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Introduction

Representing time varying signals is a fundamental problem in processing any

signal orignating from the natural environment, but there is no natural way to en-

code such signals, and traditional methods each have their limitations. A common

method of describing temporal signal is to divide it into a sequence of blocks. The

data within each block is then fit or decomposed with standard basis such as a

Fourier or wavelet. Blocking the data has the limitation that the components of

the bases are arbitrarily aligned with respect to structure in the time series. Fig-

ure 12.1 shows a short segment of speech data and the boundaries of the blocks.

Although the structure in the signal is largely periodic, each large oscillation ap-

pears in a different position within the blocks and is sometimes split across blocks.

This problem is particularly acute for acoustic events with sharp onset, such as

plosives in speech. It also presents difficulties for encoding the signal efficiently,

because there is no compact way to describe phase-dependent structure. This can

be somewhat circumvented by techniques such as windowing or averaging slid-

ing blocks, but it would be more desirable if the representation were phase or shift

invariant [ 15].
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Figure 12.1. Blocking results in arbitrary phase alignment of the underlying struc-
ture.

An example of a shift invariant representation is a filter bank, shown in fig-
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Figure 12.2. A filter bank representation of time-varying signals. The time-varying
signal is convolved with different filters (represented by the

�
symbol), resulting

in � different output signals. This representation is shift-invariant, but does not
compactly represent structure in the original signal.

ure 12.2. Each unit convolves the input signal to produce a time-varying output

signal. This type of representation is implicit in many models of neural processing

where the input and output signals are represented by average firing rates, and the

convolutions performed by the different units correspond to the spatio-temporal

receptive fields of different neurons.

The limitation of this representation is that it doesn’t capture any of the temporal

structure of the signal, it simply converts one time varying signal into many. If

the input is a set of time-varying signals, the situation is somewhat different,

because then one can attempt to find the set of transformations or filters that

minimize the statistical dependencies among the outputs. This is exactly the goal

of independent component analysis [ 9, 4] and approaches that seek factorial codes

[ 3, 1, 17, 19]. Although some methods of been developed to make use of temporal

structure for improving the statistical independence of the output signals [ 20, 2], a

continuous output signal implies that the representation is not efficiently encoding

the temporal structure in the input signal.

The Model

Our goal is to develop a model that will efficiently represent temporal structure in

a time-varying input signal. This is accomplished by modeling that the signal by

small set of kernel functions that can be placed at arbitrary time points. Ultimately,

we want to find the minimal set of functions and time points that fit the signal

within a given noise level. We expect this type of model to work well for signals

composed of events whose onset can occur at arbitrary temporal positions. Ex-

amples of these include, musical instruments sounds with sharp attack or plosive

sounds in speech.
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We assume time series � �����
is modeled by

� � �����	��
	� 
����� 
 � � ����� 
 ����� � �����
(12.1)

where
� 


indicates the temporal position of the � ��! kernel function,

 �"� 
 �
, which is

scaled by
� 


. The notation #�$ ��% represents an index function that specifies which of

the & kernel functions is present at time
� 


. A single kernel function can occur at

multiple times during the time series. Additive noise at time
�

is given by
� �����

.

A more general way to express (12.1) is to assume that the kernel functions exist

at all time points during the signal, and let the non-zero coefficients determine

the positions of the kernel functions. In this case, the model can be expressed in

convolutional form

� ������� � �(' � � �)���  � �����*����+,� � �-�)�.�
(12.2)�	� � � � � �.��/  � � �.� � � � �.�0�
(12.3)

where
� � � � �

is the coefficient at time
�

for kernel function

 �
.

It is also helpful to express the model in matrix form using a discrete sampling

of the continuous time series:

� �21��3�4�65
(12.4)

The basis matrix,
1

, is defined by17� $ 8 � �9 � 8 � 6: �<;=;>; 8 � �? � % �
(12.5)

where 8 ��@A�
is an B -by- B circulant matrix parameterized by the vector

@
. This

matrix is constructed by replicating the kernel functions at each sample position

8 � @����
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The kernels are zero padded to be of length B . The length of each kernel is

typically much less than the length of the signal, making
1

very sparse. This can

be viewed as a special case of a Toeplitz matrix. Note that the size of
1

is &7B -by-B , and is thus an example of an overcomplete basis, i.e. a basis with more basis

functions than dimensions in the data space [ 21, 8, 18, 16].
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A Probabilistic Formulation

The optimal coefficient values for a signal are found by maximizing the posterior

distribution�
�������	��
���� ��� ��� ���	��� ��� � ��
���� ��� ��� ������� ��� ��� (12.7)

where

�
� is the most probable representation of the signal. Note that omission of

the normalizing constant
��� ��� ��� does not change the location of the maximum.

This formulation of the problem offers the advantage that the model can fit more

general types of distributions and naturally “denoises” the signal. Note that the

mapping from � to

�
� is nonlinear with non-zero additive noise and an overcomplete

basis [ 7, 16]. Optimizing (12.7) essentially selects out the subset of basis functions

that best account for the data.

To define a probabilistic model, we follow existing conventions for linear gener-

ative models with additive noise [ 6, 16]. We assume the noise, � , to have a Gaus-

sian distribution which yields a data likelihood for a given representation of

� � � ��� ��� �������� "!$#%'&)( � �*!+����� (-, (12.8)

The function
� � � � describes the a priori distribution of the coefficients. Under

the assumption that
��� � � is sparse (highly peaked around zero), maximizing

(12.7) results in very few nonzero coefficients. A compact representation of

�
� is

to describe the values of the non-zero coefficients and their temporal positions

��� � � �/. 0 ���21 0 �43 0 � �65.087-9;:�<.= 7>9 ���21
0�? = � ��� 3 0@? = �;� (12.9)

where the prior for the non-zero coefficient values,
1 0�? = , is assumed to be Lapla-

cian, and the prior for the temporal positions (or intervals), 3 0 ? = , is assumed to be

a gamma distribution.

Finding the Best Encoding

A difficult challenge presented by the proposed model is finding a computation-

ally tractable method for fitting it to the data. The brute-force approach of generat-

ing the basis matrix � generates an intractable number basis functions for signals

of any reasonable length, so we need to look for ways of reducing the computa-

tional cost of optimizating (12.7). We start with the gradient of the log posteriorAA � � � � ��� �B� ���	�C�> ���D � � !+� � �)EGF � � �H� (12.10)
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a b

Figure 12.3. Convolution using the fast Fourier transform is an efficient way to select
an initial solution for the temporal positions of the kernel functions. (a) The convolu-
tion of a sawtooth waveform with a sawtooth-shaped kernel function (middle). (b)
Convolution of a speech segment with a single period sine-wave kernel function.

where � ���������
	���������������
. A basic operation required is � �������

. We saw that� �����
can be computed efficiently using convolution (12.2). Because

���
is also

block circulant
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where
# ���/.1032 �4�5# �62�0871.90:. �

. Thus, terms involving
�;�

can also be computed

efficiently using convolution
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�  
!
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Obtaining an initial representation

An alternative approach to optimizing (12.7) is to make use of the fact that if the

kernel functions are short enough in length, direct multiplication is faster than con-

volution, and that, for this highly overcomplete basis, most of the coefficients will

be zero after being fit to the data. The central problem in encoding the signal then

is to determine which coefficients are non-zero, ideally finding a description of the

time series with the minimal number of non-zero coefficients. This is equivalent

to determining the best set of temporal positions for each of the kernel functions

(12.1).

A crucial step in this approach is to obtain a good initial estimate of the coeffi-

cients. One way to do this is to consider the projection of the signal onto each of

the basis functions, i.e.
��� � . This estimate will be exact (i.e. zero residual error)

in the case of zero noise and
�

orthogonal. For the non-orthogonal, overcomplete

case the solution will be approximate, but for certain choices of the basis matrix,

an exact representation can still be obtained efficiently [ 10, 21].
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Figure 12.3 shows examples of convolving two different kernel functions with

data. One disadvantage with this initial solution is that the coefficient functions,
��������� , are not sparse. For example, even though the signal in figure 12.3a is

composed of only three instances of the kernel function, the convolution is mostly

non-zero.

A simple procedure for obtaining a better initial estimate of the most proba-

ble coefficients is to select the time locations of the maxima (or extrema) in the

convolutions. These are positions where the kernel functions capture the great-

est amount of signal structure and where the optimal coefficients are likely to be

non-zero. Figure 12.4 shows the result of using this procedure to obtain an initial

fit to a speech segment. This can generate a large number of kernel positions, but

their number can be reduced further by selecting only those that contribute sig-

nificantly, i.e. where the average power is greater than some fraction of the noise

level. From these, a basis for the entire signal is constructed by replicating the ker-

nel functions at the appropriate time positions.

Once an initial estimate and basis are formed, the most probable coefficient

values are estimated using a modified conjugate gradient procedure. The size of

the generated basis does not pose a problem for optimization, because it is has

very few non-zero elements (the number of which is roughly constant per unit

time). This arises because each column is non-zero only around the position of

the kernel function, which is typically much shorter in duration than the data

waveform. This structure affords the use of sparse matrix routines for all the key

computations in the conjugate gradient routine. After the initial fit, there typically

are a large number of basis functions that give a very small contribution. These

can be pruned to yield, after refitting, a more probable representation that has

significantly fewer coefficients.

Properties of the Representation

Figure 12.5 shows the results of fitting a segment of speech with a sine wave kernel

set. This was composed of 64 kernel functions constructed using a single period

of a sine function whose log frequencies were evenly distributed between 0 and

Nyquist (4 kHz), which yielded kernel functions that were minimally correlated

(they are not orthogonal because each has only one cycle and is zero elsewhere).

The kernel function lengths varied between 5 and 64 samples. The plots show the

positions of the non-zero coefficients superimposed on the waveform. The residual

errors curves from the fitted waveforms are shown offset, below each waveform.

The right axes indicate the kernel function number which increase with frequency.

The dots show the starting position of the kernels with non-zero coefficients, with

the dot size scaled according to the mean power contribution.

Figure 12.5a shows that the structure in the coefficients repeats for each oscil-

lation in the waveform. Adding a delay leaves the relative temporal structure of

the non-zero coefficients mostly unchanged (figure 12.5b). The small variations

between the two sets of coefficients are due to variations in the fitting of the small-
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Figure 12.4. The initial fitting procedure of selecting kernel function positions at
convolution peaks. The dots in the upper plot indicate positions of kernels (right
axis) with size scaled by the mean power contribution. The original and initial
reconstructed speech signal are plotted below, with the bottom plot showing the
residual error (12 dB SNR). The residual error can be improved to 70dB SNR after
optimizing the coefficient magnitudes (figure 12.5a).

magnitude coefficients. Representing the signal in figure 12.5b with a standard

complete basis would result in a very different representation.

Fine-scale time frequency analysis

In contrast to Fourier or wavelet decompositions, this type of representation or de-

composition can place the kernel functions at arbitrary time points. In the special

case of sinusoid kernel functions, the decomposition performs a fine-scale time-

frequency analysis, an example of which is illustrated in figure 12.6. The plot of

the kernel function positions show how the representation picks up the high fre-

quency structure near the beginning of the waveform. In a Fourier decomposi-
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Figure 12.5. Fitting a shift-invariant model to a segment of speech, x(t). (a) Shows
the fit to the original unshifted signal. The accuracy of the fit is 70 dB SNR. (b) The
fit to a shifted version of the same signal.
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Figure 12.6. An example showing how, in the case of sinusoid kernel functions, the
decomposition performs a fine-grained time-frequency analysis.

tion, the high frequency energy would only be localized to within the window. A

wavelet decomposition would allow better temporal localization, but would still

be limited to a set of discrete temporal positions.

Neural Implementations

The initial representation is implemented using a simple convolution plus thresh-

old. How could coefficient magnitudes be coded with fixed amplitude action po-
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tentials? We consider several models of biologically plausible models of spike cod-

ing [ 13]. Figure 12.7 shows several possibilities. In figure 12.7a, coefficient magni-

tude is encoded by the average firing rate. This is a classic model of neural coding

of analogue values and can be implemented simply by making firing probability

increase with increasing input. The disadvantage of this model is that temporal

precision is lost.

Figure 12.7b shows a model that encodes the magnitude of the kernel functions

using a distributed population code. In this model, several neurons with the same

or similar convolution properties firing probabilistically in response to the input

magnitude. The analog signal is transmitted using a population of spikes, but

can be recovered at the post-synaptic neural simply by summation. In contrast

to the average firing rate model, this model preserves temporal precision, but at

the expense of addition units. This type of model offers on explanation for why

overcomplete representations might be useful in neural coding.

The model in figure 12.7c encodes magnitude using the position relative to

a common background oscillation that influences the firing times of neurons in

the population. Neurons that receive strong input (magnitude) will fire earlier,

thus encoding magnitude in terms of relative spike timing. Having a common

background oscillation can serve both to establish a common reference for the

population and to reduce the variability in the relative firing times.

Figure 12.7d shows a model that makes use of the same mechanisms as that

in 12.7c, i.e. neurons receiving larger magnitude input will reach the spiking

threshold faster, but does not use a common oscillation. Magnitude information is

conveyed in the relative timing or synchrony of the spikes, and could be decoded

by giving more weight to earlier action potentials. An assumption of this model is

that random timing coincidences will be interpreted as noise. An advantage of this

and the previous model is that no temporal precision is lost and redundancy in the

unit response properties is not required, although that may still be advantageous

for compensating for intrinsic noise in the population or limitations of spike timing

precision.

Discussion

The model presented here can be viewed as an extension of the shiftable trans-

forms of [ 21]. One difference is that here no constraints are placed on the ker-

nel functions. Furthermore, this model accounts for additive noise, which yields

automatic signal denoising and provides sensible criteria for selecting significant

coefficients. An important unresolved issue is how well the algorithm works for

increasingly non-orthogonal kernels.

Representing a time-varying signal in terms of a sparse set of kernel functions

is exactly the model assumed in the approach of reverse correlation or stimulus

reconstruction models [ 11, 12, 5], but the goals are converse, i.e. rather from going

from a single spike train to an estimate of the stimulus, the model and algorithm

described here go from a stimulus to its optimal representation in a population
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Figure 12.7. (a) Spike frequency model. Convolution magnitude is encoded by the
average firing rate, with some loss of temporal precision. (b) Population spike model.
Convolution magnitude is encoded by a population of neurons with similar kernels.
If each unit fires probabilistically, the magnitude of the convolution is recovered in
the post-synaptic sum. (c) Phase model. Convolution magnitude is encoded by the
timing of the action potential relative to a common oscillation using the property that
larger magnitude inputs will reach the spiking threshold faster. (d) Relative timing
model. Magnitude is again coded by relative spike timing, but without a common
oscillation.

of spike trains. In this regard, the model makes general predictions about the

temporal coordination of multiple spike trains, which would be interesting to

investigate experimentally.

One interesting property of this representation is that it results in a spike-like

representation. In the resulting set of non-zero coefficients, not only is their value

important for representing the signal, but also their relative temporal position,

which indicate when an underlying event has occurred. This shares many prop-

erties with cochlear models. The model described here also has capacity to have

an overcomplete representation at any given timepoint, e.g. a kernel basis with an

arbitrarily large number of frequencies. These properties make this model poten-

tially useful for binaural signal processing applications.

The effectiveness of this method for efficient coding remains to be proved. A

trivial example of a shift-invariant basis is a delta-function model. For a model to

encode information efficiently, the representation should be non-redundant. Each

basis function should “grab” as much structure in the data as possible and achieve
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the same level of coding efficiency for arbitrary shifts of the data. The matrix form

of the model (12.4) suggests that it is possible to achieve this optimum by adapting

the kernel functions themselves using methods for adapting overcomplete repre-

sentations [ 16, 14]. Initial results suggest that this approach is promising. Beyond

this, it is evident that modeling the higher-order structure in the coefficients them-

selves will be necessary both to achieve an efficient representation and to capture

structure that is relevant to such tasks as speech recognition or auditory stream

segmentation.
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