé = 1,2,..). We now analyze these intersection of the two squares in Figure 2. We then have:

constraints under the following three ideal conditions:
The Point Spread Function is Constant and Known

We assume th&SF;(-) is the same for all of the images
Lo; (in particular the width of the photosensitive argas
constant) and that full knowledge of it is available.
The Registration is Known and is a Translation

We assume that the registratiey{-) is fully known by  Proof: We provide a proof only for 1D images since the
the super-resolution algorithm and that it takes the form: extension to 2D is straight-forward, but messy.

1 The null space of Equations (10) is defined by the con-

ri(z) = et (9)  straintsy" W'(m,p) - Hi(p) = 0 whereW’(-,-) is the

81‘2'
0z

Loi(m) = > Hi(p)- / PSF; (r;(z)—m)-

81‘2'
0z

We, (m,p) = / PSF;(ri(z) —m) -

P

z € (=05-5,05-S] % (=0.5-5,05-5] (11)

Theorem 1 If M - S; is an integer greater than 1, then for
all choices ofc; the set of Equations (10) is not invertible.
Moreover, the minimum achievable dimension of the null
space i M - S; — 1), If M - S; is not an integerg;’s can

be chosen such that the equations are invertible.
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Figure 3:Validation of Theorem 1: The results of solving the re-
construction constraints using gradient descent for a square point
spread function wittp; = 1.0. (a) WhenM - S; is an integer, the
equations are not invertible and so a random periodic image in the
area of intersection of the two squares in Figure 2. Fohy|l space is added to the original image. (b) WHéris not an

1D we just consider one row of the figure. By changinginteger, the reconstruction constraints are invertible.

¢; to slide the large square along the row by some small . . ) )

amount, we immediately see thHi(p) must equal both (©F In Equation (12) is at least. SettingHi(p) to be a
Hi(p + ([M - Si],0) andHi(p + (| M - S:],0). If M - S; checkerboard pattern (1pf4; ¢ is even, 1 if odd)., we find

is not an integer (or is 1), this proves that neighboring val-that|Loi(m)| < 1/(M - 5;)7, since the integration of the
ues oftli(p) must be equal, and hende If M - S; is an checker'board over any squargas{—l,' 1]. (Proof om|tt2ed
integer this constraint places apper bound of/f - S; — 1 for brevity.) Hence, the denominator is at mbstM - S;)°.

on the dimension of the null space (since the null space is FOF arbitrary point sprea'd functions, note that Equa-
contained in the set assignmentslidthat are periodicwith 110N (10) can be rewritten as:

M(m-c; - $ (0.5,0.9)
Figure 2: The integral in Equation (10) equalg S? times the
area of the intersection of the two highlighted squares.

periodM - S;.) This value can also be shown to be a lower Hi(z) 1
bound on the dimension of the null space by the space of Lo;(m) = uz (MZ +c; — m) dz
assignments for which ™. * "' Hi(p + (1,0)) =0. O Hi M

To validate this theorem, we solved the reconstruction = (a; + Hi) (m — ¢;) (13)

constraints using gradient descent for the two cades- . L

2.0 and M = 1.5, whereS; = 1.0. The results are pre- where we have changed variables= 5z, used the fact
sented in Figure 3. The input in both cases consisted dfata; is even, and sefli(x) = Hi(M - x). Both of the
multiple down-sampled images similar to the one at the tofProperties that we used for square point spread functions
of column 2 in Figure 1. As can be seen, fof = 2.0 therefore also hold with; replaced by:; * w; using stan-

the additive error is an approximately periodic image withdard properties of the convolution operator. m
period 2 pixe|s_ Fol/ = 1.5 the equations are invertible. If we could work with noiseless, real-valued quantities
3.2 Real Valued Analysis, Arbitrary PSFs and could perform arbitrary precision arithmetic, then the

Any linear system that is close to being not invertible is fact that the reconstruction constraints are ill-conditioned
usually ill-conditioned. It is no surprise then that changingould not be a problem. In reality, however, the low reso-

from a square point spread function to an arbitrary functiofutionimages will be (intensity) discretized. There is there-
PSF; = a; * w; results in an ill-conditioned system: fore always noise in the measurements, even if it is only

plus-or-minus half a grey-level. Before we present empiri-
Theorem 2 Supposes;(x) is an optical blurring function  cal results to validate Theorem 2, we prove a stronger ver-
for whichw;(x) > 0 forall x and [ w;(x)dx = 1. Then, sion of it for quantized values.
the condition number of the linear system defined by re3.3 Quantized Analysis, Arbitrary PSFs
placinga; witha; * w; in Equation (10) is> (M - S;)*. Suppose thatnt[-] denotes the quantization operator

Proof: We first prove the result for a square point spreadWh'Ch takes a real-valued irradiance measurement and re-

function and then generalize. The condition number of gUMS an integer-valued intensity in grey-levels. If we in-
linear operator! can be written as: corporate this quantization, Equation (13) becomes:

-1 [|A%]|co . Hi(z) z
Cond(A _ s.u?l:dloo_l HAXH . (12) Lo; (m) = 1nt |:/ e - PSF; (M +c; — m) dz:|
nfjjsef =1 [|AX ]| Hi 1

From Equation (10), it follows that ifli(p) = 1 for all Suppose also thadli is a finite size image witl pixels.
p, thenLo;(m) = 1 for all m. Hence, the numera- We then have:



100 ie. the difference between the low resolution inputs and

T T T
Reconstruction Error

_ Residual Error —-—— their predictions from the reconstructed high resolution im-
Single Image Interpolation Error . L.
80 Predicted Error - ] age. As expected for an ill-conditioned system, the recon-
T struction error is much higher than the residual. We also
60 | ] compare with a prediction of the reconstruction error ob-

tained by multiplying the lower bound on the condition
number (/ - 5?) by an estimate of the residual, assuming
the grey-levels are discretized from a uniform distribution.
For low magnification factors, this estimate is an under-
estimate because the the priouisnecessary for noise free
data; ie. better results would be obtained without the prior.
2 4 6 8 10 12 14 16 On the other hand, for high magnifications the predictionis
Linear Magnification . .
. _ an over-estimate because the assumption of local smooth-
Figure 4: An illustration of Theorems 2 and 3 using the same nags goes help the reconstruction. This assumption is at the
inputs asin Figure 1. The reconstruction error is much highertharéxpense of the overly smooth results in Figure 1.
the residual, as would be expected for an dhditioned system. We also plot interpolation results in Figure 4; ie. using
For low magnifications, the prior is unnecessary and so the resulﬁlst a single image reconstruction constraint. The differ-
are worse than predicted. For high magnifications, the prior doeénce between this curve and the reconstruction error curve
help, but at the price of overly smooth results. (See Figure 1.) 5 5 measure of how much information the reconstruction
Theorem 3 If int[] is the standard rounding operator constraints.provide. Similarly, thg differencg between the
which replaces a real number with the nearest integer, thef€construction error and the predicted error is a measure of
the volume of the set of solutions of Equation (14) asymphOW mu'c.h mformahon the smoothness prior prpwdes. For
totically grows at least as fast 48/ - S;)2” (treatingn as @ magnlflcatlon ofi6, we see thaF the prior prowdeg more
a constant and/ andS; as variables.) information than the reconstruction constraints. This is the
reason the results in Figure 1 are so smooth.

Proof: First note that the space of solutions is convex since, Class-Specific Recognition-Based Priors
the operator is linear. Next note that one solution of Equa- L . . .
tion (14) is the solution to: Suppqse it is possible to recognize an object' (or pgrt
of an object) in the low resolution images. This addi-
tional information could then be incorporated into a super-
) dz resolution algorithm, and perhaps better results obtained.
(15)  For example, if the image contains text data, OCR (opti-
The properties of the convolution gide< PSF; < 1/57. cal character recognition) would provide strong constraints
Therefore, addindM - S;)? to any pixel inHi is stilla  on the reconstructed image. In this section, we propose an
solution since the right hand side of Equation (15) increaseglgorithm to learn aecognition-basegrior which can be
by at most 1. The volume of solutions therefore containg/sed to improve the performance of super-resolution. (For
an n-dimensional simplex, where the angles at one vertexack of space, many of the details and results aréteth
are all right-angles, and the sides are(dlf - S;)2 units ~ but can be found ifBaker and Kanade, 1989
long. The volume of such a simplex grows k& - S;)>" Our approach is closely related to thafBfeeman and
(treatingn as a constant ant! and.S; as variables). T  Pasztor, 1999who recently, and independently,oposed
In Figure 4 we present quantitative results to illustrate learning framework for low-level vision, one application
Theorems 2 and 3. We again used the reconstruction-bas@f which is image interpolation. Besides being applicable
algorithm[Hardieet al,, 1997. We verified our implemen- to an arbitrary number of images, the other major advan-
tation in two ways: (1) we checked that for small mag- tage of our approach is that it uses a prior that is both spe-
nification factors and no prior, our implementation doescific to the type (class) of object (in the “class-based” sense
yield perfect reconstructions, and (2) for magnifications ofof [Riklin-Raviv and Shashua, 19h%nd a set of (local)
4, we checked that our numerical results agree with those ifecognition decisions. Our algorithmis also closely related
[Hardieet al, 1997. We also tried the related algorithm of to [Edwardset al, 1994, in which the parameters of an
[Schultz and Stevenson, 19%hd obtained similar results. “active-appearance” model are used for super-resolution.
Using the same inputs as Figure 1, we plot the recon4.1 Bayesian MAP Formulation
struction error against the magnification; ie. the difference One way of incorporating a prior into super-resolution
between the reconstructed high resolution image and this to estimate the maximuma posteriori (MAP) solu-
original. We compare this error with the residual error;tion: arg maxy; P{Hi | Lo;]. (See[Schultz and Stevenson,

40 -
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Hi(z)

Loi(m)—0.5: i e
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1994, [Hardieet al, 1997, and[Elad and Feuer, 199} 30

Cubic B-spli
Bayes law for this estimation problem is: Recognition-based Prior
% o5 | [Hardie et al., 1997] - |
r[L |H] Pr{H] z [Schultz and Stevenson, 1996]
PriLo; | Hi] - 1 3
PrHi| Lo;] = ! 16 )
Hi | Lo;] PriLoi] (16) E 20
Since PfLo;] is a constant becaude; is an input, and ff LR S e
since the logarithm function is a monotonically increasing & | T
function, we havearg maxy; Pi{Hi | Lo;] = £
[}
= L
arg HIl{m (= In Pr{Lo; | Hi] — In P{Hi]) . a7) B °
0 .
The first term in this expression In Pf{Lo; | Hi] is the ! Number of Input Images

(negative log) probability of reconstructing the low reso- rigyre 5:4 comparison of our recognition-based algorithm with
IuFlon imagesLo;, given that the high resolutlon' IMage IS {hgse of Schultz and Stevenson, 19%hd[Hardieet al, 1997.
Hi. Itis therefore normally set to be a quadratic (énergy)oyr algorithm out-performs these standard reconstruction-based
function of the reconstruction error in Equation (1). algorithms across the entire range of number of input images.
4.2 Recognition-Based Priors N o _

The second term-In P{IIi] is the prior on the high Our recognition-based prior is based on an algorithm for

resolution image. Usually- In Pr[Hi] is chosen to be a PredictingFo(Lo;) from the training pyramids; (3). To

smoothness prior. We would like to choose it to be a funcdescribe the algorithm, we need one further piece of nota-
ion. If (m, n) is a pixel in thel™™ level of a pyramid, its

tion of a set of recognition decisions. Suppose that the outtion.
|z, |2]). We therefore de-

" .
puts of the recognition decisions partition the set of inputd®@rent at thé + 1 level is( . !
Lo; into a set of subclassg¥’s [k = 1,2,...}. We then  fine the Parent Structure vector of a pikel, n) in thel™

define arecognition-basegrior as follows: level to be:P'S;(Lo;)(m,n) =

PiHi] = ) PfHi|Lo; € Cy]-PLo; € C].  (18) (F;(Loi)(m,n),...,FN(Loi)(bNL_lJ ) [QN%J))
k

Once the low resolution inputs; are available, the recog- V& then use the following algorithm to prediE (Lo; ).

nition algorithm(s) can be applied, and it can be determineéwe use over-line to denq'ge predicted values.) The algo-
which subclas€’, the inputs lies in. The prior Fifi] then rithm operates by recognizing the closest matching train-

reduces to the more powerful prior{Hi | Lo; € C]. ing sgm%I]e in Ithe f;igf][ﬁr Ilevelstolf th?fpyrgTid, and then
4.3 Learning a Recognition-Based Prior copying the values for Ine lowest fevet from it

Suppose we have a set of high resolution training imagelgGradient Prediction Algorithm
. . h pixel in th level of
Ty. We can compute their Gaussiah (7)), . .., Gx (7)) or each pixel(m, n) in the bottom level of the feature

and Laplacian’o(T;), . . ., Ly (T;) pyramids, the horizon- pyramid to be predictelfy (Lo:)(m, n), do:

tal Ho(T;), ..., Hn(T;) and verticalVo(T;), ..., Vi (T5) 1. Find;j = arg min
first derivatives of the Gaussian pyramids, and the horizon- | m n m n
tal H2(Ty), ..., H%(T}) and verticalV2(T,), . .., V2(T)) [psewon(| 55 |52 ) —Psemi| 5] [5))]

second derivatives of the Gaussian pyraniilaker and
Kanade, 199p We can then form a pyramid of feature 2. CopyF(7})(m,n) into Fo(Lo;)(m, n).

vectors: ' . ' _
In this algorithm, Step 1. recognizes the closest matching

F;(T;) = (L;(T), H;(Ty), V;(Ty), Hi (T;), Vi (T3)) training sample, and Step 2. copies the information about it
(19)  intothe lowest level of the feature pyramid fios; .
forj=0,...,N. OnceFy(Lo;) has been estimated, the horizontal and

Given a low resolution imagé.o; that is M = 2  vertical derivatives of the high resolution imagl {(Hi)
times smaller than the training samples, we can comand V(Hi)) can be predicted from it by extracting the
pute the Gaussian pyramid from leviel and upwards derivatives ofl.o; using Equation (19) and accounting for
G (Loi),...,Gn(Lo;). Similarly, we can compute the the translation. The derivatives &fi should equal these
feature pyramids for those level, (Lo;), ..., Fnx(Lo;).  values. Parametric expressions fHr(Hi) and V;(Hi)
We know nothing at all, however, about the lower levelscan be derived in terms of the unknown pixels in the
Fy(Lo;),...,Fr_1(Lo;), and in particulaF(Lo;). high resolution imagéli. We assume that the errors are



(@) Input12 x 16 (b) Recognition-Based  (c) Cubic B-Spline  (d) Schultz & Stevenson (e) Hi-Resolution

(f) Input12 x 16 (9) Recognition-Based  (h) Cubic B-Spline (i) Schultz & Stevenson () Hi-Resolution

Figure 6: Selected results where the input consists of only three 12 x 16 pixel images. Note how high frequency features such as the
eye-brows, lips, and nose are reconstructed even though there is almost no evidence for them in the input.

i.i.d. and Gaussian with covariane€,. Therefore we set: centers of the eyes and the lower tip of the nose. We used
—InPrHi] = K + # > a “leave-one-out” methodology to test our algorithm; for
v each image in the test set, we removed all images of that
o(Loy)(m + e;,n + di)] 2 individual from the training set and then re-trained. Since
_ 9 this step is quite time consuming, we used a test set with
+  [Vo(Hi)(m, n) = Vo(Loi)(m +ei,n+di)]” (21) 100 images chosen randomly from the FERET data.

We compared our algorithm with those [@chultz and
Stevenson, 1996and [Hardieet al, 1997. In Figure 5
we plot the RMS pixel error of the algorithms against the
number of images used. We also plot results for cubic B-
spline interpolation for comparison. (Since cubic B-spline

sis algorithm oflDe Bonet, 199 One major difference Is an interpolation algorithm, only one image is used qnd
is that our algorithm is deterministic. It chooses the most° the performance is independent of the number of im-

likely values for the Parent Structure vector, rather than ran?ges') In Figure 5 we see that our recognition-based ailgo-
domly sampling from a set of values. Another differenceithm does out-perform both of the other super-resolution

is that we take the class-based approacfRiklin-Raviv algorithms. We present some example images in Figure 6,

and Shashua, 1999For each pixelm, n), the algorithm where the input consists of only thrég x 16 pixel im-

' e ; . . The recognition-based results are a huge improve-
therefore only looks at the corresponding pixels in the train-296S . o .

y b gp ent over both cubic B-spline interpolation and the Schultz

ing samples since the image statistics will be a function of" )
g P g d Stevenson algorithfiSchultz and Stevenson, 1996

space. (For text data, where the image statistics are large . o
P ( g g § he results fo[Hardieet al, 1997 are similar.) In par-

independent of the spatial location, we do actually considet, | te how hiah lution feat h as th
all of the pixels in the training data.) icular, note how high resolution features such as the eye-

4.4 Experimental Results for Faces brows and lips are recovered, even though there is little

Our experiments for faces wererducted with a sub- evidence for them in the input. Also try squinting at the

cet of e FERET dats st o, 1007 consis.  1120%% 830700 ot f enharcemen el e e
ing of 596 images of 278 individuals (92 women and 186 '

men). The images (which are all frontal) must be alignedpan be seen.between the input and the output.

in the class-based approach so we can assume that the sah® Experimental Results for Text Data

part of the face appears in roughly the same part of the im- We also tried our algorithm on text data. We grabbed an
age[Riklin-Ravivand Shashua, 19R9rhis alignmentwas image of an X-window displaying one page of a letter and
performed by hand marking the location of 3 points; thedown-sampled it. The image was split into disjoint train-

i,m,n

[Ho(Hi)(m, n)—H

where K is a constant that only depends upe@ (and
therefore can be ignored.) This prior is a recognition-base
prior because it is a function of the rgnition decisions
made in Step 1. of the gradient prediction algorithm.

This algorithm is similar to the random texture synthe-



Thanks for your letter. It was great to bear from you! I'm glad things are going well
at: Bolls, even if you are really buny, and bave continuing hassles with your suppliens. How
wos the Ble of Man, by the way? It's strange to think of there being engineering companies
theere, I thodght it was oo pletely full of tax exiles,

Thanks for your letter. It was great to hear from you! I'm glad things are going well
at Rolls, even if you are really busy, and have continuing hassles with your suppliens. How
was the Ile of Man, by the way? It's strange to think of there being engineering companies
there. I thought it was completely full of tax exdles.

(a) Input Image. (Just one image is used.)

(b) Rettmgmnbased, RMS Error 24.5

Thanks for your letter. It was great to hear fram you! I'm glad things are going well
at Rolls, even if you are really buny, and bave continuing hassles with your suppbers. How
was the Isle of Man, by the way? It's strange to think of there being engineering companies
there, I thought it was completely full of tax exiles,

Thanks for your letter. It was great to hear from you! I'm glad things are going well
at Rolls, even if you are really busy, and have continuing hassles with your suppliers. Homw
was the Isle of Man, by the way? It's strange to think of there being engineering companies
there. I thought it was completely full of tax exiles.

(c) Schultz and Stevenson, RMS Error 48.4

(d) Original High Resolution Image

Figure 7:The results of enhancing the resolution of some text by a factor of two using a single input. Our algorithm produces a sharp
result using no explicit knowledge that the input is text (unlike the resulGhiang and Boult, 199%vhich assume step discontinuities.)

ing and test samples. (The training and test data therefol®ellaertet al, 1999 F. Dellaert, S. Thrun, and C.E.
contain the same font, are at exactly the same scale, and the Thorpe. Jacobian images of super-resolved texture maps
data is noiseless.) Our super-resolution results in Figure 7 for model-based motion estimation and tracking4th

are for a single input image and the magnification factor is Wkshp on Appl. of Computer Visigmages 2—7, 1998.

2. The recognition-based result in Figure 7(b) is by far thelEdwardset al, 1999 G.J. Edwards, C.J. Taylor, and T.F.
best reconstruction, both visually and in terms of the RMS ~ Cootes. Learning to identify and track faces in image
grey-level pixel error (only 24.5 grey levels compared to__sequences. lithird ICAFGR pages 260-265, 1998.

over 48.4 forSchultz and Stevenson, 1996 The results [Elad and Feuer, 1997M. Elad and A. Feuer. Restoration

for cubic B-spline andHardieet al, 1997 are similar. of a single superresolution image from several blurred,
noisy and undersampled measured imaffeBE Trans-

5 Discussion actions on Image Processin(12):1646-58, 1997.

We have shown that the super-resolution reconstructiobElad and Feuer, 1999M. Elad and A. Feuer. Super-
constraints get weaker very rapidly as the magnification resolution reconstruction of image sequence&EE
factor increases. The major cause is the averaging over the Trans. Pattern Anal. and Machine Intel21(9), 1999.
photosensitive area; ie. the fact tttatis non-zero. This re- [Frfemap aTd Plasztlor,. lgggfﬁgrce\e/r%%” 1i)n9d9 E. Pasztor.
sult means that there are fundamental limits on tradition earning low-level vision. Iri : :
reconstruction-based super-resolution algorithms. We ha\il—mrdleet al, 1997 R.C. Hardie, K.J. Barnard, and E.E.
also shown that recognition algorithms can be embedded Armstrong. Joint MAP registration and high-resolution
into the reconstruction process to enhance the performance 'Made estimation using a sequence of undersampled im-
of super-resolution algorithms; if the “scene” can be recog Hﬁgﬁ\;"g}%ﬁgg?ié‘%}}%_ Pﬁ%%ﬁ(gli)mlfél?rlsg?g'\lﬁ?t?
nized it can be reconstructed far more accurately. Similar

: . X frame image restoration and registratioAdvances in
approaches may aid other (ie. 3D) reconstruction tasks. Computer Vision and Image Prod.:317-339, 1984
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