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Visual classification is the way we relate to different images in our
environment as if they were the same, while relating differently to
other collections of stimuli (e.g., human vs. animal faces). It is still
not clear, however, how the brain forms such classes, especially
when introduced with new or changing environments. To isolate
a perception-based mechanism underlying class representation,
we studied unsupervised classification of an incoming stream of
simple images. Classification patterns were clearly affected by
stimulus frequency distribution, although subjects were unaware
of this distribution. There was a common bias to locate class centers
near the most frequent stimuli and their boundaries near the least
frequent stimuli. Responses were also faster for more frequent
stimuli. Using a minimal, biologically based neural-network model,
we demonstrate that a simple, self-organizing representation
mechanism based on overlapping tuning curves and slow Hebbian
learning suffices to ensure classification. Combined behavioral and
theoretical results predict large tuning overlap, implicating poste-
rior infero-temporal cortex as a possible site of classification.

There is a natural tendency to relate perceived exemplars to
particular classes (1, 2). However, despite evidence suggest-

ing a perceptual basis for the representation of visual classes
(3–6), we still do not know how these are formed in the brain.
Can class representations evolve autonomously by our exposure
to the environment (7, 8) or do we need feedback or an external
teacher labeling information or context?

Classes formed by self-organizing mechanisms are likely to
ref lect environmental structure (7–10). For example, co-
occurring discontinuities along correlated features of real-world
attributes may become locations of category boundaries (1).
Repeated environmental experience also mediates development
of perception-based expertise (11, 12). For example, although
young children are about as good at recognizing upright and
inverted faces, adults are much better at recognizing upright
faces (11). Development of expertise seems to be accompanied
by modified internal (face) representation, whereby more fre-
quent features (upright faces) are more closely associated with
image class.

Perceptual classification studies traditionally involve super-
vised tasks (13–19) or instructions regarding the classes (20).
However, supervision dictates class structure and precludes
isolation of self-organizing mechanisms. A few studies dealt with
unsupervised classification, with stimuli constructed from sev-
eral prototypes (21, 22). In accord with a self-organizing repre-
sentation mechanism, there was significant overlap in class
membership with stimulation structure, but because analysis
focused only on the overlap and not on classification pattern, not
much could be concluded about underlying representation
mechanisms. Other studies touched indirectly on unsupervised
classification, e.g., when dealing with encoding attribute fre-
quency (23) or correlations (24), incidental learning (25), or
perceptual development (26).

Some theorists proposed a self-organizing representation
mechanism based on a priori expectations about stimulus dis-
tribution, which is adjusted by incoming stimulation (17, 27).
Others assumed that following exposure to a new environment

a one-shot abstraction is stored, with details of further exposures
compared with this abstraction (8). Updating might be dictated
by the frequency of attribute values (9) or their associations (1,
24). All of these suggestions assumed that self-organization is
based on a nonuniform distribution of features across stimuli.

The present study was designed to isolate experimentally a
self-organizing representation mechanism underlying class for-
mation and to analyze its characteristics. Our working hypothesis
was that such a mechanism would be affected by the statistics of
stimulation. We study unsupervised classification of stimuli that
vary only along one physical dimension and find that classifica-
tion correlates with stimulation statistics and that this correla-
tion evolves autonomously. Using a minimal, biologically based,
neural-network simulation, we demonstrate that a self-
organizing mechanism suffices to explain our findings.

Behavioral Testing
Methods. Fifty-seven adult subjects with normal or corrected-to-
normal vision sorted stimuli into classes without prior demon-
stration or instruction concerning the structure or number of
classes and without performance feedback (Fig. 1A). Instruc-
tions on the computer monitor informed subjects only that they
would see stimuli of one or more kinds and should classify them
accordingly. Eight keys on the computer keyboard were available
for responses.

Stimuli consisted of a pair of identical vertical bright stripes
presented 115 cm away on a gray screen (1,280 3 1,024 pixels;
36 pixelsycm; 21-inch SGI Indy; Fig. 1B). Stripe height was the
full screen, and stripe centers were 256 pixels from central
fixation. Serially presented stimuli varied only by the width of the
stripes (1–512 pixels, divided into 36 sampling bins). Each
classification session included 1,024 trials.

Three subject groups differed only by the distribution of the
stimuli presented to them (during all of the sessions; Fig. 1C).
Two distributions had three or four Gaussian peaks, respectively,
with interpeak intervals six times the Gaussian s. For the third
distribution, stimuli were sampled uniformly. Data of 16, 8, and
10 subjects were used in statistical analysis of the three- and
four-peaked and uniform distribution cases, after excluding
classifiers with extremely broad classes (.16 stimulus bins in the
last two sessions; e.g., Fig. 2, subject KR).

A single observation session of 256 trials preceded the main
classification sessions, acquainting subjects with task procedure
and stimulus distribution. Here subjects pressed the same key for
all stimuli.

Results. Classification strategies varied largely among subjects, as
reflected in the individual examples (Fig. 2) and large variability
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in number of classes (SD . 2 classes, in all cases for fourth
session) and broadest class width (SD . 13% of whole range).

Despite this variability, a closer view reveals basic perceptual
factors in class formation: Fig. 3A presents location histograms
of class centers and class boundaries during the fourth session of
each subject group. In the multipeak cases, subjects were most
likely to locate class centers near the most frequent stimuli (i.e.,
near the peaks of the stimulus distributions). At the same time,
class boundaries were most likely to be located near the least
frequent stimuli (i.e., the distribution minima). In the uniform-
distribution case, no clear pattern is seen. Classification depen-
dence on stimulus distribution is highly significant, as demon-
strated in Table 1.

The cross-session evolution of the distribution effects is dif-
ferent in the two multipeak cases (Fig. 3B). With three peaks, a
strong effect on center location was apparent already in the first
session, whereas with four peaks it evolved only in the second.
The effect on boundary location appeared later for both distri-
butions, but still with the effect for four peaks lagging behind that
with three peaks.

Center and boundary location histograms also show an edge
effect, suggesting special sensitivity to stimuli near the edges. In
the three-peak case, there are two clear additional humps in the
center-location histogram near the edges of the stimulus range
(Fig. 3A, dashed lines). A similar edge effect exists in the
uniform and four-peak cases, where the effect is less noticeable
because of the proximity of the extreme stimulus-distribution
peaks to the stimulus range edges.

Subject response time (RT) was also affected by stimulus
statistics (Fig. 3C Left). In the three-peak case, there is a clear
tendency for longer RT near the two middle distribution minima.
This pattern appears also in the four-peak case, where it is slower
to develop; intriguingly, the cross-stimulus average RT is longer
than with three peaks. An opposite, RT diminution effect is seen
for stimuli near the edges (except with three peaks for the most
narrow stripes) despite the low frequency here in the multipeak

cases. The absence of augmentation near the edges, even when
they are rarely sampled, eliminates the possibility that augmen-
tation at the middle minima results from the relative novelty of
these stimuli. Instead, it seems to reflect distribution effects on
boundary location.

Surprisingly, despite long testing periods (4,000–10,000 pre-
sentations) and the stimulus distribution effect on class pattern
and RT, subjects were not aware of the presentation distribution.
Fig. 3D demonstrates subject subjective evaluation of stimulus
frequency (following completion of the classification sessions),
compared with the actual presentation likelihood of the stimuli.
No correspondence is seen to the details of the distributions (in
contrast to claims of subject awareness of stimulus frequency in
other cases; ref. 28). Furthermore, no individual subject showed
such awareness. This suggests that mechanisms underlying the
distribution effect act automatically. We found another edge
effect here—a tendency to think that edge stimuli were rare,
even when they were sampled frequently (in the uniform case).

Modeling and Simulation
The implicit and direct distribution effects suggest a simple
self-organizing underlying mechanism. To test this hypothesis,
we designed a simulation network composed of excitatory and
inhibitory neurons. The fully interconnected excitatory neurons
(n 5 500) are described as a unidimensional array, reflecting
only the assumption that similar stimuli activate overlapping
neuron groups—similar to a typical cortical feature map of the
variable dimension but without synaptic dependence on distance
(see ref. 29 for a classical, feed-forward categorization model).

Fig. 1. Classification task. (A) Subjects classified stimuli one by one without
feedback or prior information regarding class structure. A blank gray screen
preceded each trial, initiated by key-press. After 1 s, a small fixation cross
appeared, followed (200 ms later) by a stimulus. At 500 ms after stimulus
onset, the screen was blanked again. Subjects had 1.5 s from stimulus onset to
relate it to a class. Late responses were discarded and signaled to the subjects.
(B) Examples of stimuli used for classification. (C) Statistical distributions of the
stimuli, reflecting the frequency of their presentation. Each subject partici-
pated in one of the three possible distribution conditions during all of the
sessions.

Fig. 2. Cross-subject classification strategy variability. Individual examples of
classification strategies of three subjects during their fourth session classifying
stimuli sampled from the three-peak distribution. Graphs present sorting
coherence for each stimulus (fraction of presentations in a bin attributed to a
class; each symbol represents a particular class). Gray curves plot, here and
below, the relative presentation frequency in the session. Similar strategies
were found for the four-peak and uniform cases. The stimulus range here and
below is in bins.
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Each stimulus Si (i 5 1 . . . 500) excites consecutive neurons
forming a fraction f 5 1y3 of the network. (nf 5 167; i 2 nfy2
to i 1 nfy2; fewer if i is near an edge). With such a network
configuration, f corresponds to the initial neuronal tuning width
and the center of the evoking range may be called the neuron’s
‘‘preferred stimulus.’’ (Although biological tuning may be more
Gaussian-like, a square wave is simpler and leads to the same
qualitative results.) Equations for network dynamics are de-
scribed in the Appendix. External input leads to recurrent
excitation and inhibition that converges to a steady state, with
inhibitory neuron activity counterbalancing global self-
excitation.

Synaptic efficacies have two stable states (see Appendix). The
simulation starts with an arbitrary, low fraction of synapses in the

potentiated state. Following each stimulus, the excitatory-to-
excitatory synaptic coupling strengths are updated (neglecting
recurrent activity effects) according to stochastic Hebbian rules:
long-term synaptic potentiation is triggered by simultaneous
elevated activity in pre- and postsynaptic neurons, while an
activity mismatch induces long-term depression. Learning must
be slow enough so that the memory span (limited by the number
of stable synaptic efficacies; refs. 30 and 31) includes a sufficient
number of stimulus presentations to reasonably sample the
distribution and allow it to be reflected in the synaptic matrix.

Synaptic Dynamics. The development of the synaptic matrices (of
the excitatory network) for each stimulus distribution is pre-
sented in Fig. 4A. In all cases, we observe potentiation of

Fig. 3. Stimulus distribution effect on classification. (A) Histograms of class center (Left) and boundary (Right) location for each case, during the fourth
classification session, reflecting clear correlation with the statistical pattern of the stimulation in the multipeak cases. Bars of each histogram denote percentage
of subjects who had a class center (boundary) at each stimulus. Class center location was computed as the center of gravity of the sorting coherence function,
x, between the two boundaries, i.e., Sb5left boundary

right boundary b z x(b, c)ySb5left boundary
right boundary x(b, c). Dashed lines indicate range of edge effects. (B) Cross-session development of

the distribution effect: the center and boundary location histograms of each session are reorganized according to distance from the nearest peak. Bars indicate
average percent of subjects locating center or boundary at a specific distance from distribution peak. Error bars denote SD. Numbers are correlations between
histograms and the distribution characteristics. Note slower evolution of the effects in the four-peak case. (C) Distribution effect on decision speed. Colored curves
indicate cross-subject average behavioral RT data (Left) and simulation convergence time t (Right). Error bars denote SE and SD of the behavioral and simulation
results, respectively. The longer RTs near less frequent stimuli was successfully imitated by the simulation t. However, t increased near range edges, where RTs
were shorter. (D) Absence of subject awareness of the statistical structure of the stimuli. Dark curves present the cross-subject average subjective rate of
presentation frequency (on a five-level scale; normalized between lowest and highest). Data were collected after completion of the classification experiment,
where subjects were asked to estimate the frequency of a few serially presented stimuli (usually 15; always including the most and least frequent). Symbols
indicate individual estimates. Subjective estimations were not correlated with actual stimulus distributions.
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connections along the diagonal (i ' j for neighboring neurons)
falling off with distance (as probability for coactivation decreases
and probability for activation of one but not the other increases).

For peaked distributions, clouds of potentiated connections
evolve corresponding to the distribution peaks. Pairs of neurons
with preferred stimuli that straddle frequency peaks have many
more common evoking stimuli —potentiating synaptic intercon-
nections—and fewer unshared inputs—depressing interconnec-
tions—than do pairs straddling frequency minima. The result is
a gradient in density of potentiated synapses—from those among
neurons that are activated by less frequent stimuli (few stimuli
coactivate such neuron pairs; many activate one or the other)
toward those among neurons activated by more frequent stimuli
(many coactivating stimuli; few activate only one). The final
structure clearly exhibits the expected dependence on stimulus
distribution. Note that this type of synaptic matrix is only formed
provided that the number nf of neurons activated by each
stimulus is large enough to enable the connectivity gradient, and
small enough to sense differences in stimulus frequencies (see
below).

Neuronal Activity. Given this synaptic structure, network activity
is attracted toward patterns that initially corresponded to the
most frequent stimuli (the peaks of the distribution). Basins of
attraction can be considered as internal class representations.
These attractors are separated by (less consistent) activity pat-
terns evoked by stimuli at the distribution minima, which there-
fore correspond to class boundaries. Fig. 4B presents average
excitatory activity maps (neuronal response as a function of
stimulus) following convergence into an attractor state, for each
distribution, and at several stages of simulation. After 500
presentations (top row), any stimulation leads to weak network
activation, and the final response just reflects the applied input
current. With more presentations, more synapses are potentiated
and network global activity increases forming strong reverber-
ations. Synaptic structure is apparent in square-like clouds of
elevated activity, corresponding to the number of distribution
peaks—i.e., groups of similar stimuli tend to produce the same
final response. Class boundaries are determined by the borders
of the basins of attraction, located at the distribution minima.
Near the minima the network response is inconsistent across
runs with similar presentation conditions (ending up in one of
the two nearest attractors). Activity patterns are formed earlier
with three than with four peaks, as found in the behavioral
experiment.

In the uniform case, no consistent structured pattern of
activity is seen, except for weak but consistent enhanced activity
near the edges. The simulation showed activity-pattern variabil-
ity across learning stages (smeared by averaging) corresponding
to the unstable classification patterns found behaviorally.

Evolution Rate and Tuning Width. Interestingly, the stronger and
faster behavioral distribution effect that we found behaviorally
in the three-peak relative to the four-peak case imposes a lower
bound on the initial neuronal tuning. When f is much broader
than the distribution interpeak interval (normalized to the full
range width, designated as Dm), the connectivity gradient toward
the peak becomes very weak, leading to below-optimal correla-
tion between distribution and synaptic matrix. The shallow
connectivity gradient results in a less stable activity pattern and
slower learning. When f is narrow (similar to the four-peak Dm)
then the connectivity gradients with three or four peaks are
similarly strong; when f is as broad as the three-peak Dm, the
gradient is already below optimal for the four-peak case (see
supplemental material, which is published on the PNAS web site,
www.pnas.org). Thus, the behavioral constraint implies the
surprising prediction of a very broad tuning width—spanning as
much as a third of the stimulus range used in the experiments.
This value of f was used in the simulations leading to the results
presented above.

Network “RT”. Although we did not intend that the model explain
subject decision mechanisms, the network convergence time, t§,
dependence on stimulus frequency (Fig. 3C Right) is strikingly
similar to that of the behavioral RT (Fig. 3C Left). With peaked
distributions, these times are longer for stimuli near distribution
minima. The slow build-up of excitatory activity is attributable
to both low density of potentiated synapses near the minima and
competition between two neighboring attractors. In the uniform
case, convergence time is similar for all stimuli (except at the
edges), as in the behavioral experiment. The model does not
explain faster RTs at the distribution edges.

Discussion
The behavioral experiments revealed four novel findings. Un-
supervised classification of simple stimuli leads to formation of
common classification and RT patterns, which highly reflect the
statistical structure of the stimulation. Class boundaries tend to
be located near the least frequent stimuli and classes tend to be
centered near the most frequent stimuli. The quality and evo-
lution speed of these classification patterns is also affected by
stimulus distribution. Surprisingly, subjects lacked explicit
knowledge of the stimulus statistical distribution, even after long
testing periods.

Formation of common classification patterns in the absence of
external supervision implies an internal self-organizing mecha-
nism. The dependence of these patterns on stimulation distri-
bution rather than on specific stimulus values eliminates innate,
hard-wired stimulus representation structures, suggesting in-
stead a mechanism that is updated by the incoming stream of
stimuli. The absence of awareness of stimulus statistics implies
an automatic learning mechanism. The ability of amnesic pa-
tients to learn to classify simple stimuli might be attributable to
a similar mechanism (32).

Taken together, these considerations suggest that a simple
self-organizing representation mechanism underlies the distri-
bution effect on classification. We demonstrated how a simple
and general biology-based model accounts for such a mecha-
nism. Minimal assumptions concerning neuronal configuration
(unstructured network of neurons with overlapping tuning) and
synaptic change (stochastic Hebbian rules of potentiation and
depression) are sufficient for encoding stimulus distribution in
the synaptic matrix and enabling distribution-dependent attrac-
tors that imitate behavioral results. Attractor evolution does not

§t is defined as the number of iterations required for network global activity fluctuations
(the difference in global activity between adjacent time steps) to decay to within 0.23
times the vector mean activity level (averaged over 20 simulation runs).

Table 1. Correlation between stimulus distributions and class
structure (session 4)

Stimulus
distribution

Subject group

3-peak 4-peak Uniform

Correlation with class centers
3 peaks 0.80 20.03 20.01
4 peaks 20.22 0.81 0.43

Correlation with class boundaries
3 peaks 0.72 20.36 20.21
4 peaks 20.27 0.59 20.11

Bins related to edge effect were ignored. For the boundary location histo-
gram, the Pearson correlation was computed with stimulation infrequency:
bins with likelihood ,6ysession were set to 1; all others to 0.
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require top-down processes. In the model simulation, attractor
boundaries (i.e., regions of confusion between attractors, anal-
ogous to class boundaries) are located where synaptic depression
is more probable than facilitation, i.e., the ranges of rare stimuli.
Rare stimuli also require more iterations to ‘‘trap’’ the network
activity into an attractor, supporting the conclusion that the
increased RT near distribution minima (except at stimulus range
edges) results from the same mechanism that underlies boundary
location.

Simulation results make several predictions. Requiring the
model to fit the experimental finding of faster learning with
three rather than with four peaks implies very broad tuning.
Single neurons are evoked by '1y3 of the broad stimulus range
used in the experiment. This constraint suggests that the locus of
processing may be human homologues of monkey posterior
infero-temporal cortex, where neurons are selective to simple
stimulus features but are broadly tuned (33). Indeed, partial
lesions of these cortices (in monkeys) impair classification of
stimuli that vary along one dimension, whereas lesions in lower-
level cortices do not (34). The broad tuning constraint also
suggests that a five-peak distribution (under similar experimen-
tal conditions) would be too crowded to reflect the distribution
effect. Additionally, with four peaks learning should reveal
attractors that are narrower than the original neuron tuning.
Brain imaging techniques might reveal this tuning change.

The simulation findings also predict that introducing changes
in stimulus statistical distribution following practice will lead to
altered attractor patterns and class structure. Preliminary results
support these predictions [Rosenthal, O. & Hochstein, S. (2000)
Invest. Ophthalmol. Vis. Sci., 41, S47, no. 244). Moreover,
different rates of change are expected when practice starts with
a three- versus a four-peak distribution and is changed to the
other.

The mechanism underlying classification may be similar to
that inducing specific patterns of delay activity (35, 36) or tuning
width (37). Further study is required to determine whether the
same self-organizing mechanism underlies other representation
processes such as feature maps (38) and associative memory (35,
36). This study was based on classification along a single stimulus
dimension. In natural conditions, stimuli usually vary across
many attributes, raising many questions regarding their interac-
tions in classification (18, 24).

Appendix: Simulation of Network Dynamics
Network dynamics are governed by the following equations (see
also refs. 30, 31, 39–41):

dvi
E~t!
dt

5
1
tE

@2vi
E~t! 1 FE~li

EE~t! 1 lEI~t! 1 li
ext~t!!# [1]

dvI~t!
dt

5
1
tI

@2vI~t! 1 FI~l
IE~t!!#, [2]

where vI and vi
E are the mean inhibitory activity and mean

activity of the ith excitatory neuron, respectively; tE and tI are
excitatoryyinhibitory neuron time constants; and FE and FI are
excitatoryyinhibitory neuron transfer functions giving the
change in mean output activity as a function of total input
current, l. FE(l) 5 =[l]1, while FI(l) 5 CIl for l . TI (where
TI 5 50; CI 5 0.6 are the inhibition thresholdygain) and FI(l) 5
0, otherwise. li

ext simulates the external current in excitatory
neuron i due to visual stimulation Si and a Gaussian noise
(average 5 20 for stimulated neurons, 0 for others; SD 5 50 for
time step dt 5 0.1tE 5 0.1tI). Inhibitory neurons participate only
in local dynamics and are described by a single mean activity
variable.

Fig. 4. Simulation results for each distribution case. (A) The synaptic
matrix— color-coded density of potentiated synapses from neuron j to
neuron i—across ‘‘sessions,’’ reflecting changes in the synaptic configura-
tion during learning. Different matrices columns correspond to different
sampling distribution. Each synaptic matrix is plotted at four stages of
simulation. Connectivity patterns evolve gradually. The diagonal pattern
reflects the high potentiation probability between neighboring neurons.
In the multipeak cases potentiated connections are clustered in clouds that
correspond to the distribution peaks both in number and scope. Note
slower evolution for four peaks than for three peaks, resulting from
simulation with a large overlap between neurons. (B) Activity map across
‘‘sessions’’ (rows) and stimulus distributions (columns). Each map reflects
the activity level (color-coded) of each neuron (y axis) as a function of the
stimuli (x axis; activity is averaged across 20 simulation runs at the 1,000th
iteration, i.e., near activity asymptote). The simulation of each activity map
was run using its corresponding synaptic matrix (A). After 500 stimulus
presentations, there is only weak activity along the diagonal reflecting
original stimulus-evoked excitation. In the multipeak cases, further stim-
ulation leads to clustered activity that is correlated with the statistical
structure of the stimulation, while in the uniform case unstructured activity
is seen. Note the delayed evolution of clustered activity in the four-peak
case relative to the three-peak case.
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Recurrent excitationyinhibition are induced by excitatory-
activity-originated input currents, li

EE(t), and lIE(t) injected into
excitatoryyinhibitory neurons, respectively; and inhibitory-
activity-originated currents, li

EI(t), injected into excitatory neu-
rons. For simplicity we assume that inhibitory neurons do not
receive inhibitory currents. These currents are described gener-
ally as

li
ab 5 O

j

Jij
abvj

b ,

where a 5 E, I denotes the target neuronal population, b 5 E,
I the current generator population, and Jij are the synaptic
efficacies. Connections toyfrom inhibitory neurons are de-
scribed by uniform synaptic efficacies (JIE 5 1.0, JEI 5 0.25).

Each excitatory synapse is assumed to have two stable states
(J 5 0, depressed; J 5 0.25, potentiated) on time scales much
longer than the time between presentations (see ref. 30). Simul-
taneous activation of pre- and postsynaptic neurons induces
long-term synaptic potentiation with probability q1 5 0.004.
Activation of only one neuron in the pair induces long-term
depression with probability q2 5 0.002. Each presentation leaves
a small trace in the synaptic matrix, as a result of a local random

selection of which candidate synapses are indeed to be changed.
Because the synaptic efficacies have a limited number of stable
states, the network shows the palimpsest property: new presen-
tations overwrite old ones and only part of the past is preserved.

Because q1 and q2 are small, the probability that the synapse
between neurons i and j is eventually in the potentiated state is
(see ref. 31):

PLTP~i, j! 5
q 1 P~i, j!

q 1 P~i, j! 1 q 2 D~i, j!
,

where P(i, j) and D(i, j) are respectively the fractions of the
presentation events that tend to potentiate and depress the
synapse.
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