
In J. L. Van Hemmen and T. J. Sejnowski (Eds.), Problems in Systems Neuroscience,

Oxford University Press (2002) (to appear)

How Does Our Visual System Achieve

Shift and Size Invariance?

Laurenz Wiskott

Innovationskolleg Theoretische Biologie
Humboldt-Universität zu Berlin

Invalidenstraße 43, D-10115 Berlin
http://itb.biologie.hu-berlin.de/
wiskott@itb.biologie.hu-berlin.de

Abstract

The question of shift and size invariance in the primate visual system is discussed. After a short
review of the relevant neurobiology and psychophysics, a more detailed analysis of computational models
is given. The two main types of networks considered are the dynamic routing circuit model and invariant
feature networks, such as the neocognitron. Some specific open questions in context of these models are
raised and possible solutions discussed.

1 Introduction

The ease with which we recognize common objects from different distances and perspectives and under
different illuminations gives the impression that invariant object recognition is a trivial task. However, an
apparently small change in the stimulus can cause a dramatic change in the retinal activity pattern. Assume,
for example, you are looking at a zebra and change your gaze by just one width of the zebra stripes. Many
responses of retinal sensors will be inverted (change from low to high or vice versa) causing a dramatic change
of the neural activity pattern, but you still perceive the same zebra. Thus, in order to achieve invariant
recognition, our visual system has to be insensitive to these kinds of dramatic changes in the visual input
while being still sensitive to more subtle changes that are perceptually relevant, such as when the zebra
turns its head.

The question presented and discussed here is confined to the two apparently simplest geometrical invariances,
namely shift and size invariance. The discussion is mainly based on computational models of the visual system
(not including the large body of literature on application-oriented systems). This simplifies the discussion
in some respects, but it also means that many of the experimental details that have not been modeled yet
are left aside. One should also keep in mind that even if a computational model is consistent with all known
experimental data, it does not mean that it reveals the actual mechanisms used by the biological system.
Despite these and other limitations of the discussion I hope it may nevertheless be useful in addressing the
question: How does our visual system achieve shift and size invariance?

The text is structured as follows. Section 2 briefly summarizes psychophysical and neurophysiological ev-
idence for shift and size invariance and its limitations. Section 3 provides a list of constraints from neu-
roanatomy and -physiology that need to be taken into account when developing biologically plausible models.
From a computational point of view there are two basic approaches by which shift and size invariance can be
achieved: normalizing the image or extracting invariant features. These two approaches are briefly discussed
in Section 4. Sections 5 and 6 present models following these two computational approaches and discuss to
which extent they can account for different aspects of the visual system. Open questions in modeling shift
and size invariance in the visual system are then discussed in Section 7. Section 8 gives a short account of
some alternative models not discussed here. A conclusion is given in Section 9.
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2 Evidence for Shift and Size Invariance in the Visual System

Evidence for shift and size invariance comes from two sides: psychophysics and neurophysiology. Psy-
chophysical experiments with human subjects indicate that recognition of common visual objects is, within
the range tested, independent of location and size. For example, in priming experiments Biederman and
Cooper (1991, 1992) tested subjects on line drawings of ordinary objects. They found that naming reaction
times did not change significantly if the stimuli (4◦ in diameter) were shifted by 4.8◦ visual angle. They also
found no significant change if stimuli were changed in size from 3.5◦ to 6.2◦ in diameter or vice versa. In both
experiments stimuli were presented in or near the center of the visual field. In a perceptual learning task
with gray-scale images of common objects Furmanski and Engel (2000) found no significant performance
difference if size changed unexpectedly from 16.4◦×12.7◦ to 8.2◦×6.4◦ or vice versa.

Supporting evidence for shift and size invariance also comes from neurophysiological experiments. Tovée
et al. (1994), for instance, recorded from face sensitive neurons in the inferotemporal cortex and the cortex
in the banks of the anterior part of the superior temporal sulcus of macaque monkeys. They found the firing
rates of the neurons to be largely invariant to a change of fixation point up to the edge of the presented
faces and only a small reduction up to 4◦ beyond the edge. Ito et al. (1995) measured the receptive field
properties of neurons in the anterior part of the inferotemporal cortex. They found large receptive fields up
to about 50◦ in diameter for critical features of much smaller size, which indicates large shift invariance. 57%
of the neurons tested had a stable response within stimulus size ranges larger than 2 octaves. See (Oram
and Perrett, 1994) for a more detailed overview.

However, psychophysical results also point to some limitations of shift invariance. Nazir and O’Regan (1990),
for instance, showed that recognition of random dot patterns of size 0.97◦×0.86◦ degraded significantly if
patterns were trained 2.4◦ to one side of the visual field and then tested in the center or 2.4◦ to the opposite
side of the visual field. Dill and Fahle (1998) found similar results in a same-different task for random dot
patterns of size 0.5◦×0.5◦ shifted up to 2◦. The degradation with shift even held when subjects knew the new
location beforehand. One possible explanation for these apparently contradicting results might be that our
visual system is more invariant for familiar and meaningful objects than for unfamiliar and abstract patterns,
like the dot patterns. However, there are also a number of other differences between the experiments pro
and contra shift invariance reported here, such as the size of the patterns or the type of task.

3 Neurobiological Constraints

When developing computational models for shift and size invariant recognition in the visual system, one has
to account not only for the invariance properties but also for a number of other aspects of the visual system;
see Figure 1 and (Oram and Perrett, 1994).

Two pathways: It is generally accepted that the visual system can be divided into two pathways dedicated
to different types of processing (Ungerleider and Mishkin, 1982), at least from MT and V4 upwards (see
Merigan and Maunsell, 1993, for a review). The ventral pathway, also called form- or what-pathway,
is dedicated to form perception and object recognition. The dorsal pathway, also called motion- or
where-pathway, processes motion and other spatial information. Even if the dissociation of what- and
where-processing in the two pathways may not be as strict as generally thought (Merigan and Maunsell,
1993), it seems to be clear that computational models have to provide mechanisms for processing these
two aspects of visual information in an explicitly accessible fashion.

Layered structure: The visual system has a rich hierarchy of different areas. The ventral pathway, for
instance, processes visual information in the following sequence of areas: Retina → lateral geniculate
nucleus (LGN) → visual area 1 (V1) → visual area 2 (V2) → visual area 4 (V4) → posterior infer-
otemporal area (PIT) → central inferotemporal area (CIT) → anterior inferotemporal area (AIT) (→
anterior superior temporal polysensory area (STPa)), with a clear hierarchy given by the connectivity
(for reviews see Felleman and Van Essen, 1991; Merigan and Maunsell, 1993; Oram and Perrett, 1994).
Computational models should reflect this layered structure.

Feedback connections: The majority of connections in the visual system are reciprocal, i.e. feedforward
connections are mirrored by corresponding feedback connections (Felleman and Van Essen, 1991). The
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role of these feedback connections is fairly unclear. However, a model of the visual system should at
least offer a hypothesis as to what the feedback connections are good for.

Feature hierarchy: Single unit recordings from different areas of the ventral stream indicate that the
complexity of the critical features causing a neuron to fire gradually increases from bottom to top
(Kobatake and Tanaka, 1994; Oram and Perrett, 1994).

Invariance hierarchy: Single unit recordings also show that the receptive field sizes gradually increase
from bottom to top and with it the amount of shift invariance (Kobatake and Tanaka, 1994; Oram
and Perrett, 1994).

Fast recognition: Measurements of response latencies (see Nowak and Bullier, 1997, for a review) as well
as EEG recordings in psychophysical experiments (Thorpe et al., 1996) show that the visual system
performs object recognition very rapidly within about 150 ms.

Attention: It is known from psychophysical as well as neurophysiological studies that visual processing
can be modified by attention in various ways (see Desimone and Duncan, 1995, for a review). A
computational model should offer mechanisms by which attentional selection or biases can be imposed
on the processing based on cues such as location, features, or novelty.

Learning: It is infeasible to assume that a complex hierarchical network for invariant object recognition
could be genetically predetermined in detail. It is much more likely that the visual system develops
through self-organization and unsupervised learning mechanisms from a relatively simple basic struc-
ture. A computational model of the visual system thus has to offer ideas about these mechanisms.

Figure 1: Basic properties of the ventral pathway of the visual system (adapted from Oram and Perrett,
1994). The pathway has a layered structure (from retina to STPa) with layer to layer connections (gray
upward arrows). Forward connections are usually mirrored by feedback connections (gray downward arrows).
Neurons in different layers respond to features of increasing complexity from bottom to top (sample stimuli
to the right). Receptive field sizes and with it the shift invariance also increase from bottom to top (triangles
in the center, tip indicating a neuron and base indicating its receptive field size). Response latencies are
very short (numbers on the left).
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4 Two Computational Approaches

From a computational point of view there are two basic approaches known by which invariances can be
achieved, firstly by normalization and secondly by extracting invariant features. Some principal pros and
cons of these approaches are summarized in this section. A discussion as to how consistent these approaches
are with what we know about the visual system is given in the succeeding sections in the context of existing
neural models.

4.1 Normalization

In this approach the image of an object in the visual field is normalized to a standard position and size by
an internal transformation. Invariant recognition can then be based on this normalized view. This approach
has the following principal advantages (+) and disadvantage (–).

+ Where-information is made explicit. Since an explicit normalization is applied, the information
about size and location of the object under consideration is available to the system at any time.

– Recognition requires normalization. A normalization requires a rough segmentation to determine
which part of the visual field contains the object of interest. This is typically a difficult task in
natural environments. Thus a sophisticated mechanism of iterating crude recognition, segmentation,
normalization, and verification is required to find the correct normalization and recognize the object
with certainty. This costs valuable time.

+ Minimal information loss. Since shifting and rescaling of a portion of an image is a simple operation,
the normalization can be achieved with minimal information loss and great generality. Thus also
unfamiliar and unnatural stimuli can be easily represented in an invariant way.

– No processing towards recognition. The simplicity of the normalization transformation also
implies that no processing towards recognition is achieved. This may be a disadvantage because the
time used for the normalization cannot be used for recognition.

4.2 Invariant Features

In this alternative approach some features are extracted from the image that are invariant to the location
and size of an object in the visual field. Invariant recognition can then be based on these invariant features.
This approach has the following principal advantages (+) and disadvantage (–).

– Where-information may be difficult to extract. Since the point of extracting invariant features
is to ignore any positional and size information, this where-information may actually be difficult to
extract if needed. In any case, it will require additional machinery and probably additional time to do
so, with the possible exception of some simple cases (Wiskott, 1999).

+ Recognition does not require knowing where the object is. A great advantage of this approach
is that objects can be recognized without knowing where they are and which size they have. Thus
object recognition can be potentially faster than if normalization were required.

– Usually information is lost. The invariant features being extracted will be typically tailored to the
natural visual environment. Thus if unnatural visual stimuli are presented, the object representation
may be insufficient and invariant recognition may degrade. Another type of information loss results
from the lack of spatial information which can potentially cause confusion between objects composed
of the same local features in different spatial arrangements (but see Ullman and Soloviev, 1999; Mel
and Fiser, 2000) and interference between different objects in the visual field.

+ Processing towards recognition. Extracting invariant features is already an important step towards
object recognition. Thus invariance and recognition are achieved largely simultaneously.
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Notice that the four pros and cons listed in this section are complementary to those listed in the previous
section and that the first two and the last two pros and cons in each list form pairs related to the same
property. Because of this complementarity it may be an appealing idea to combine these two approaches;
this issue will be touched upon in Section 7.1.

5 Dynamic Routing Circuit Model

The most prominent neural model for shift and size invariant recognition in the visual system based on a
normalization is probably the dynamic routing circuit model by Olshausen et al. (1993). This model imple-
ments the normalization in a rather direct fashion; see Figure 2. The connectivity between two successive
layers is controlled by routing control units, which can turn on or off certain subsets of connections. If the
appropriate connections are activated, a region in the input layer, referred to as the window of attention,
is projected to the output layer in a standardized size. This provides a normalized representation of the
attended region, based on which recognition can be performed. The connections between the different layers
are organized such that small shifts and rescalings can be realized at the lower stages while larger shifts and
rescalings are realized at the higher stages. The input layer is associated with the LGN and the output layer
is associated with AIT. A closely related model has been presented by (Postma et al., 1997).

Figure 2: Schematic illustration of a routing circuit. The activity of units represent a feature value, such as
local light intensity, and is indicated by different gray values. The same type of feature is used in the whole
network (no feature hierarchy). Most of the existing connections between two successive layers are disabled
(gray lines) through inhibitory mechanisms by the routing control units. The remaining active connections
(black lines) establish a mapping between a region in the input layer (bottom layer), referred to as window
of attention, and the output layer (top layer). This provides a normalized view of the attended object.

Several aspects of the visual system listed in Section 3 can be easily accounted for by the routing circuit
model. The network has a layered structure and achieves shift and size invariance (although in principle the
invariances do not depend on the type of stimulus; cf. Sec. 2). Units have increasing receptive field sizes
and potentially increasing invariances from bottom to top. There is a clear split between what- and where-
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information represented in the main network and the routing control units, respectively. Finally, attention is
naturally implemented in the network (although only in its spatial form; cf. Sec. 3). However, there are also
some open issues here. Feedback is only used in an indirect fashion through the routing control units; there
is no role for direct feedback yet. The network does not show a feature hierarchy. So far only local light
intensities are represented in the network from bottom to top. The network could easily be adapted to other
features such as Gabor-wavelet responses, but this would not introduce a feature hierarchy. Speed is also an
open issue. Since the network in its present form requires the control of the routing prior to recognition, it
is unclear how the model could account for rapid recognition within 150 ms. Finally, no ideas as to how a
routing circuit network could be setup by self-organization have been worked out yet. Some of these open
issues will be discussed in greater detail in Section 7.

6 Invariant Feature Networks

There are a great number of neural models based on the idea of extracting invariant features. Prominent
examples are the neocognitron (Fukushima et al., 1983), higher-order neural networks (e.g. Reid et al.,
1989), and the weight-sharing backpropagation network (LeCun et al., 1989). Invariant features are typically
extracted in two steps. First, features are extracted, then invariance is achieved by spatial pooling. For any
feature being extracted a set of units with identical receptive fields is distributed over the input layer. In
neural network models this is often achieved by a weight-sharing constraint. Pooling over a neighborhood
of units sensitive to the same local feature at different locations yields a feature specific response that is
invariant to local shifts. A neural module extracting invariant features is illustrated in Figure 3. The
extracting and pooling might also be performed on a dendritic tree rather than by a layer of units (Mel
et al., 1998). Size invariance can be treated analogously to shift invariance if in the first step common
features of different size are extracted (Gochin, 1994). By combining many of these modules at different
locations and different levels, one obtains a hierarchical network extracting invariant features of increasing
complexity and increasing invariance. Figure 4 shows such a hierarchical network, which is similar to a
neocognitron (Fukushima et al., 1983).

Figure 3: Modules for extracting shift invariant features. Black lines highlight the receptive fields of
some selected units (— excitatory connections, - - - inhibitory connections). Left: In a first step arrays of
units (hexagons) with identical receptive fields extract features (indicated by different textures) at any given
location. In a second step the activity of all units sensitive to the same feature is pooled. The pooling units
(textured circles) then respond to this feature invariant to local shift within the receptive field (indicated by
the arrows (7→) left and right the pooling units). Right: The same computation could also be performed
on the dendritic tree (thick lines) rather than by an explicit neural layer. However, for clarity the left type
of illustration will be used in the following.

The basic architecture has been extended in several ways. To include top-down attention to a location
Salinas and Abbott (1997) have added so-called gain fields to allow selecting a local region and enable
feature extracting units only there. One can also imagine top-down attention to objects or features if the
facilitation acts on different sets of units sensitive to a common feature rather than location as illustrated
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Figure 4: A hierarchical network for extracting invariant features can be built by replicating the module
depicted in Figure 3 at different locations and different levels. The top module has the same structure as the
bottom modules except that more complex features in greater number are combined and larger invariance
is achieved. The bottom modules have some overlap. As one proceeds up the hierarchy spatial specificity is
traded for feature specificity.

in Figure 5 (cf. Koch and Ullman, 1985). These attentional control mechanisms are similar to those in
the routing circuit model in that they work top-down and require indirect feedback. In (Fukushima, 1986)
saliency driven attention based on direct feedback was implemented. Assume that at the top level there are
units that respond to objects (single units are considered here for simplicity and may actually correspond
to larger groups of neurons). If several objects are present in the visual field, several of these units will be
active. Through a winner-take-all mechanism, one of these units can be selected and feedback connections
can be used to trace back which of the feedforward units and connections gave rise to the response of the
winning unit. By facilitating those connections and units and suppressing others, the system can attend to
the most salient object. This is also illustrated in Figure 5.

The detailed connectivity of an invariant feature network is too complicated to be determined genetically.
It is therefore interesting to see that invariances can be learned in a hierarchical network based on visual
experience (Wallis and Rolls, 1997; Wiskott, 1999), leading to a connectivity like in a typical invariant feature
network. The respective learning principle is based on the assumption that the external world changes slowly
while the primary sensory signals change quickly, e.g. the response of retinal photoreceptors change quickly
due to their small receptive field sizes. Unsupervised learning of invariances can then be based on the
objective of extracting slowly changing features from the quickly varying sensory input (Földiák, 1991),
which then leads to a robust and invariant representation of the environment.

Invariant feature networks can account for many aspects of the visual system listed in Section 3. They have
a layered structure with increasing feature complexity as well as increasing shift invariance. Size invariance
could be dealt with analogously. Object recognition can be very fast, since without attentional control
all processing is purely feedforward. Attention can be implemented in various ways which also provides a
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Figure 5: The hierarchical network for extracting invariant features with two types of attentional control.
Firstly, the control units to the right can facilitate or enable (thin black lines) and disable (connections
not shown) certain sets of units and connections so that only information about a particular object, region,
feature, or location is being processed. This is a form of top down attentional control. Secondly, those
connections and units which gave rise to the activity of a particular unit at the top can be facilitated
through direct feedback connections (thick black lines and units). This is a form of saliency driven attention.
If only the facilitated part of the network remains active, the location of the attended object can be easily
determined by some mechanisms not illustrated here.

function for direct feedback connections. Finally, simulations have shown that the connectivity of invariant
feature networks can be learned based on visual experience. Only one of the major issues considered here
remains unclear: How can an invariant feature network process where-information separately from what-
information?

7 Open Questions

In the preceding sections a short review of the two main classes of neural models for shift and size invariant
recognition was given. It became clear that the routing circuit model leaves more questions open than
invariant feature networks. However, this is not surprising, since many more researchers have been working
on the latter. Thus at the current stage of the discussion both models should be considered further. I will
discuss two open questions regarding the routing circuit model and one open question regarding the invariant
feature networks.

7.1 How can Routing Circuits have a Feature Hierarchy?

Routing circuits only achieve a normalization. No feature extraction or other kind of processing towards
object recognition is performed. Thus routing circuits do not have a feature hierarchy. If the input layer
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represents gray values, the output layer also represents gray values. This is in conflict with neurophysiological
results which indicate that neurons in higher layers are selective for more complex features than those in
lower layers. Thus, the question is: How can routing circuits have a feature hierarchy?

The first naive approach would be to strictly alternate a feature extraction stage like the first stage in Figure 4
and a routing stage. The feature extraction stage would increase the number of units at any location. This is
no problem in the invariant feature network since there the density of locations that need to be represented
is reduced in the pooling stages. However, this is not the case in the routing stages. In the standard routing
circuit model the total number of units is only decreased by reducing the overall size of the represented field
but the density of complex features would be the same as that of the simple features at the bottom layer,
which would lead to an explosion of the number of units and a very redundant representation.

Thus, it is clear that the spatial density of the representation has to decrease from bottom to top. A second
approach would therefore be to include the dynamic routing mechanism into the standard invariant feature
network. This is illustrated in Figure 6. A problem with this solution, however, is that local features can
only be represented with a fixed spacing or, alternatively, local distortions and deviations from the regular
spacing have to be explicitly represented by the routing control units and possibly also memorized. In any
case, this architecture looks very similar to the standard invariant feature network with attentional control.
It is therefore an open question whether a feature hierarchy could be included in the routing circuit model
in a sensible way while preserving properties that differ significantly from the invariant feature network.

Figure 6: A hierarchical network that is a combination of an invariant feature network and a dynamic
routing circuit. The pooling step is replaced by dynamic routing, thereby preserving control over the spatial
normalization transformation. With a rigid routing scheme, like the one indicated in this figure, local features
could be represented only with a fixed spacing. This problem could be solved by a more flexible routing
scheme that would also include local distortions. This however, would make the control more demanding and
the architecture similar to the original invariant feature network with top-down attentional control, which
does not depend on the detailed control of the distortions.
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7.2 How can Dynamic Routing Circuits be Fast Enough?

Another open question with the dynamic routing circuit is its speed. We know that humans can do visual
classification tasks, e.g. animal vs. no animal, within about 150 ms regardless of the accurate location of the
objects in the visual field. In the general case the standard procedure for invariant object recognition in a
dynamic routing circuit would probably be as follows: (i) The window of attention is widely open and the
presented image gets propagated through the routing circuit. (ii) Some mechanism determines the region in
the visual field the system has to attend to. (iii) The routing control units are appropriately activated and
the dynamic routing is established. (iv) The image gets propagated through the routing circuit once again
such that the attended object is normalized to standard size and location. (v) Object recognition can take
place based on the normalized view. Even if we use very optimistic estimates for the times used by these
five steps, it is clear that the whole process cannot be finished within 150 ms. Thus, the question is: How
can fast object recognition be explained by dynamic routing?

One simple solution would be to assume that the rapid recognition experiments done so far do not require
dynamic routing and can be explained simply with the window of attention widely open (Bruno Olshausen,
2000, personal communication). The task of distinguishing animal pictures from non-animal pictures (Thorpe
et al., 1996) might be solved just based on simple feature detectors, such as eye- and fur-detectors, which do
not require a normalization of the input image. If this solution turns out to be true, it would indicate that
the routing circuit can initially work in an invariant feature network mode.

Another solution might be to assume that in simple cases the window of attention can be determined
very rapidly on a low level. By modifying an earlier experiment (Subramaniam et al., 1995) Biederman
and coworkers have performed rapid recognition experiments in which black line drawings were presented
on a white background every 70 ms at one of four different locations in the visual field and the subjects
had to respond when they recognized a particular object. Performance was nearly perfect despite the fact
that the location of stimulus presentation changed randomly from image to image, i.e. every 70 ms (Irving
Biederman, 2000, personal communication). In this experiment the location of the objects could have been
detected purely on the basis of low-level cues (black lines on white background). Such a low-level based
attentional control would bypass the ventral pathway and permit to skip step (i) above and reduce the time
used for step (ii). The control mechanism proposed in (Olshausen et al., 1993) is of this type, but the control
dynamics is recurrent and based on gradient ascent, which makes the system slow. However, if a more rapid
version of this control mechanism could be developed, it might be possible that the system would be fast
enough even if dynamic routing were required for recognition.

A more detailed analysis of existing experimental data and possibly further experiments are required to
validate or rule out one or both of these solutions.

7.3 How can Invariant Feature Networks Process Where-Information?

The major open question for the invariant feature networks is that of how they process where-information.
There are some models which address this issue. Hummel and Biederman (1992), for instance, have built
a network model called JIM (John and Irv’s model) for recognizing 3D-objects made of simple geometric
shapes. Part of JIM extracts invariant features and other parts process information about the location and
size of the features. However, this model is incomplete in that the where-information is not extracted from the
input image but provided separately by hand. Learning to extract invariant features and where-information
from input images has been demonstrated in (Jacobs et al., 1991) and (Wiskott, 1999), in the former case
through supervised learning and in the latter case through unsupervised learning. However, in both cases
only one object in front of a blank background was visible at a time so that extracting where-information
was greatly simplified.

Thus, processing where-information in an invariant feature network remains an open issue. However, in
context of attentional control some of the necessary machinery has already been developed. Two basic
mechanisms are needed. Firstly, communication from the where- to the what-system requires a mechanism
for focusing on a particular location to answer the question: What do I see here? This can be done by
the top down attentional mechanism described in Section 6. Secondly, communication from the what- to
the where-system requires a mechanism for determining the location of a recognized object to answer the
question: Where do I see this? This can be done by the saliency driven attentional mechanism also described
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in Section 6. Thus, we see that some basic machinery for communication between the what- and where-
system has been developed. What remains to be done is to link together these existing components and to
develop a readout mechanism for object location in case of saliency driven attention. A detailed comparison
with psychophysical and neurophysiological results would then have to show how plausible such a model
would be.

8 Other Models

There are a number of models for shift and size invariant recognition that have not been considered in the
discussion above. Some of these models will now be briefly mentioned.

Several models are based on a fixed global invariance transformation, such as a combination of the log polar
and Fourier transform (Cavanagh, 1978) or the R-transform (Reitböck and Altmann, 1984). These are an
extreme case of an invariant feature network. They are not considered here for two reasons. Firstly, since
the transformation is global, recognition requires a segmented object; cluttered scenes cannot be processed
well. Secondly, the transformation requires a very precise connectivity and no mechanisms as to how these
structures could be learned or self-organize have been presented.

Dynamic link matching (Bienenstock and von der Malsburg, 1987; Konen et al., 1994; Wiskott and von der
Malsburg, 1996) is a dynamics which establishes a topology-preserving mapping between similar objects in
two different layers. This can be used to find a normalizing transformation to achieve invariant recognition.
Since the dynamics requires an interplay between synaptic changes and induced correlations, dynamic link
matching is too slow to account for the rapid invariant recognition capabilities of humans and is not considered
here. However, dynamic link matching may play an important role in the self-organization of the visual
system (Wiskott and von der Malsburg, 1996).

An interesting mechanism for extracting invariant features has been proposed by Buonomano and Merzenich
(1999). It is based on local interactions generating a temporal code that is shift invariant. It would be
interesting to investigate to what extent this mechanism could substitute for the invariant feature module
described in Section 6.

9 Conclusion

How does our visual system achieve shift and size invariance? I have discussed this question here from a
theoretician’s point of view by giving an overview over computational models and pointing out some open
issues in developing these models further. At the level of the discussion presented here the invariant feature
networks seem to be consistent with most of the neurobiological constraints listed in Section 3, while there are
more open issues for the dynamic routing circuit model, which represents here the computational approach of
normalization. However, this picture might change if the discussion is carried further and more experimental
details are taken into account. It may also be that both types of networks need to be combined as briefly
considered in Section 7. The visual system could work in an invariant feature mode in the beginning and
then use mechanisms of dynamic routing for a refined perception. Finally, it may also turn out that neither
of the two network models discussed here is realized in the visual system. Some alternative models were
mentioned in Section 8.

The question of shift and size invariance may appear to be too specific to be worth being raised as one of the
important questions in systems neuroscience. Wouldn’t be the question of how our brain builds invariant
representations in general be much more suitable? I think it depends on the answer. Either the brain solves
all invariance problems in a similar way based on a few basic principles or it solves each invariance problem
in a specific way that is different from all others. In the former case the more general question would be
appropriate and one could consider the more specific question of shift and size invariance as a representative
example. Solving the problem of shift and size invariance would then provide the key to all other invariance
problems. In the latter case, i.e. if all invariance problems have their specific solution, the more general
question would indeed be a set of questions and as such not appropriate to be raised and discussed here.
There is, of course, a third and most likely alternative and that is that the truth lies somewhere between
these two extremes.
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