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Neural receptive fields are plastic: with experience, neurons in many
brain regions change their spiking responses to relevant stimuli.
Analysis of receptive field plasticity from experimental measure-
ments is crucial for understanding how neural systems adapt their
representations of relevant biological information. Current analysis
methods using histogram estimates of spike rate functions in non-
overlapping temporal windows do not track the evolution of recep-
tive field plasticity on a fine time scale. Adaptive signal processing is
an established engineering paradigm for estimating time-varying
system parameters from experimental measurements. We present an
adaptive filter algorithm for tracking neural receptive field plasticity
based on point process models of spike train activity. We derive an
instantaneous steepest descent algorithm by using as the criterion
function the instantaneous log likelihood of a point process spike
train model. We apply the point process adaptive filter algorithm in
a study of spatial (place) receptive field properties of simulated and
actual spike train data from rat CA1 hippocampal neurons. A stability
analysis of the algorithm is sketched in the Appendix. The adaptive
algorithm can update the place field parameter estimates on a
millisecond time scale. It reliably tracked the migration, changes in
scale, and changes in maximum firing rate characteristic of hippocam-
pal place fields in a rat running on a linear track. Point process
adaptive filtering offers an analytic method for studying the dynam-
ics of neural receptive fields.

The receptive fields of neurons are dynamic; that is, their
responses to relevant stimuli change with experience. Experi-

ence-dependent change or plasticity has been documented in a
number of brain regions (1–5). For example, in the cat visual system,
retinal lesions lead to reorganization of cortical topography (3).
Peripheral nerve sectioning can alter substantially the receptive
fields of neurons in monkey somatosensory and motor cortices (6,
7). Similarly, the directional tuning of neural receptive fields in
monkey motor cortex changes as the animal learns to compensate
for an externally applied force field while moving a manipulandum
(8). In the rat hippocampus, the system we study here, the pyramidal
neurons in the CA1 region have spatial receptive fields. As a rat
executes a behavioral task, a given CA1 neuron fires only in a
restricted region of the experimental environment, termed the cell’s
spatial or place receptive field (9). Place fields change in a reliable
manner as the animal executes its task (5, 10). When the experi-
mental environment is a linear track, these spatial receptive fields
on average migrate and skew in the direction opposite the cell’s
preferred direction of firing relative to the animal’s movement and
increase in scale and maximum firing rate (5, 10). Because receptive
field plasticity is a characteristic of many neural systems, analysis of
these dynamics from experimental measurements is crucial for
understanding how different brain regions learn and adapt their
representations of relevant biological information.

Current analysis methods provide a sequence of discrete snap-
shots of these dynamics by comparing histogram estimates of
receptive field characteristics in nonoverlapping temporal windows
(2, 5, 8, 10). Although histogram estimates demonstrate that the
receptive fields have different characteristics in different temporal
windows, they do not track the evolution of receptive field plasticity

on a fine time scale. Simulations of dynamical system models
provide mechanistic insight into neural receptive field dynamics (11,
12); however, they cannot measure these properties in experimental
data. Neural network models are also not well-suited for estimating
on-line temporal dynamics of neural receptive fields, because they
typically require an extended period of off-line training to learn
system characteristics (13, 14).

Adaptive signal processing offers an approach to analyzing the
dynamics of neural receptive fields, which, to our knowledge, has
not been previously investigated. Given a system model, adaptive
signal processing is an established engineering paradigm for esti-
mating the temporal evolution of a system parameter (15, 16).
Adaptive filter algorithms usually generate the current parameter
estimate recursively by combining the preceding estimate with new
information that comes from current data measurements. How the
new information in the current data is processed depends on the
criterion function, which, in many adaptive signal-processing prob-
lems, is chosen to be a quadratic expression. A quadratic criterion
function can be used with continuous-valued measurements, how-
ever, in the absence of high firing rates, this function is not
appropriate for neural systems, because spike trains are point
process time series.

We develop an adaptive filter algorithm for tracking neural
receptive field plasticity from spike train recordings. We show that
the instantaneous log likelihood of a point process spike train model
provides an appropriate criterion function for constructing an
adaptive filter algorithm by using instantaneous steepest descent.
We use the algorithm to analyze the spatial receptive fields of CA1
hippocampal neurons from both simulated and experimental data.
We sketch in the Appendix a stability analysis for the algorithm.

Theory
The essential first step for constructing our adaptive point process
filter algorithm is selection of the criterion function. The commonly
used quadratic error function has limited applicability to neural
spike train data in the absence of high firing rates. We therefore use
the sample path probability density of a point process to define the
instantaneous log likelihood, a criterion function appropriate for
adaptive filtering with spike train measurements. Snyder and Miller
(17) derived the sample path probability density for an inhomoge-
neous Poisson process. Our presentation follows Daley and Vere-
Jones (18) and gives an extension of the sample path probability
density to an arbitrary point process.

The Instantaneous Log Likelihood of a Point Process. Let (0, T]
denote the observation interval, and let 0 , u1 , u2 ,, . . . , ,
uJ21 , uJ # T be a set of J spike times (point process) observations.
For t [ (0, T], let N0

t be the sample path of the point process over
(0, t]. It is defined as the event N0

t 5 {0 , u1 , u2, . . . , uj # t ù
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N(t) 5 j}, where N(t) is the number of spikes in (0, t] and j # J. The
sample path is a right continuous function that jumps 1 at the spike
times and is constant otherwise (17). The function N0

t tracks the
location and number of spikes in (0, t] and hence contains all the
information in the sequence of spike times. We define the condi-
tional intensity function for t [ (0, T] as

l~tuHt! 5 lim
D3 0

Pr~N0
t 1 D 2 N0

t 5 1uHt!

D
, [2.1]

where Ht is the history of the sample path up to t and that of any
covariates up to time t (18). If the point process is an inhomoge-
neous Poisson process, then l(tuHt) 5 l(t) is simply the Poisson rate
function. Thus, the conditional intensity function (Eq. 2.1) is a
history-dependent rate function that generalizes the definition of
the Poisson rate. The probability density of the sample path over
(0, T] is (17, 18)

p~N0
T! 5 expHE

0

T

log l~uuHu!dN~u! 2E
0

T

l~uuHu!duJ. [2.2]

If the probability density in Eq. 2.2 depends on an unknown
p-dimensional parameter u to be estimated, then the logarithm of
Eq. 2.2 viewed as a function of u given N0

T is the sample path log
likelihood defined as

L~uuN0
T! 5 E

0

T

,u~u!du, [2.3]

where ,t(u) is the integrand in Eq. 2.2 or the ‘‘instantaneous’’ log
likelihood defined as

,t~u! 5 log@l~tuHt, u!#
dN~t!

dt
2 l~tuHt, u!. [2.4]

Heuristically, Eq. 2.4 measures the instantaneous accrual of ‘‘in-
formation’’ from the spike train about the parameter u. We will use
it as the criterion function in our point process adaptive filter
algorithm.

An Adaptive Point Process Filter Algorithm. To derive our adaptive
point process filter algorithm, we assume that the p-dimensional
parameter u in the instantaneous log likelihood (Eq. 2.4) is time-
varying. Choose K large, and divide (0, T] into K intervals of equal
width D 5 TyK, so that there is at most one spike per interval. The
adaptive parameter estimates will be updated at kD for k 5 1, . . . ,
K. Instantaneous steepest descent is a standard prescription for
constructing an adaptive filter algorithm to estimate a time-varying
parameter (15, 16). The algorithm takes the form

ûk 5 ûk21 2 «
­Jk~u!

­u
U

u 5 ûk21

, [2.5]

where ûk is the estimate at time kD, Jk(u) is the criterion function at
kD, and « is a positive learning rate parameter to be specified. If for
continuous-valued observations Jk(u) is chosen to be a quadratic
function of u, then it may be viewed as the instantaneous log
likelihood of a Gaussian process. In a similar way, the instantaneous
steepest descent algorithm for adaptively estimating a time-varying
parameter from point process observations can be constructed by
substituting the instantaneous log likelihood from Eq. 2.4 for Jk(u)
in Eq. 2.5. This yields

ûk 5 ûk21 2 «
­lk~u!

­u
U

u 5 ûk21

[2.6]

ûk 5 ûk21 2 «F 1
l~kDuHk, ûk21!

­l~kDuHk, ûk21!

­u
dN~kD!

2
­l~kDuHk, ûk21!

­u
DG , [2.7]

which, on rearranging terms, gives the instantaneous steepest
descent adaptive filter algorithm for point process measurements

ûk 5 ûk21 2 «
1

l~kDuHk, ûk21!

­l~kDuHk, ûk21!

­u

@dN~kD! 2 l~kDuHk, ûk21!D#. [2.8]

Eqs. 2.4 and 2.8 show that the conditional intensity function
completely defines the instantaneous log likelihood and hence a
point process adaptive filtering algorithm using instantaneous
steepest descent. The parameter update ûk at kD is the previous
parameter estimate ûk21 plus a dynamic gain coefficient,
2«l(kDuHk, ûk21)21[­l(kDuHk, ûk21)y­u], multiplied by an innova-
tion or error signal [dN(kD) 2 l(kDuHk, ûk21)D]. The error signal
is the new information coming from the spike train, and it is defined
by comparing the predicted probability of a spike, l(kDuûk21)D, at
kD with dN(kD), which is 1 if a spike is observed in ((k 2 1)D, kD]
and 0 otherwise. How much the new information is weighted
depends on the magnitude of the dynamic gain coefficient. The
instantaneous log likelihood for an inhomogeneous Poisson process
appears in the recursive spike train decoding algorithm developed
by Brown et al. (19). The parallel between the error signal in Eq. 2.8
and that in standard recursive estimation algorithms suggests that
the instantaneous log likelihood is a reasonable criterion function
for adaptive estimation with point process observations.

In the Appendix, we sketch a stability analysis that gives some
necessary conditions the point process adaptive filter algorithm
must satisfy to track reliably a time-varying parameter.

Data Analysis
An Adaptive Filter Algorithm for Tracking Place Field Dynamics. To
derive a specific point process adaptive filter algorithm, we consider
spike trains from pyramidal cells in the CA1 region of the rat
hippocampus recorded while the animal runs back and forth on a
linear track. As stated in the Introduction, these neurons have
well-documented spatial receptive fields with known dynamic prop-
erties (5, 9, 10). On a linear track, place fields resemble one-
dimensional Gaussian curves where the spiking activity of the
neuron is related to the rat’s current position and its direction of
motion (20). Other factors that affect the firing characteristics of the
neuron are the phase of the theta rhythm, the animal’s running
speed, and the position–theta rhythm interaction known as phase
precession (20, 21). For simplicity, we consider in this analysis only
position and direction of motion. If x(t) is the animal’s position at
time t, we define the conditional intensity function for the place
field model as

l~tuu! 5 expHa 2
~x~t! 2 m!2

2s2 J , [3.1]

where m is the place field center, s is a scale factor, and exp{a} is
the neuron’s maximum firing rate, which occurs at the place field
center. Here, u 5 (a, s, m)9 is the three-dimensional parameter
vector. Because l(tuu) has no history dependence, it defines an
inhomogeneous Poisson model for the spiking activity. From Eqs.
2.4 and 3.1, the instantaneous log likelihood is

,t~u! 5 Fa 2
1
2

~x~t! 2 m!2

s2 GdN~t!
dt

2 expHa 2
1
2

~x~t! 2 m!2

s2 J ,

[3.2]
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and the adaptive filter algorithm at time kD (Eq. 2.8) is

ûk 5 ûk21 2 F «a

«s~ŝk21
2 3!~x~t! 2 m̂k21!

2

«mŝk21
2 2~x~t! 2 m̂k21!

G~dN~kD! 2 l~kDuûk21!D!,

[3.3]

where «a, «s, and «m are, respectively, the learning rate parameters
for a, s, and m. Because u parameterizes the place field model in
Eq. 3.1, by tracking the time evolution of u, we track the time
evolution of neuron’s spatial receptive field.

Adaptive Analysis of Simulated Place Receptive Field Dynamics. To
illustrate the algorithm, we analyze first simulated spike train data
based on the place cell model in Eq. 3.1, by using parameters
consistent with the known spiking dynamics of hippocampal neu-
rons. Simulation of the model in Eq. 3.1 was carried out by using a
thinning algorithm, assuming an inhomogeneous Poisson process
(22, 23). We assumed a 150-cm linear track with a rat running at a
constant velocity of 25 cmysec and simulated the spiking activity of
a single place cell (Fig. 1). The simulated place field was directional;
the cell fired only when the animal moved from the bottom to the
top of the track (Fig. 1 Inset). During the 800-sec experiment, the
place field parameters evolved linearly as follows: exp(a), the
maximum spike rate grew from 10 to 25 spikes per sec; s, the place
field scale, expanded from 12 to 18 cm, and m, the place field center,
migrated from 25 to 125 cm. The spiking activity was designed to
simulate the unidirectional migration, increase in scale, and in-
crease in maximal firing rate characteristic of place cells for an
animal running on a linear track (5, 10, 11).

We applied our adaptive filter algorithm to the simulated data,
updating the parameter estimates every 1 msec. The absolute values
of the components in the dynamic gain are upper bounds on the
changes in the components of u at each step. By using the results of
Mehta et al. (5), we computed average values of the dynamic gain
vector and set the learning rate parameters at 10 times these average
values to track rapid receptive field changes (10). We computed the

initial parameter guesses as the maximum likelihood (ML) esti-
mates based on the first 50 spikes (;50 sec). For a, s, and m, the
initial parameter estimates were close to the true values (Fig. 2
A–C). As a consequence, the adaptive algorithm begins to track all
three parameters immediately, and the true and estimated trajec-
tories agree over the entire simulation.

A comparison of the true and estimated place fields over time is
illustrated in Fig. 3. The place field increases in height (maximum
firing rate) and width with time. The algorithm shows good
agreement between the true (dashed lines) and estimated (solid
lines) place fields with unbiased tracking of all three parameters.
The advantage of using an adaptive estimation algorithm is dem-
onstrated by comparing the static ML place field estimate for the

Fig. 1. Simulated dynamics of a single place cell’s spiking activity recorded from
a rat running back and forth on a 150-cm linear track at a constant speed of 25
cmysec for 800 sec. The vertical axis is space, and the horizontal axis is time. The
vertical lines show the animal’s path, and the dots indicate the location of the
animal when the neuron discharged a spike. The spiking activity is unidirectional;
the cell fires only when the animal moves from the top to the bottom of the track,
as seen in the Inset. Simulations used an inhomogeneous Poisson model for Eq.
3.1. Over the 800 sec, the place field parameters evolved as follows: exp(a), the
maximum spike rate grew from 10 to 25 spikes per sec; s, the place field scale,
expandedfrom12to18cm;and m, theplacefieldcenter,migratedfrom25to125
cm. The solid diagonal line is the true trajectory of m.

Fig. 2. True parameter trajectories and the adaptive estimates of parameter
trajectories for the place field model in Eq. 3.1. The straight (wavy) line is (A). True
(estimated) trajectory of the maximum spike rate, exp(a). (B) True (estimated)
trajectory of the scale parameter, s. (C) True (estimated) trajectory of the place
field center, m. Adaptive estimates were updated every 1 msec. Squares on the
estimated parameter trajectories at 125, 325, 525, and 725 sec indicate the times
at which the place fields in Fig. 3 are evaluated. The algorithm accurately tracked
the temporal evolution of the model parameters.

Fig. 3. Evolution of the true (dashed lines) and adaptive estimates (solid
lines) of the place fields. The place fields are shown at 125 (blue), 325 (green),
525 (red), and 725 (aqua) sec. The black dashed line is the ML estimate of the
place field based on all the spikes in the 800 sec. By ignoring the temporal
evolution of the place field, the ML estimate gives a misleading description of
the field’s true characteristics, representing it incorrectly as a low-amplitude
broad structure that spans the entire track.
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entire experiment with the adaptive estimates (Fig. 3). By ignoring
the dynamics of the place field, the ML estimate incorrectly
represents the field as a low-amplitude broad structure that spans
the entire track. Static ML analyses ignore the plasticity in the place
cell’s spatial properties. A video presentation of this analysis
is published as supporting information on the PNAS web site,
www.pnas.org.

For an arbitrary set of parameters and an arbitrary learning rate,
it is not given that the adaptive algorithm will track correctly,
because our theoretical results in the Appendix give only the
conditions necessary for tracking. Therefore, for the parameter
values used in Fig. 1, we simulated 50 realizations of place cell data
and applied the adaptive estimation algorithm to each data set to
illustrate that the results in the simulated example in Figs. 1–3 are
typical. At each update time point kD, we computed the mean and
standard deviation of the 50 adaptively estimated parameters and
used these to derive approximate 95% confidence intervals for the
true parameter value at each time point. The results of this analysis
(Fig. 4) agree closely with the single series simulations in Fig. 1. All
the confidence intervals cover the true parameter trajectories. The
averaged and true trajectories of exp(a) (Fig. 4A) and s (Fig. 4B)
are indistinguishable and show no bias, whereas the averaged
trajectory of m (Fig. 4C) is close to the true trajectory with a slight
negative bias. This slight bias reflects the time lag in the estimation
because the algorithm uses no model about the actual parameter
trajectory to make a one-step-ahead prediction of the next param-
eter value prior to computing the updated estimate on the basis of
newly recorded spiking activity. Overall, the simulation suggests
that the algorithm tracks well.

Adaptive Analysis of Actual Place Receptive Field Dynamics. We
applied the adaptive filter algorithm to an actual place cell spike
train recorded from a rat running back and forth for 1,200 sec on
a 300-cm U-shaped track (24). To display all the experimental data
on a single graph, we show a linear representation of the track (Fig.
5). The actual trajectory is much less regular than the simulated
trajectory in Fig. 1, because the animal stops and starts several
times, and in two instances (50 and 650 sec) turns around shortly
after initiating its run. On several of the upward passes, particularly

in the latter part of the experiment, the animal slows as it ap-
proaches the curve in the U-shaped track at approximately 150 cm.
The strong place-specific firing of the neuron is readily visible as the
spiking activity occurs almost exclusively between 50 and 100 cm.
The spiking activity of the neuron is entirely unidirectional as the
cell discharges only as the animal runs up and not down the track
(Fig. 5 Inset).

We applied the model (Eq. 3.1) and the adaptive filter algorithm
(Eq. 3.3) to this actual spike train data, updating the estimates every
1 msec. We used the learning rate parameters chosen in the
simulation study. The starting parameter estimates were the ML
estimate computed from the first 50 spikes (;200 sec). The
trajectory of exp(a), the maximum spike rate, shows a steady
increase from 3 to almost 30 spikesysec over the 1,200 sec of the
experiment (Fig. 6A). The increase is apparent in the raw data in

Fig. 4. Simulation study of the adaptive filter algorithm (Eq. 3.3) by using 50
realizations of the place cell model in Eq. 3.1 and the parameters in Fig. 1. Only
50 sec of the full trajectories are displayed with expanded scales to aid visualiza-
tion. The true trajectory (black solid line) is shown along with the average of the
adaptiveestimatesof thetrajectory (redsolid line).Approximate95%confidence
bounds (red dashed lines) were computed for each parameter. (A) exp(a); (B) s;
and (C) m. All true trajectories are within the 95% confidence bounds, and all
estimated trajectories are close to the true trajectories.

Fig. 5. Place-specific firing dynamics of an actual CA1 place cell recorded
from a rat running back and forth on a 300-cm U-shaped track for 1,200 sec.
The track was linearized to display the entire experiment in a single graph. The
vertical lines show the animal’s position, and the red dots indicate the times
at which a spike was recorded. The Inset is an enlargement of the display from
320 to 360 sec to show the cell’s unidirectional firing, i.e., spiking only when
the animal runs from the bottom to the top of the track.

Fig. 6. Adaptive filter estimates of the trajectories. (A) Maximum spike rate,
exp(a); (B) place field scale, s; and (C) place field center m. Adaptive estimates
were updated at 1-msec intervals. The squares at 300, 550, 800, and 1,150 sec
are the times at which the place fields are displayed in Fig. 7. The growth of
the maximum spike rate (A), the variability of the place field scale (B), and the
migration of the place field center (C) are all readily visible.
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Fig. 5. The scale parameter, s, shows the greatest fluctuations
during the experiment; it rises for the first 500 sec from 10 to 16 cm
and fluctuates between 15 and 16 cm for the balance of the
experiment (Fig. 6B). This fluctuation in scale is also readily visible
in the spike train data in Fig. 5. The place cell center migrates over
the first 700 sec from 85 to 65 cm and stays near 65 cm for the
remainder of the experiment (Fig. 6C).

The evolution of the entire field is illustrated in Fig. 7 by plotting
the instantaneous place field estimates at 300, 550, 800, and 1,150
sec. The sequence of place field estimates shows the time evolution
of the cell’s spatial receptive field. By contrast, the ML estimate
based on the entire 1,200 sec of data obscures the temporal
dynamics by overestimating (underestimating) the place field’s
spatial extent and underestimating (overestimating) its maximum
firing rate at the end (beginning) of the experiment. This example
shows that the dynamic of actual place cell receptive fields can be
tracked instantaneously from recorded spiking activity. The migra-
tion of center and the growth in scale and in maximum firing rate
are consistent with previous reports (5, 10). A video presentation
of this analysis is published as supporting data on the PNAS web
site, www.pnas.org, along with analyses of the spatial receptive field
dynamics of three other CA1 hippocampal neurons.

Our current analysis captures all the dynamic behavior of place
cells with the exception of skewing. By construction, the place cell
model in Eq. 3.1 cannot describe this behavior. To reliably track
skewing along with the other dynamic features of the place cells, we
reformulated our adaptive filter algorithm by using a spline-based
model for the place field. A description of this model and an
example of its application are also published as supporting infor-
mation on the PNAS web site, www.pnas.org.

Discussion
We have presented an approach to analyzing neural receptive field
plasticity by using a point process adaptive filter algorithm. The key
to designing the algorithm was use of the instantaneous log
likelihood (Eq. 2.4) of a point-process model as the criterion
function in the instantaneous steepest descent formula (Eq. 2.5).
The more commonly used quadratic criterion function has limited
applicability to spike train data unless the point process time series
can be well approximated by a continuous-valued process. The
conditional intensity function (Eq. 2.1) completely defines the
probability structure of a regular point process (18) and its instan-
taneous log likelihood. Therefore, specifying a conditional intensity
function model of a neural spike train with a time-varying param-

eter provides a straightforward general prescription for construct-
ing a point process adaptive filtering algorithm using instantaneous
steepest descent.

Our adaptive filter algorithm offers important advantages over
commonly used histogram-based methods for analyzing receptive
field plasticity. Whereas histogram methods provide discrete snap-
shots of neural receptive fields in broad nonoverlapping time
windows, our algorithm can track receptive field dynamics on a
millisecond time scale. We find that videos rather than graphical
displays offer the best means of studying receptive field plasticity
with our methods (see data, www.pnas.org, and http:yy
neurostat.mgh.harvard.edu). Our adaptive filter formally resembles
certain algorithms in statistical learning theory (25). Unlike neural
network-based learning algorithms (13, 14), our algorithm repre-
sents the relation between the stimulus and the neural response
with a parametric model. It can begin tracking after a short initial
estimation period (50–200 sec in our examples), because it does not
require an extended training period to learn the salient character-
istics of the neural system.

Our small simulation study suggests that the adaptive filter
algorithm tracked well a set of parameter trajectories like those seen
in actual hippocampal neurons. In our analysis of the actual place
cell data, the spatial receptive fields migrated in the direction
opposite the cell’s preferred direction of firing relative to the
animal’s movement and increased in scale and maximum firing rate
as in the average behavior described in previous reports (5, 10, 11).
Place field migration was predicted by Blum and Abbott (11) on the
basis of postulated asymmetric Hebbian strengthening of synapses
between hippocampal neurons with overlapping place fields. Mehta
et al. (5, 10) observed place field migration and skewing (10) in CA1
neurons, reporting their findings in terms of population summaries
of place field characteristics averaged across cells. Our adaptive
filter algorithm can track the temporal dynamics of place fields for
individual cells. We successfully tracked the skewing seen in hip-
pocampal place fields by using our adaptive filter with a spline to
model the field’s non-Gaussian spatial structure (supporting infor-
mation, www.pnas.org).

Our results establish the feasibility of using adaptive signal
processing methods to analyze neural receptive field plasticity.
Further development of this work is needed to make these methods
a useful practical tool for spike train data analysis. First, because
neural activity in many brain regions, including the hippocampus,
is not best modeled as a Poisson process (26, 27), applying the point
process adaptive filter in the general (non-Poisson) framework in
Eq. 2.8 is an important extension we are investigating. Second, the
place field model should be extended to include covariates other
than position that affect hippocampal spiking activity such as theta
rhythm modulation, the animal’s running speed, and phase pre-
cession (21). Third, our stability analysis established only the
necessary condition of local stability for the case in which the
parameter trajectories are time-varying around a constant true
value. Global stability of our algorithm is currently being investi-
gated. We chose « on the basis of the estimated maximum change
in the dynamic gain function (Eq. 2.8). Our adaptive filter estimates
were insensitive to 50% changes in « determined this way. The
global stability analysis and further simulation studies will also help
develop a systematic approach to choosing the learning rate pa-
rameters. Fourth, we are developing alternative point process
adaptive filter algorithms analogous to the extended Kalman filter
and recursive least-squares methods for continuous-valued data
(15, 16). These approaches offer standard errors and confidence
bounds for the estimated parameter trajectories. Finally, we are
extending the point process goodness-of-fit measures developed by
Brown and colleagues (19, 27) to assess overall agreement between
spike trains and conditional intensity function models with time-
varying parameters. These methods will provide an important
measure of how reliably the adaptive algorithms perform in actual
data analyses.

Fig. 7. Estimated place fields at times 300 (blue), 550 (green), 800 (red), and
1,150 (aqua) sec. As in Fig. 3, the black dashed line is the ML estimate of the
place field obtained by using all the spikes in the experiment. The ML estimate
ignores the temporal evolution of the place field (see Fig. 3).
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Future investigations with our point process adaptive filter
algorithms will include a study of hippocampal place field formation
as the animal learns a novel environment. We previously reported
a decoding study of hippocampal place cell ensembles, which
assumed the place field characteristics to be unchanged during the
decoding stage of the analysis (19). We will reanalyze these data by
using dynamically updated place field estimates computed from our
adaptive filter algorithm.

Appendix: Stability Analysis
To guarantee that our adaptive point process filter algorithm is
capable of tracking time-varying changes in u, it is necessary to
analyze its stability properties. A global stability analysis of our
algorithm is a major task that will be pursued in detail elsewhere.
Here, we sketch an argument to show that our algorithm exhibits
the less general but nevertheless important basic property of local
stability. We show that: (i) our algorithm in Eq. 2.6 may be
represented as a forced nonlinear time-varying stochastic dynamical
system, (ii) the homogeneous (unforced) component of this sto-
chastic system is locally stable by using averaging methods (15) to
show that the associated averaged deterministic system is locally
stable, and (iii) because the averaged system is locally stable, we
conclude by the Hovering theorem that the corresponding homo-
geneous stochastic system is locally stable (15). By local stability, we
mean that if u(t) 5 u0, the homogeneous component of the
stochastic dynamical system converges to u0 as t 3 `.

A Stochastic Dynamical System Representation of the Point Process
Adaptive Filter Algorithm. To simplify notation, we let lu(t) 5
l(tuHt, u(t)). We express Eq. 2.6 in its continuous time form

­û

­t
5 2«

­,t~u!

­û
. [A.1]

If we combine Eqs. 2.4 and A.1, then the instantaneous steepest
descent algorithm has the general form

­û

­t
5 «

­log lu~t!

­û
SdN

dt
2 lû~t!D . [A.2]

For any u0, we can re-express Eq. A.2 as

­û

dt
5 «

­log lu~t!

­û
~lu0

~t! 2 lû~t!! 1 «
­log lu~t!

­û
SdN~t!

dt
2 lu0

~t!D .

[A.3]

The term dN(t) 2 lu0
(t)dt is a martingale increment (roughly

speaking, a white noise) (28), so that the second term on the right

hand side of Eq. A.3 is a white noise forcing the homogeneous
system

­û

dt
5 «~lu0

~t! 2 lû~t!!
­log lu~t!

­û
. [A.4]

Averaging Methods and a Local Stability Analysis. Given the homo-
geneous system in Eq. A.4, we proceed in two steps to analyze its
local stability by using averaging methods (15). In step one, we
approximate Eq. A.4 by a simpler averaged system, which is
deterministic and whose local stability can be directly established.
In step two, we use the Hovering theorem (15) to conclude that the
system in Eq. A.3 is locally stable. The Hovering theorem provides
conditions under which the stability of a stochastic system, such as
Eq. A.3, may be inferred from the stability of its associated averaged
deterministic system. We let u#(t) denote the variable of the aver-
aged system. The averaged system associated with Eq. A.4 is defined
as (15)

­u# ~t!
­t

5 «fav~u# ~t!!, [A.5]

where fav(u#(t)) 5 E[(lu0
(t) 2 lu#(t))(­log lu#(t)y­u)], and the expec-

tation is with respect to the marginal probability density of x(t). We
expand Eq. A.5 in a Taylor series about u0 to obtain the linearized
system

­u# ~t!
­t

5 2«A~u#~t! 2 u0!, [A.6]

where A is the p 3 p matrix defined as A 5 2(­fav(u#(t))y­u)uu#(t)5u0
5

E(lu#(t)(­log lu#(t)y­u)((­log lu#(t)y­u))9), and p is the dimension of
u#(t). We have local exponential stability if u#(t) is uniformly bounded
and A is positive definite, i.e., c9Ac . 0 for any vector c Þ 0. Showing
that u#(t) is uniformly bounded is straightforward by using Ly-
apounov methods (15). We omit this technical point. Local expo-
nential stability is a property of the system in Eq. A.6, because for
any c Þ 0, c9Ac 5 E[lu#(t)(c9(­log lu#(t)y­u))2] . 0, provided the
marginal probability density of x(t) is nondegenerate. Therefore,
the averaged deterministic system in Eq. A.5 is locally stable. Local
stability of the homogeneous stochastic system in Eq. A.4 now
follows by simply verifying that it satisfies the conditions of the
Hovering theorem (15).
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