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Abstract

Neurons in primary visual cortex are typically classi®ed as either simple or complex. Whereas simple cells respond strongly to
grating and bar stimuli displayed at a certain phase and visual ®eld location, complex cell responses are insensitive to small

translations of the stimulus within the receptive ®eld [Hubel & Wiesel (1962) J. Physiol. (Lond.), 160, 106±154; Kjaer et al. (1997)

J. Neurophysiol., 78, 3187±3197]. This constancy in the response to variations of the stimuli is commonly called invariance.
Hubel and Wiesel's classical model of the primary visual cortex proposes a connectivity scheme which successfully describes

simple and complex cell response properties. However, the question as to how this connectivity arises during normal

development is left open. Based on their work and inspired by recent physiological ®ndings we suggest a network model capable

of learning from natural stimuli and developing receptive ®eld properties which match those of cortical simple and complex cells.
Stimuli are drawn from videos obtained by a camera mounted to a cat's head, so they should approximate the natural input to

the cat's visual system. The network uses a competitive scheme to learn simple and complex cell response properties.

Employing delayed signals to learn connections between simple and complex cells enables the model to utilize temporal
properties of the input. We show that the temporal structure of the input gives rise to the emergence and re®nement of complex

cell receptive ®elds, whereas removing temporal continuity prevents this processes. This model lends a physiologically based

explanation of the development of complex cell invariance response properties.

Introduction

Hubel & Wiesel (1962) proposed a feedforward model to explain the

response properties of simple as well as complex cells. Simple cells

obtain their selectivity by receiving input from appropriate neurons in

the lateral geniculate nucleus. Complex cells pool input from simple

cells, which are speci®c to different positions and polarities but share

similar orientation tuning. Several extensions to this model have been

proposed and the quantitative contribution of different afferents to

complex cells is still debated (Hoffmann & Stone, 1971; Movshon,

1975; Wilson & Sherman, 1976; Toyama et al., 1981; Ferster &

Lindstrom, 1983; Malpeli et al., 1986; Douglas & Martin, 1991; Reid

& Alonso, 1996; Sompolinsky & Shapley, 1997; Alonso & Martinez,

1998; Mel et al., 1998; Chance et al., 1999). Nevertheless, the Hubel

and Wiesel model still adequately serves as a foundation for

understanding the invariance of complex cell responses.

Despite its popularity, the classical model fails to address the basic

question as to how this precise synaptic connectivity is achieved

during development. A number of modelling studies have examined

how invariance of complex cells evolves from learning rules applied

to arti®cial visual stimuli. For example, Schraudolph & Sejnowski

(1992) perform anti-Hebbian learning and Becker (1996) uses spatial

smoothness to gain translation invariance. The principle of temporal

continuity used in this study was ®rst applied to the learning of

complex cell invariance in the trace rule formulation proposed by

FoÈldiak (1991). Stimuli in this study were arti®cially created bars

similar to those often used in physiological experiments. Progressing

towards more natural stimuli, static images of faces have been used;

these were manually rotated or translated within the visual ®eld to

impose a well-de®ned `temporal' structure (Becker, 1999; Wallis &

Rolls, 1997). Applying variants of the trace rule to the stimuli these

studies achieved translation or viewpoint invariance similar to that of

cells in higher cortical areas. A recent study uses an analytical

approach ± related to independent component analysis ± with natural

images to gain insight into translation and phase-invariant represent-

ations (HyvaÈrinen & Hoyer, 2000), leaving the question of the

physiological basis of that model open.

Here we propose a network model which is inspired by physio-

logical ®ndings and trained with natural stimuli. Stimuli are obtained

from videos recorded with a camera mounted to a cat's head. These

videos provide a continuous stream of stimuli, approximating the

input which the visual system is naturally exposed to, and preserving

its temporal structure. This input projects to a set of neurons which

employs a competitive Hebbian scheme to learn simple cell type

response properties. These neurons in turn project to another set of

neurons, which additionally utilize the temporal structure of their

input for learning. This temporal learning rule relates to recent

experimental results reporting that the induction of LTP vs. LTD

depends on the relative timing of pre- and postsynaptic spikes

(Markram et al., 1997; Bi & Poo, 1998). We show that this temporal

learning rule, in combination with the temporal structure of natural

stimuli, leads to the emergence of complex cell response properties.

Correspondence: Dr Wolfgang EinhaÈuser, as above.
E-mail: weinhaeu@ini.phys.ethz.ch

Received 31 August 2001, revised 11 December 2001, accepted 18 December
2001

European Journal of Neuroscience, Vol. 15, pp. 475±486, 2002 ã Federation of European Neuroscience Societies



Materials and methods

Network model

Based on the Hubel & Wiesel (1962) model, we implement a three-

layer feed-forward network whose layers are referred to as input

layer, middle layer and top layer, respectively. The neurons of the

input layer represent the thalamic afferents projecting to primary

visual cortex. Each input neuron is connected to each neuron in the

middle layer, these in turn project to all top layer neurons. Learning

in the middle and top layer is competitive between neurons within the

same layer. Furthermore, learning of top layer cells depends not only

on the current activity but also on its past trace, and thus allows for

utilization of the temporal structure of the input.

Notation

Throughout this paper A(I), A(M), A(T) denote the activities of input,

middle and top layer neurons, respectively; W(IM) and W(MT) refer to

the weight matrices from input to middle and from middle to top

layers. Bold letters indicate vectors or matrices. Subscript indices

denote a single element of an activity vector or weight matrix,

arguments in parentheses express time dependence. Explicit notation

of time is omitted where unnecessary. Brackets áxñn denote a smooth

temporal average of x over n computations of value x, i.e.

hxi��t� �
x�t�
�
� 1ÿ 1

�

� �
hxi��t ÿ ��;

where t is the simulated time since the last calculation of áxñn. [x]+

denotes recti®cation, i.e. [x]+ = max(x,0). The temporal distance

between two consecutive stimuli is denoted by Dt, and dij denotes the

Kronecker delta (1 for i = j, 0 otherwise)

Input layer

Stimuli consist of 10 by 10 pixel patches drawn from natural videos

as described below and determine the activity in the input layer.

A(I)(t) contains the pixel values of the current stimulus.

Middle layer

The activity of the middle layer neurons is calculated as:

A�M��t� � A�I��t�W�IM��t ÿ Dt�
hA�M��t�i�

ÿ I
A�I��t�W�IM��t ÿ Dt�

hA�M��t�i�

 !" #
�
�1a�

where divisions by vectors are pointwise. The scalar I models the

effect of a fast inhibitory circuit. The inhibition is proportional to the

sum of all these activities. Inhibition changes the neurons' activities,

which in turn in¯uence inhibition strength. Assuming the inhibition to

be fast in comparison to the change in the input, the activity of the

middle layer neurons quickly reaches a stable state. For computa-

tional ef®ciency this is calculated as a ®xpoint of:

I = á[A(M,0) ± I]+ñneurons (1b)

where the brackets á. . .ñ here denote the mean over all middle layer

neurons and A(M,0) is the middle layer cells' activity without

inhibition. The exact form of this inhibition is not a crucial issue, as it

can be replaced by half recti®cation without a qualitative change in

the results (data not shown). In equation 1a the activity of each

neuron is normalized by the temporal average of its activity to

prevent explosion of activities and weights.

Learning in the middle layer employs a `winner-takes-all' scheme,

which allows only the neuron of highest activity to learn. This neuron

of highest activity will be called the `learner' L.

L�t� � arg max
i
�A�M�i �t�� �2�

We implement a threshold mechanism, which only allows a small

subset of stimuli to effectively trigger learning. If and only if the

learner in the middle layer exceeds its threshold (Ti), i.e.

A
�M�
L �t� > TL�t ÿ Dt�; �3�

the weight matrix WiL
(IM) is changed by the Hebbian rule

W
�IM�
iL �t� � �1ÿ ��M��W �IM�iL �t ÿ Dt� � ��M�A�I�i �4a�

where a(M) is the learning-rate for the middle layer. Otherwise the

weights remain unchanged:

W
�IM�
iL �t� � W

�IM�
iL �t ÿ Dt�: �4b�

Also if and only if condition (3) is ful®lled, the threshold TL is

updated by:

T 0L�t� � A
�M�
L �t� �5a�

All thresholds decay as:

T�t� � �1ÿ ��T0�t� �5b�

Stimuli which ful®ll condition (3) will be referred to as `effective'

stimuli throughout this paper.

The combination of the winner-takes all mechanism of equation 4a

with the threshold criterion (3) and the temporal normalization of

equation 1a favours neurons which are strongly active for a small

number of stimuli (to be the winner L and to exceed threshold), but

weakly active for the rest of the stimuli (avoiding down-regulation by

temporal averaging), i.e. whose activity is sparsely distributed. The

threshold stabilizes learning, as only types of stimulus patterns which

consistently reappear in the stimulus set can repeatedly exceed

threshold. The threshold decay ensures that the network remains

plastic and an equal fraction of stimuli is effective throughout the

learning process.

Top layer

The top layer activity A(T)(t) is calculated as,

A
�T�
j �t� �

max
i
�A�M�i �t�W �MT�

ij �t ÿ Dt��
hA�T�j �t�i�

; �6�

where the smooth average is taken over the effective stimuli.

Equation 6 is equivalent to equation 1 apart from two obvious

exceptions: the sum over i (which is implicit in the matrix
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multiplication) is replaced by a `max' operation and there is no

inhibition.

Analogous to the `learner' L in the middle layer case, a learner M is

de®ned for the top layer:

M�t� � arg max
i

A
�T�
i �t� �7�

For the temporal structure to in¯uence learning in the top layer, its

weight update depends not only on the present activity of the cells but

also on the past activity of their afferents. Therefore the weight

between a middle layer cell i and a top layer cell j is increased if i was

the most active middle layer cell in the previous time step, i.e.

i = L(t ± Dt), and j is currently the most active cell in the top layer,

i.e j = M(t). The weight is thus increased if strong presynaptic

activity preceeds strong postsynaptic activity as found in recent

physiological studies (Markram et al., 1997; Bi & Poo, 1998):

W
�MT�
iM�t� �t� � �1ÿ ��T��W �MT�

iM�t� �t ÿ Dt� � ��T��iL�tÿDt�; �8a�

where a(T) is the top layer learning rate and d denotes the Kronecker

delta. This weight update is only performed if condition (3) was

ful®lled at time-step t ± Dt, otherwise no changes are applied to the

weights:

W�MT��t� �W�MT��t ÿ Dt�: �8b�

The fact that in equation 8a M is taken from the current time-step,

whereas L is taken from the previous one, enables the temporal

properties of the stimuli to affect learning. The top layer cells thereby

extract information which tends to be correlated over time, while

discarding uncorrelated information. They thus gain invariance to

rapidly varying variables, while remaining speci®c to slowly varying

variables.

Simulations are performed using MATLAB (Mathworks 2000,

Natick MA) ± the source code is available from the authors upon

request. Unless otherwise stated, nM = 60 middle and nT = 4 top

neurons are simulated with learning rates of a(M) = 0.025 and

a(T) = 2 3 10±5. The threshold decay parameter is set to h = 10±4

and smooth averages are taken over n = 100 iterations. When starting

the simulation the weights between the input and middle layers are

initialized uniformly with 6 0.01% uniformly distributed noise.

Thresholds are initialized to the mean weight and smooth temporal

averages to 1/n. Weights between the middle and top layers are

initialized uniformly to 1/nM. Please note that we will show that the

network properties do not depend critically on either precise tuning of

the parameters or the initial conditions.

Natural stimuli

We obtained video sequences from a camera mounted to a cat's head.

The cat wore chronic skull implants (for procedures see Siegel et al.,

1999) for the purpose of physiological experiments. The implant

features two nuts, to which we attached a removable micro ccd

camera (Conrad Electronics, Hirschau, Germany). Being lightweight

(34 g) the camera did not affect the cat's head movements. The

camera's output was transferred via a cable attached to the leash to a

VCR (Lucky Goldstar, Seoul, Korea) carried by the experimentor,

while the cats were taken for walks in various environments. All

procedures were in compliance with Institutional and National

guidelines for experimental animal care. Videos were digitized

using a miroVIDEO DC 30 graphics card (Pinnacle Systems,

Mountain View, CA) and Adobe Premiere software (San Jose, CA)

at a sampling rate of 25 frames per second and a resolution of 320 by

240 pixels. As the camera spans a visual angle of 71 by 53° each pixel

corresponded to about 13 min of arc. Data were converted to

grayscale by the standard MATLAB rgb2gray function. Each image

was low-pass ®ltered with a 3 3 3 binomial kernel:

1 2 1

2 4 2

1 2 1

0@ 1A
and convolved with a 3 3 3 laplacian kernel:

0 ÿ1 0

ÿ1 4 ÿ1

0 ÿ1 0

0@ 1A
negative values were set to 0. This procedure mimics part of the

spatial ®ltering in the lateral geniculate nucleus. From the image

sequences thus obtained, 10 3 10-pixel wide patches were extracted

and used as input to the network.

A total of 36 min of video were used. Patches were drawn from 25

different locations centred at gridpoints at vertical or horizontal

distances of 0, 6 20 and 6 40 pixels from the image centre. This

yielded 900 min (25 locations, each 36 min) of stimuli, which we

repeatedly presented to the network. We wish to emphasize that this

enlargement of the effective stimulus set should not be mistaken as a

form of batch learning. In the system presented here, weights are

updated using stimuli of not more than one frame temporal distance ±

the system learns online.

Properties of the stimulus patches are analysed using standard

methods (JaÈhne, 1997). Orientation (qi) within an image patch is

de®ned as the direction of the axis with the smallest moment of

inertia. The ratio of the difference to the sum of smallest and longest

axes of inertia will be referred to as `bar-ness' throughout this paper.

It is 0 for an isotropic structure and 1 for a perfectly orientated

structure. The bar is de®ned as the line parallel to the orientation

containing the centre of gravity of the gradient perpendicular to the

patch's orientation. We de®ne the `position' (ri) of a bar as its

distance from the patch's centre, with a positive sign if above the

horizon and negative otherwise.

Network analysis

Each column of the weight matrix W(IM) corresponds to the receptive

®eld of one middle layer cell. The topographic representation of each

cell's receptive ®eld can be visualized as an `x±y-diagram'. The same

bar-ness measure used for the stimuli can also be applied to these x±y-

representations.

In order to compare the obtained receptive ®elds with physiology,

we used typical physiological stimuli for testing network's responses.

We created a set of bars of varying orientations (q) and positions (r),

both de®ned analogue to qi and ri of the inertia method. The bars had

a Gaussian pro®le with a width of 1 pixel perpendicular to their

orientation. They were presented as test stimuli as input to a

converged network, whose weight updates were switched off. Each

neuron's activity was recorded on presentation of these stimuli.

Plotting the activities colour-coded as a function of q and r yields a

diagram that allows comparison of the responses of middle and top

layer neurons with those of physiological simple or complex cells. A

schematic diagram of this representation, which will be called a `q±r-
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diagram' throughout this paper, is shown in Fig. 2b. Sine-wave

gratings were used as an additional measure to characterize the

neurons' responses. With the weight updates switched off, moving

gratings of different orientations were presented to the network and

the responses of the neurons were recorded. A common measure for

categorizing the responses of a cell is the AC/DC (F1/F0) ratio. Like

De Valois et al. (1982) we de®ne the AC component as the peak to

peak amplitude, and consider a cell to be complex if its AC/DC ratio

is < 1 and simple otherwise. Note that these arti®cial stimuli were

used only for testing a converged network; in no part of this study

were any arti®cial stimuli used for training.

In order to compare this study with other proposed objective

function approaches, we investigated the time course of sparseness

and temporal slowness during training. For the de®nition of

sparseness we followed Vinje & Gallant (2000):

sparseness �

1ÿ 1

N

�PN
t�1

a�t�
�2

PN
t�1

a2�t�

0BBB@
1CCCA

1ÿ 1

N

�9�

Regarding temporal smoothness, we used the formulation proposed in

Kayser et al. (2001):

slowness � ÿ

@a�t�
@t

� �2
* +

N

varN�a�t�� �10�

The objective functions were evaluated by showing N sequential

natural stimuli to the network. In equations 9 and 10 t is to be

understood as a discrete stimulus index and N denotes the number of

stimuli shown to evaluate the objective function; the brackets á. . . ñ
denote averaging over the stimulus set. a(t) = (A(t)/áA(t)ñN) is the

normalized activity of middle and top layer neurons, respectively,

when a set of N natural stimuli is shown to the network. The

derivative in equation (10) is implemented as a ®nite difference, i.e.

a(t) ± a(t ± Dt), and varN denotes each neuron's temporal variance

over the stimulus set.

Results

Natural stimuli

In order to understand how the network's response properties are a

consequence of natural input, we ®rst investigated the relevant

statistical properties of this input.

Figure 1a shows four example frames of the videos taken from the

cat's perspective. Because bars or gratings are commonly used as

stimuli in physiological experiments, we investigated to what degree

our natural videos contained such orientated structures. Therefore we

used the bar-ness measure de®ned by the inertia method, which

FIG. 1. Input properties. (a) Four examples out of the total 53884 frames
are shown. (b) Left column, statistics of the complete set of stimuli; right
column, statistics of effective stimuli (de®nition see methods). From top to
bottom, distribution of bar-ness, correlation of orientation in subsequent
stimuli, correlation of position in subsequent stimuli. Orientation is given in
degrees, position in pixels, the index i indicates that data are obtained by
the inertia method described in the methods. In all correlation plots
incidences are colour-coded, normalized by the total histogram of
orientation, or position and share the same logarithmic colour bar (r is
de®ned to be negative if the bar's centre is below the horizon). (c) Mean
change in orientation between subsequent frames over inter-frame distance
for natural stimuli. (Note that the curve does saturate at a difference < 45°,
as orientations are not uniformly distributed in natural images.)
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approaches 1.0 for perfectly orientated structures. We observed a

mean bar-ness of 0.16, thus only a small percentage of the naturally

obtained stimuli were dominated by orientated structures (Fig. 1b, top

left). This suggests that the use of bars or gratings as training stimuli

may be inappropriate for mimicking natural conditions.

Although all stimuli from the videos were presented to the

network, only a subset had an impact on learning. Using the threshold

criterion (equation 3), the learning rule itself selects these `effective'

stimuli, in baseline conditions about 3.5% of the total. Investigating

the bar-ness of the effective stimuli revealed a tendency towards

orientated structures compared with the complete stimulus set

(Fig. 1b, top, mean bar-ness, 0.24). This can be understood, as the

threshold criterion favours types of patterns which tend to reappear

consistently throughout the stimulus set. Although orientated struc-

tures appeared rarely, they were still more consistent than random

patterns. Despite this relative increase in bar-ness, the bar-ness of the

majority of the effective stimuli was still substantially lower than for

ideal bars or gratings.

The inertia method also provides the locally dominant orientation

and position for each stimulus patch. As learning in the top layer

depends on pairs of sequential stimuli (equation 8a), we analysed the

correlation of orientation and the correlation of position between

sequential stimuli. Figure 1b reveals a strong temporal correlation in

orientation (middle left) whereas position is much less correlated

(bottom left). We therefore conclude that local orientation changes on

a slower time scale than local position.

In order to analyse the impact of the inter-stimulus interval Dt on

this correlation we measured the absolute change of orientation

between subsequent stimuli depending on Dt. We found that the

change in orientation increased with increasing Dt, i.e. orientation of

more distant frames was less correlated (Fig. 1c).

The middle layer learns simple cell response properties

After training the network with natural stimuli most neurons in the

middle layer have acquired receptive ®elds similar to simple cells in

primary visual cortex. Figure 2a shows all these receptive ®elds in

x±y representation after 450 simulated hours of training. The majority

of neurons resemble detectors for bars of a certain orientation and

position. In order to further quantify the localization in orientation-

position space we used the q±r-diagrams schematically represented in

Fig. 2b as described in the methods. Figure 2c shows the same

receptive ®elds as Fig. 2a, but in q±r-representation. Most of them are

well localized with respect to orientation and position.

FIG. 2. Middle layer properties. (a) Receptive ®elds of all middle layer cells
after 450 simulated hours are shown in x±y-representation. (b) Schematic
for calculation of q±r-diagrams is shown. Left, bars with a Gaussian pro®le
perpendicular to their orientation are created for different orientations (q)
and positions (r). These bars are presented to a converged network, that has
been trained with natural stimuli and whose learning mechanisms are
switched off (middle). Each neuron's response is recorded and represented
(gray-scale-coded) in a neuron speci®c diagram whose axes are given by the
orientation and position of the stimulus, the so-called q±r-diagrams. (c) q±r-
diagrams are shown for the cells of part (a). Note that, by de®nition of r
and q, the upper left corner is connected to the lower right of the diagram.
(d) Means of q±r-diagrams (top) and distribution of middle layer bar-ness
(bottom) are shown for different network properties. The left panels
represent the baseline condition, the second and third networks with 30 and
120 middle layer neurons, the right panel a 60 middle layer neuron network
trained with 2 times down-sampled input. All plots are taken after 450
simulated hours. (e) Dependence of mean middle layer cell bar-ness on
network parameters (from left to right, middle layer learnrate, temporal
average window, threshold parameter) after 450 simulated hours.
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In order to control for the in¯uence of network size and the chosen

input, we simulated networks with 30 or 120 instead of 60 neurons in

the middle layer. Furthermore we trained the network with input

drawn from the same videos, but down-sampled by a factor of two

before processing. The percentage of effective stimuli increases with

the number of neurons (2.0% for 30, 3.5% for 60 and 6.2% for 120

neurons) as the threshold is individual to each middle layer cell.

Downsampling of the input does not affect the number of effective

stimuli (3.5%). Calculating the mean of all q±r-diagrams we obtained

a measure of how well the middle layer cells cover the stimulus space

(Fig. 2d, top). This can further be quanti®ed by 1 minus the standard

deviation over all data-points divided by its mean. For a perfectly

homogenous distribution this value is 1. For 30, 60 (baseline), 120

middle layer cells and down-sampled input stimulus space, coverage

is 0.75, 0.87, 0.91 and 0.91, respectively. We found that more middle

layer cells better cover the stimulus space, which is a direct

consequence of the competition in the learning rule in the middle

layer. A further way to quantify the simple cell-like properties of the

middle layer cells was to apply the bar-ness measure to the receptive

®eld representation in Fig. 2a. This revealed that most of the middle

layer cells show a high bar-ness (mean, 0.63, 0.54, 0.46 and 0.54 for

30, 60, 120 middle layer neurons and down-sampled input, respect-

ively, Fig. 2d, bottom). The decrease of average bar-ness with

increasing network size is a saturation effect. Competition prevents

any two middle layer cells from acquiring identical receptive ®elds

and occupying the same location in the stimulus space.

In order to investigate other parameters possibly affecting learning

in the middle layer, we measure the middle layer bar-ness in a

converged network in terms of a(M), n and h. For all `learnrates' a(M)

< 0.05, the bar-ness of the receptive ®elds exceeds 0.5; i.e. middle

layer cells acquire simple cell properties for these a(M) values

(Fig. 2e, left). The speed of convergence decreases with decreasing

learnrate, but even for a(M) = 10±3, middle layer cells converge after

300 h of simulated time to the level of baseline simulation

(a(M) = 0.025). The number of iterations n, over which the smooth

average is taken, also only slightly affects the network in converged

state (Fig. 2e, middle). Increasing the threshold parameter h, i.e.

using more and more stimuli for learning (h = 1 implies that all

stimuli are effective), reduces middle layer cells' receptive ®eld's

bar-ness. This is because noise patterns, even if not consistent over

the input, are easily learnt and unlearnt again, preventing middle layer

cells from exhibiting stable receptive ®elds. Decreasing h demands

more stimuli, as only a smaller percentage will be effective,

preventing the network from learning new structures. However, h
can be varied over a wide range around baseline without qualitatively

impairing the simple cell-like properties of the middle layer cells.

(Fig. 2e, right). In conclusion, although the values of a(M), n and h
in¯uence the speed of convergence, their precise tuning is not a

critical issue for the middle layer to learn simple cell properties in a

converged network.

In the baseline simulation the weights between input and middle

layer were initialized uniformly and a small percentage (0.01%) of

uniformly distributed noise added. In order to control for the

in¯uence of initial conditions, we performed three additional

simulations: with no noise, uniform random initialization, and

presetting the middle layer receptive ®elds to white circles with

radii between 2 and 6 pixels on a grey background. After 15

simulated hours, all these simulations reach mean bar-ness values

between 0.51 and 0.56, which match the range observed for different

random initializations in the 0.01% noise baseline case after the same

time. Differences between the different initial conditions exceed this

intrabaseline variability only within the ®rst 10 simulated hours.

Therefore we conclude that the exact form of the initial conditions

has little effect on convergence speed and no effect on the properties

in the converged network.

All these controls show that learning of simple cell response

properties by the middle layer cells is robust with respect to changes

in network size as well as input, and does not depend strongly on

either the parameters chosen or the initial conditions.

In hierarchical networks it is vital for faithful higher level

representation that the receptive ®elds of the lower levels remain

stable over time. Figure 3a shows the trajectory of the centre of

gravity of the q±r-diagram of a typical middle layer cell. The

datapoints are taken every 15 h of simulated time over a total of

900 h of simulated time. The receptive ®eld of the neuron converges

rapidly and then stays within a range of 0.2 pixels and 16°, as shown

in the detail in the right panel of Fig. 3a. Movements in this space are

restricted mainly by cells occupying neighbouring positions in q±r

space, due to the competition in learning. Figure 3b shows that for all

cells in the middle layer the change in orientation and position

(absolute change after each 15 h of simulated time) declines and also

stays in the range observed for the example chosen in Fig. 3a. We

conclude that the model converges well, revealing simple cells whose

receptive ®elds remain stable over prolonged periods of online

learning.

The top layer learns complex cell properties

The top layer cells utilize the temporal structure of the input to

acquire their response properties. Here we show that these cells learn

complex cell-like response properties, when presented with natural

stimuli if and only if the natural temporal structure of the natural

stimuli is preserved.

As a ®rst qualitative characterization of each top layer neuron we

plotted the receptive ®elds of the 10 middle layer cells with highest

connection strengths (Fig. 4a). Middle layer cells with strongest

FIG. 3. Stability of middle layer properties. (a) The development of
localization of the centre of gravity of the q±r-diagram for a typical middle
layer cell in baseline simulation. Each data-point corresponds to 15 h steps
in simulated time. The left panel is taken over the complete possible range
for orientation and position, the right panel shows a magni®cation of the
indicated area. (b) The development of change in the centre of gravity of
orientation (left) and position (right) for all middle layer cells is shown.
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connections to a top cell all share the same preferred orientation but

differ in position. This indicates that each top layer cell codes for one

speci®c orientation regardless of position and thus exhibits the

property of translation invariance observed in cortical complex cells.

In order to investigate this more quantitatively we plotted the q±r-

diagrams of the top layer cells (Fig. 4b). They show selective

responses to stimuli of different orientations with a tuning width of

» 20° (half width at half maximum), but are insensitive to translation.

In the q±r-diagram this is represented by strong modulation along the

orientation axis and small modulation along the position axis. To

compare orientation and position tuning quantitatively, a dimension-

less measure was introduced. For every orientation (or position) the

mean over all positions (or orientations) is taken from the q±r-

diagrams. The standard deviation of the resulting vector, normalized

by the mean of all responses 3 Ö2, de®nes the orientation (or

position) `speci®city' of a given neuron. Speci®city is 0 if a neuron's

response is independent of the respective dimension, whereas

sinewave-modulated tuning (one cycle within the q±r-diagram)

yields a speci®city of 1. Calculating orientation speci®city for the

neurons of Fig. 4b yields 0.955, 1.053, 1.055 and 1.084, whereas they

are much less speci®c to position (0.227, 0.096, 0.161 and 0.148). A

dark bar on a grey background, instead of a bright bar, yields similar

results. Therefore the top layer cells in our model are invariant to

translation and contrast polarity, as are cortical complex cells.

In order to control for the in¯uence of input and network size, top

layer cells' response properties were analysed for the same control

conditions as in the middle layer case. After 450 simulated hours for

30 middle layer neurons the mean orientation speci®city of the top

layer cells was 0.849 and their mean position speci®city 0.209; 120

middle layer neurons yielded 1.209 for mean orientation speci®city

and 0.160 for mean position speci®city for top layer cells. Thus, top

layer properties are robust with respect to the exact number of middle

layer cells projecting to each top layer cell. Orientation speci®city

(mean, 0.836) of the top layer cells for the down-sampled input falls

slightly below the baseline condition (mean, 1.037), which has the

same number of middle layer neurons (60)., However, their position

speci®city (mean, 0.322) is almost twice as large as that in the

baseline condition (mean, 0.171). This is explained by the fact that

effective movement in the down-sampled input is only half as fast as

in the baseline input, yielding a stronger correlation between

subsequent positions. In the baseline simulation, weights from middle

to top layer are initialized at the same value without any noise. In

order to control for the in¯uence of this initial condition we added

100% random, uniformly distributed, noise to the initial values.

Under these extreme initial conditions it takes 360 simulated hours

for the network to converge (i.e. orientation speci®city stays within

5% around its ®nal value), whereas it takes 165 simulated hours in

baseline conditions. However, the relative differences (after 450

simulated hours) in the ®nal values of orientation and position

speci®city compared with the baseline simulation are < 0.5%. As with

the middle layer case, one can ®nd an upper bound for the learnrate

a(T), which is suf®cient to yield the observed complex cell properties.

We ®nd orientation as well as position speci®city reaches the value

observed in baseline (a(T) = 2 3 10±5) for all learnrates < 10±4.

Obviously convergence speed decreases with decreasing a(T), but

a(T) = 10±5 is still suf®cient for the top layer to converge within 450

simulated hours. In conclusion, the learning of complex cell

properties is robust with respect to network size, parameters and

initial conditions.

We have shown so far that in our model the temporal structure of

natural scenes is suf®cient to gate the learning of complex cell

properties. The following controls will address the question, whether

temporal continuity is also necessary for the learning of complex cell

properties in the investigated framework. As a ®rst control we used

the same stimulus set as that in the baseline condition but presented

the patches in random order. Middle layer cells were not impaired, as

FIG. 4. Properties of top layer. (a) Receptive ®elds of the 10 middle layer
cells connected strongest to each top layer cell. Each top layer cell
corresponds to one row; middle layer cells are sorted descending in
connection strength from left to right. Data are taken from the simulation of
Fig. 2a (`baseline') after 450 simulated hours. (b) q±r-diagrams for all top
layer cells of Fig. 4a. (c) q±r-diagrams for top layer cells, when stimuli are
presented in random order. The top layer cells no longer exhibit translation-
invariant orientation tuning as temporal correlation is lost. (d) q±r-diagrams
for top layer cells, when learning only takes place on identical stimuli. The
top layer cells do no longer exhibit translation-invariant orientation tuning
as temporal correlation is lost either. (e) Dependence of orientation
speci®city on the inter-stimulus interval Dt of the network. The baseline
condition of panels (a) and (b) is found at 40 ms, the control condition of
(d) at 0 ms. The control of (c) is represented to the far right, as stimuli
presented in random order mimic a situation of large temporal distances
between subsequent stimuli.
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their learning did not require temporal continuity, while top layer

cells no longer exhibited complex cell type properties. In the q±r-

diagrams of the top layer cells after 450 simulated hours shown in

Fig. 4c, speci®city to orientation is lost (mean orientation speci®city,

0.180). As a second control we showed each stimulus twice, with

weight updates turned off between different stimuli and turned on

between identical stimuli. Temporal information is thereby lost,

although the stimuli are still presented in the same order as in the

baseline condition. Middle layer cells were again not impaired but the

top layer cells again showed largely reduced orientation speci®city

(mean 0.214, Fig. 4d).

In order to further quantify the relation between temporal

correlation in the input and learning in the top layer we changed

the temporal distance Dt between subsequent frames. Figure 4e

shows that, with increasing Dt, the orientation speci®city of top layer

cells decreases. This is explained by the fact, that the correlation in

orientation between frames of larger temporal distance is reduced in

comparison to shorter inter-frame intervals (cf. Figure 1c). Thus we

can conclude that, in the proposed scheme, temporal continuity of

natural scenes is suf®cient and necessary to the learning of complex

cell properties.

A further important criterion is the stability of the acquired

network properties over time. We investigated the orientation and

position speci®city as a function of simulated time. Figure. 5a and b

show the results for all the conditions discussed above. All

simulations reach a steady state after a maximum of 300 simulated

hours and remain stable from then on. At ®rst sight, the transients of

the various conditions seem different in Fig. 5a and b. However,

Fig. 5c and d show that the transients are nearly identical if one plots

the speci®city measures vs. the number of effective stimuli instead of

simulation time. This shows that the different transients in Fig. 5a

and b are explained by the fact that with an increase of the number of

middle layer cells the number of effective stimuli is also increased.

We can therefore conclude that the network converges well and

learning of complex cell response properties is a stable process.

Furthermore the convergence properties show that cells which have

already gained some complex properties, can further re®ne them. In

combination with the fact that the network learns online, our model

thus not only applies to learning of complex cells from random initial

conditions but also to experience dependent re®nement of complex

cell receptive ®elds.

Relation to objective function approaches

It has been proposed that optimizing the neurons' sparseness with

respect to natural stimuli leads to the emergence of simple and

complex type receptive ®elds (Olshausen & Field, 1996; HyvaÈrinen

& Hoyer, 2000). Therefore we measure the sparseness (equation 9) of

the middle and top layer cells of our network during training. We ®nd

that sparseness increases during learning for both the middle and the

top layer neurons (Fig. 6a), but the middle layer cells reach higher

sparseness values (23% vs. 2.7%). This supports the idea that

FIG. 5. Stability of top layer properties. (a) Orientation speci®city as a
function of time averaged over all top layer cells. Colours indicate the
simulation; all simulations shown in Figs 2d and 4b±d are investigated.
Each data point corresponds to 15 h simulated time. (b) Position speci®city
as a function of time for all simulations and controls. Colours and point-
markers as indicated in (a). (c) Transients of (a), plotted vs. effective
stimuli instead of simulated time. Each data point corresponds to 15 h
simulated time. (d) Same as (c) but for position speci®city instead of
orientation speci®city.
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especially the middle layer cells favour a sparse code, although it

remains to be shown, that their sparseness is indeed optimized by the

given learning rule.

Besides sparseness, temporal slowness (equation 10) has also been

proposed as an objective function to explain complex cell invariance

properties in response to natural stimuli (Kayser et al., 2001).

Temporal slowness increases during learning for top layer cells, while

remaining nearly constant for middle layer cells (Fig. 6b). This

suggests that the top layer cells favour slowly varying output.

In order to compare the responses of the simulated neurons directly

with the responses of cortical neurons, we used an additional

measure. A measure commonly used in physiology to de®ne simple

from complex cells, is the AC/DC ratio (see methods) when the visual

system is exposed to moving sinewave gratings. Figure 7a shows the

responses of middle layer cells in a baseline simulation after being

trained with natural stimuli for 450 simulated hours. The responses

are plotted for the preferred orientation (the sinewave stimulus the

cell responds maximally to) at a ®xed spatial frequency of 0.25 per

pixel. All middle layer cells show responses similar to those of

physiologically characterized simple cells. Figure 7b shows the same

measure for the top layer cells, which exhibit responses typical for

complex cells. Calculating the AC/DC ratio as described in the

methods section for both middle and top layer cells yields the

histogram in Fig. 7c. Whereas the AC/DC ratio in all top layer cells is

< 0.5, in all middle layer cells it ranges between 1.5 and 1.7.

Therefore, according to the de®nition of De Valois et al. (1982), all

top layer cells are complex (AC/DC < 1) and all middle layer cells

simple (AC/DC > 1).

Discussion

Relating the statistics of the real world to neuronal properties is an

emerging ®eld within neuroscience. Recently there has been much

progress leading not only to powerful computational algorithms

(HyvaÈrinen, 1999; Schwartz & Simoncelli 2001) but also to compact

models of neuronal properties (Olshausen & Field, 1997) Within this

approach this study shows that simple and complex cells can be learnt

from real world stimuli in a biologically realistic scheme. The

proposed model is robust with respect to its parameters and exhibits

stable receptive ®elds, whose responses match those observed in

physiology. Learning complex cell invariance properties depends on

the temporal structure of the visual input and it is suppressed if

temporal continuity is removed.

In the present study we assume a purely feedforward architecture,

in which thalamic inputs drive middle layer cells which, after

learning, exhibit simple cell type properties. These in turn drive top

layer cells, which exhibit the complex cell properties. Chance et al.

(1999) propose that complex cell properties could also be exhibited

FIG. 6. Objective functions. (a) Development of mean sparseness of middle
layer (blue stars) and top layer (red circles) cells during training. (b)
Development of mean slowness of middle layer (blue stars) and top layer
(red circles) cells during training.

FIG. 7. Middle and top layer Cell responses to sine wave gratings (a)
Responses of all middle layer cells to a drifting grating of spatial frequency
0.25 per pixel and optimal orientation of the respective cell are shown. The
scale indicated on the left refers to all panels individually. (b) Same
analysis as in (a) for the top layer cells from baseline simulation is shown.
(c) Distribution of AC/DC response ratio (AC component is de®ned as peak
to peak amplitude) for middle and top layer cells from 4 simulation
conditions (baseline, 30 and 120 middle layer cells, down-sampled input ±
colours correspond to those of Fig. 5). Note that the vertical axis is
normalized for each cell type (middle layer/top layer) individually.
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by cells with simple cell-like bottom-up connections and recurrent

connections from other simple cells. However, their study does not

address how the necessary recurrent connectivity could be acquired.

It remains an interesting problem for further research how such a type

of recurrent connectivity can be learnt by the mechanisms proposed

in this study.

In the present study the input to a cat's retina is approximated by a

camera mounted to the animal's head. Unlike primates, cats have an

oculomotor range (6 28°), which only covers a small fraction of their

®eld of view (primates: 6 70°). Furthermore, unrestrained cats

seldom perform eye-saccades to rapidly change the direction of gaze,

but rather move their head ± using saccades only for minor smoothing

of the movement (Guitton et al., 1984). Thus we can conclude that,

by neglecting possible eye movements, the camera only receives

input which is present on the cat's retina, and it does not signi®cantly

alter the temporal structure of the stimuli.

The learning of simple cell response properties has previously been

investigated in a number of studies (Olshausen & Field, 1996; Bell &

Sejnowski, 1997; van Hateren & van der Schaaf, 1998). They show

that searching for sparse representations, de-correlated or indepen-

dent components in real world images results in receptive ®elds

similar to those of cortical simple cells. The winner-takes-all learning

rule used in the present study to learn the connectivity from input to

middle layer, in combination with the proposed threshold mechanism,

may be viewed as a sparse prior guiding synaptic plasticity. Indeed

we have shown that sparseness increases for middle and top layer

cells of our network. We here used the formulation of sparseness

introduced by Vinje & Gallant (2000) which itself is a rescaling of the

de®nition by Rolls & Tovee (1995). This de®nition measures how

sparsely a single neuron's activity is distributed over the stimulus set.

Other de®nitions of sparseness measure instead how sparsely the

activity of a population is distributed over a single stimulus. The

former formulation seems more appropriate for our purpose, as the

stimulus set is large compared with the number of neurons. However,

if one adds additional constraints, e.g. like decorrelating the neurons'

activities, as is often done in optimizing objective functions, both

formulations in practice lead to similar results. Although the

equivalence of our model to the maximization of sparseness remains

to be shown, our results demonstrate how optimization of sparseness

might be implemented in a physiologically plausible framework.

The trace rule originally proposed by FoÈldiak (1991) revealed that

temporal continuity can be exploited to produce complex cell-like

receptive ®elds. Stimuli for this study were bars of four different

orientations as often used in physiological experiments. This concept

was applied by Wallis & Rolls (1997) and Becker (1999) to the

problem of face recognition. These studies used static images of

faces, which were subjected to well-controlled transformations such

as rotations or translations. Stimuli used in the present study are not

only taken from natural images, but also preserve the natural

temporal structure of the real-world input to the visual system.

Therefore our model has ± as do biological visual systems ± to cope

with additional dif®culties. Firstly, the movements of objects on the

retina are not constant, but contain rapidly changing movements as

well as nearly immobile ®xation periods. Secondly, the used

sequences contain a continuous variety of objects, unlike the usually

small number of instances used for training and testing in previous

studies. Thirdly, a lot of the encountered stimuli might even be

unsuitable for learning. Thus the system has to select valuable stimuli

for itself. Therefore we consider our stimuli, obtained from a camera

mounted on freely behaving cat, the critical test for the temporal

continuity hypothesis.

Other recent studies on learning of complex cell properties from

natural images use analytic approaches, searching for example for

sparse subspaces (HyvaÈrinen & Hoyer, 2000), or ± more closely

related to this study ± slowly varying features (Kayser et al., 2001;

Wiskott & Sejnowski, 2001). We show that sparseness as well as

temporal slowness increase for the top layer cells during training.

This is evidence that our network may provide a physiological

substrate for these types of objective function approaches.

Objective function studies provide theoretical insight into simple

and complex cell response properties, but neither depend on, nor

provide, a de®nite physiological basis for their models. Therefore

they allow comparisons of the resulting receptive ®elds with

physiological ®ndings, but not the underlying mechanisms. Here we

implement a network model which itself is based on mechanisms

observed in cortical physiology. The model's cells acquire simple and

complex cell response properties and also increase commonly used

objective functions. Although a direct analytic link between the

objective function formulations and the present study remains an

issue for further research, the present model suggests a link between

objective functions and cortical mechanisms.

To our knowledge, the present study is the ®rst to combine natural

stimuli, which preserve the temporal structure of real world scenes,

with a physiologically plausible model to learn complex cell

properties. However, several issues regarding the physiological

realism remain to be discussed. The ratio between the number of

simple and complex cells in our model does not match the ratio

typically observed in physiological experiments (Skottun et al.,

1991). This restriction is closely linked to the fact that we use full

connectivity in and between layers. Thus the considered complex

cells can be regarded as a fully connected subset of the total number

of complex cells. Building on the property that the number of middle

layer cells can change over a wide range in our model without

substantially affecting the network's behaviour, matching simple/

complex ratio and connectivity more closely to physiological data

remains an interesting issue for further research.

A major characteristic of the proposed learning rule is the

implementation of competition between different neurons of the

same layer. This results in a learning rule in which only the neuron

with the highest activity can learn at each stimulus presentation. In a

Hebbian scheme such competition can for example be generated by

strong lateral inhibition (Ellias & Grossberg, 1975; Hertz et al.,

1991). KoÈrding & KoÈnig (2000a) propose an alternative model, in

which timing of the cell's ®ring is crucial. The network exhibits

global oscillations, in which cells receiving stronger input ®re earlier

within a common cycle; only the cells that ®re ®rst can learn. The

mechanism thus implements a winner take all circuit on learning,

while implementing a linear circuit for representation. The study

presented here is inspired by a different mechanism for strong

competition; it seems that bursts of action potentials are necessary for

the induction of LTP (Pike et al., 1999). In vivo studies on layer V

pyramidal cells show that such bursts are typically associated with

calcium spikes in the apical dendrites (Larkum et al., 1999a). Further

data show that even very low levels of inhibition are suf®cient to

block the generation of calcium spikes (Larkum et al., 1999b).

Combining the two ®ndings about LTP and calcium spikes suggests a

model whose learning is highly competitive but inputs are still

faithfully represented (KoÈrding & KoÈnig, 2000b). Furthermore

several physiological experiments (Lisman, 1989, 1994; Artola

et al., 1990; Bear & Malenka, 1994) argue in favour of a scheme

in which synapses are only changed if the neurons exhibit high levels

of activity. Note therefore that various different cortical mechanisms
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could provide the foundation for the thresholded competitive learning

used in our model.

We use a `max norm' to integrate the input from the middle layer

cells onto the top layer cells. Whereas some studies propose a simple

linear sum (Fukushima, 1980; Mel, 1997) the max norm has been

suggested to ®t physiological ®ndings better when a hierarchy of

levels is considered (Riesenhuber & Poggio, 1999). This is also

supported by recent physiological evidence (Lampl et al., 2001). In

order to exploit the temporal structure of the stimuli, the learning in

the top layer depends on past presynaptic activity as well as current

postsynaptic activity. Electrophysiological evidence suggests that

plasticity depends not only on the present activity but also on its

temporal evolution (Yang & Faber, 1991; Ngezahayo et al., 2000).

Markram et al. (1997) show that the change of synaptic ef®cacy is

increased only if presynaptic input precedes the postsynaptic spike.

The time scale of this process is similar to our inter-frame delay of

40 ms. This is our rationale for considering adjacent video frames

instead of, for example, using a weighted average over several

frames. Further experiments show that synaptic ef®cacy in the

hippocampus (Debanne et al., 1996) and in cultured neurons (Bi &

Poo, 1998) also depends on the relative timing between pre- and

postsynaptic activity. This dependence is thus likely to be a common

cortical feature also present in primary visual cortex.

Our model predicts that temporal continuity of natural scenes is

exploited by the visual system to gain or re®ne the receptive ®elds of

complex cells. In order to check this prediction we propose the

following experimental test. Temporal continuity of the real world

can be impaired by the use of stroboscopic light. As correlation

between visual scenes declines with increasing temporal distance,

receptive ®eld properties of complex cells in strobe reared animals

should depend on the inter-strobe interval. Betsch et al. (2001) have

shown, using natural stimuli of sizes similar to cats' complex cell

receptive ®elds, that orientation is uncorrelated after about 300 ms.

Therefore the environment of an animal strobe-reared at strobe rates

< 3 Hz should closely resemble the control condition of randomly

shuf¯ed stimuli. As in the control condition, complex cells in our

model no longer exhibit their typical properties, we predict a

signi®cant impairment of complex cells in such strobe-reared

animals.
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